Havaitseva tähtitiede 1

Koko: px
Aloita esitys sivulta:

Download "Havaitseva tähtitiede 1"

Transkriptio

1 Havaitseva tähtitiede elokuuta 2009 Leo Takalo puh

2 Kirjallisuutta Nilsson, Takalo, Piironen: Havaitseva tähtitiede I (kurssikirja) Kitchin: Astrophysical techniques Howell: Handbook of CCD astronomy Web Osoitteita:

3 Sisältö 1. Historiaa 2. Ilmakehän vaikutus havaintoihin 3. Optiikkaa 4. Kaukoputket 5. Ilmaisimet (silmä, valokuvaus, valomonistin,...) 6. CCD 7. Kuvankäsittely 8. Fotometria 9. Polarimetria 10. Spektrometria 11. Muut aaltoalueet 12. Astrometria 13. Nykyaikaiset suuret teleskoopit

4

5

6

7 Historiaa Ensimmäinen merkittävä havaitsija oli Hipparkhos, joka eli toisella vuosisadalla ennen ajanlaskumme alkua. Hän laati varhaisimman tunnetun tähtiluettelon. Siinä esitetyt suuruusluokat ovat jääneet elämään nykyisen magnitudin käsitteessä.

8 Hipparkhos käytti ainakin armillaaripalloa, joka koostuu taivaanpallon perusympyrää kuten ekliptikaa ja meridiaania vastaavista renkaista. Armillaaripallo koostuu kehistä, jotka vastaavat taivaanpallon perusympyröitä.

9 Toinen vanha kulmien mittauksen apuväline on kvadrantti, jossa on neljännesympyrän muotoinen kaari ja ympyrän keskipisteen ympäri kiertyvä tähtäyssauva. Kvadrantista kehittyivät suuret seinään kiinteästi kiinnitetyt seinäkvadrantit sekä pienet oktantit ja sekstantit, joita varsinkin merenkulkijat käyttivät. Havaintolaitteet oli tarkoitettu vain kulmien mittaamiseen. Niiden tarkkuutta parannettiin suurentamalla laitteita, muotoilemalla tähtäimet sopivasti, ettei havaitsijan silmän paikka pääse vaikuttamaan tähtäyssuuntaan, sekä kehittää apukeinoja asteikkojen lukematarkkuuden parantamiseksi.

10 Tämän kehityksen veivät pisimmälle Tyko Brahe ( ) ja Johannes Hevelius ( ). Tyko Brahe onnistui pienentämään virheet vajaaseen kaariminuuttiin. Hän oli myös ensimmäinen tähtitieteilijä, joka systemaattisesti tutki ja pyrki vähentämään havaintovirheitä Viimeinen vanhan havaintoperinteen jatkaja oli Johannes Hevelius. Hevelius kylläkin rakensi ja käytti kaukoputkia, mutta halusi silti suorittaa tähtiluetteloihin tarvittavat koordinaattien mittaukset ilman optisia apuvälineitä. Hevelius pääsi tarkkuuteen, joka on keskimäärin noin puolen kaariminuutin luokkaa eli hiukan parempi kuin Tykolla.

11 Kaukoputken kehitys Pian Tykon kuoleman jälkeen havaitseva tähtitiede siirtyi uudelle aikakaudelle kaukoputken keksimisen ansiosta. Linssejä oli valmistettu jo aikaisemminkin, mutta vasta 1600-luvun alussa keksittiin yhdistää kaksi erilaista linssiä kiikariksi. Ensimmäisenä tämän keksi ilmeisesti hollantilainen Hans Lippershey (n ), mutta samoihin aikoihin vuoden 1608 paikkeilla muutkin alkoivat valmistaa kiikareita. Galileo Galilei ( ) kuuli keksinnöstä seuraavana vuonna ja onnistui pian valmistamaan kiikarin itselleen, vaikka ei ehkä täysin ymmärtänytkään sen toimintaperiaatetta. Pian hän sai aikaan 30-kertaisen suurennuksen, jolloin laitetta voi jo kutsua kaukoputkeksi.

12 Ensimmäisten kaukoputkien optiikan laadussa ei ollut hurraamista. Pahin ongelma oli linssin väriaberraatio. Virhettä yritettiin pienentää pidentämällä polttoväliä. Tämä johti 1600-luvulla hyvin pitkiin ja hankalasti käsiteltäviin rakennelmiin. Esim. Johannes Heveliuksen suurimman kaukoputken polttoväli oli peräti 45 metriä.

13 Väriaberraatiosta päästään eroon käyttämällä linssin sijasta peiliä. Koska valon ei tarvitse kulkea erilaisten väliaineiden läpi, se ei taitu, eikä siten myöskään hajoa väreiksi. Ensimmäisen peilikaukoputken periaatteen esitti englantilainen James Gregory ( ) vuonna Siinä valo heijastuu ensin paraboloidin muotoisesta pääpeilistä ja osuu pienempään apupeiliin, joka on muodoltaan kovera ellipsoidi. Apupeilistä valo heijastuu pääpeilissä olevan reiän lävitse okulaariin. Tämä kaukoputkityyppi ei koskaan yleistynyt, sillä siinä peilien kuvausvirheet vahvistavat toisiaan. Vähän myöhemmin Isaac Newton ( ) korvasi apupeilin vinoon asetetulla tasopeilillä, joka heijastaa kuvan putken sivulle. Varsinkin harrastajat käyttävät edelleen paljon Newton-tyyppistä kaukoputkia, sillä siinä on vähän optisia osia, joten se on halpa ja helppo itsekin valmistaa.

14 Rossen jaarlin, William Parsonsin, suurin kaukoputki oli 72-tuumainen (180-senttinen). Se valmistui 1845 ja oli maailman suurin teleskooppi aina 1910-luvulle, jolloin Mount Wilsonille rakennettiin 100-tuumainen Hooker-teleskooppi. (Kuva Risto Heikkilä)

15 Ensimmäisten peilikaukoputkien peilit eivät olleet lasia vaan metallia. Peilimateriaali, speculum-metalli, koostui pääasiassa kuparista ja tinasta, mutta mukana voi olla myös arseenia. Vuonna 1672 esitettiin, että Gregoryn kaukoputken kovera apupeili korvattaisiin kuperalla peilillä. Keksinnön tekijä oli luultavasti ranskalainen lääkäri Giovanni Cassegrain ( ), mutta aivan varmoja henkilöllisyydestä ei olla. Newton piti Cassegrainin ajatusta täysin kelvottomana. Vasta vuosisata myöhemmin huomattiin, että Cassegrainin kaukoputkessa pää- ja apupeilien kuvausvirheet eliminoivat osittain toisensa, joten järjestelmä on Gregoryn kaukoputkea selvästi parempi. Nykyisin suuret kaukoputket ovatkin juuri Cassegrain-tyyppisiä.

16 Vuonna 1729 optisia kokeita harrastellut Chester Moor Hall ( ) keksi, että yhdistämällä kaksi erilaisista laseista tehtyä linssiä väriaberraatio voidaan poistaa. Siksi sitä kutsutaankin akromaattiseksi eli värittömäksi linssiksi. Linssikaukoputkien valmistajana suurta mainetta sai Joseph Fraunhofer ( ). Tunnetuin Fraunhoferin rakentamista kaukoputkista on 1820 pystytetty Tarton 9.5-tuumainen refraktori. Yksi tämän kaukoputken uutuuksista oli ensimmäinen nykyaikainen ekvatoriaalinen jalusta ja painojen käyttämä kellokoneisto, joka piti kaukoputken jatkuvasti kohteeseen suunnattuna luvulla keksittiin, että lasi voidaan pinnoittaa ohuella kiiltävällä hopeakalvolla. Ensimmäisenä lasisia kaukoputken peilejä kokeilivat Carl von Steinheil ja Léon Foucault ( ).

17 Ensimmäinen kaukoputkeen liitettävä mittalaite oli hiusristikko, jonka William Gascoigne ( ) kehitti vuoden 1640 paikkeilla. Siitä hän kehitti edelleen mikrometrin, jolla voitiin mitata aikaisempaa paljon tarkemmin pieniä kulmia, kuten kaksoistähtien välimatkoja. Absoluuttiseen astrometriaan käytettiin aikaisemmin suuria, kiinteästi pystytettyjä seinäkvadrantteja. Niistä kehittyivät uudemmat meridiaanikoneet.

18 Ohikulku- eli pasaasikone on periaatteessa samanlainen kuin meridiaanikonekin, mutta se on tarkoitettu nimenomaan kulminaatioaikojen määrittämiseen. Siksi siinä on pienempi ja epätarkempi lukemakehä korkeuden määritystä varten. Aina 1900-luvun alkuun saakka tähtiluettelot on laadittu pääasiassa erilaisilla meridiaanikoneilla. Sittemmin niiden käyttö on vähentynyt. Nykyään vakituisessa käytössä on vain muutama pitkälle automatisoitu laitteisto. Sittemmin astrometriaan on käytetty valokuvauslevyjä ja nykyisin CCD-kuvia. Kyseessä on tällöin suhteellinen astrometria: kuvassa on oltava tunnettuja vertailutähtiä joiden suhteen paikat mitataan.

19 Tähtien magnitudit arvioitiin aluksi silmämääräisesti. Objektiivisempiin mittauksiin päästiin mittaamalla valon määrä jollakin silmästä riippumattomalla tavalla. Zöllnerin fotometri. Kohdetta havaitaan vasemmalla olevalla kaukoputkella. Oikealla olevassa purkissa on lamppu. Sen valo muodostaa standardin, johon tähden kirkkautta verrataan. Lampun valoa säädetään polarisaattoreilla niin, että se näkyy yhtä kirkkaana kuin tähti.

20 Steinheilin fotometrissä käytettiin halkaistua objektiivia, jonka puoliskoja voitiin siirrellä pitkin kaukoputken optista akselia. Okulaari ei ollut aivan polttotasossa, joten tähdet näkyivät läiskinä Säämällä objektiivin puoliskojen etäisyydet sopiviksi läiskien pintakirkkaudet saatiin samoiksi. Johann Zöllnerin ( ) fotometrissä kohdetta verrattiin keinotekoiseen valonlähteeseen, jonka kuva säädettiin polarisaattorien avulla yhtä kirkkaaksi kuin kohde. Harvardissa Edward Pickering ( ) kehitti Zöllnerin fotometristä laitteen, jolla voitiin verrata kahden tähden kirkkautta. Laitteessa oli kaksi vaakasuoraa kaukoputkea, joihin valo ohjattiin peilien avulla. Toinen kohde oli yleensä standardina käytetty Pohjantähti. Myöhemmin kuitenkin osoittautui, että Pohjantähti on muuttuva tähti.

21 1900-luvun alkuvuosina Joel Stebbins ( ) kehitti valosähköisen fotometrin. Siinä valoherkkänä aineena oli seleeni, jonka sähköinen vastus pienenee siihen osuvan valon vaikutuksesta. Hieman myöhemmin Guthnick ja Rosenberg kehittivät huomattavasti herkemmän fotometrin, jossa tähden valo irrottaa alkalimetallin pinnasta elektroneja. Näistä elektroneista aiheutuva virta voidaan sitten mitata. Tällaisen fotokatodin herkkyys on jo paljon parempi kuin valokuvauslevyn. Fotokatodi on herkimmillään spektrin sinisessä päässä ja lähiultraviolettialueessa. Parhaimmillaan kvanttihyötysuhde eli todennäköisyys, että yksi fotoni irrottaa elektronin fotokatodilta, on hieman yli 30 %. Näkyvän valon kohdalla se on enään luokkaa 5 10 % ja putoaa nopeasti infrapunaiseen siirryttäessä

22 Fotokatodiin perustuu myös kuvanvahvistin, joka kehitettiin 1960-luvulla. Siinä fotonien irrottamat elektronit kiihdytetään korkealla jännitteellä fluoresoivalle varjostimelle, missä ne aiheuttavat valonvälähdyksiä, jotka voidaan valokuvata tai muuttaa videosignaaliksi. Nykyisissä fotometreissä käytetään valomonistinputkia, jotka vahvistavat fotokatodilta tulevan virran jopa kertaiseksi. Valomonistimen ikävä puoli on, että se tuhoutuu, jos siihen osuu liikaa valoa. CCD-kameran yleistyessä fotometrien käyttö on nopeasti vähentynyt, ja laitteet ovat jääneet suureksi osaksi historiaan. Tietynlaisissa havainnoissa, kuten polarimetriassa, niillä on kuitenkin edelleen käyttöä

23 Jo Isaac Newton huomasi, että valo voidaan hajottaa prismalla eri väreiksi. William Herschel ( ) asetti lämpömittareita Auringon spektriin ja havaitsi, että korkein lämpötila löytyy näkyvän spektrin punaisen pään ulkopuolelta. Varsinainen spektroskopia alkoi kuitenkin kehittyä vasta 1800-luvun alkupuolella. Vaikka ranskalainen filosofi Auguste Comte väittikin 1835, ettei taivaankappaleiden lämpötiloja tai kemiallista koostumusta voitaisi ikinä saada selville, spektroskopia oli jo alkanut tuoda valoa asiaan. Vuonna 1802 William Wollaston ( ) havaitsi Auringon spektrissä muutamia tummia viivoja. Vuonna 1814 Joseph Fraunhofer löysi Auringon spektristä tällaisia viivoja sadoittain. Hän totesi samojen viivojen esiintyvän myös Kuusta ja planeetoista heijastuneessa valossa. Tähtien spektreissä esiintyi myös viivoja, mutta niiden paikat ja voimakkuudet olivat erilaisia. Nämä havainnot osoittivat, että spektriviivat todellakin liittyivät itse valonlähteen ominaisuuksiin.

24 Fraunhofer havaitsi, että joidenkin viivojen aallonpituudet olivat samat kuin palavan natriumin spektrissä esiintyvät kirkkaat viivat. Vaikka useat muutkin tutkivat spektreissä esiintyviä viivoja, vasta Robert Bunsen ( ) ja Gustav Kirchhoff ( ) esittivät vuonna 1859 spektroskopian perusperiaatteet. He osoittivat, että kylmä kaasu absorboi sen läpi kulkevasta valosta samoja aallonpituuksia, joita se kuumana ollessaan säteilee. Vuonna 1885 Johann Balmer ( ) keksi, että vedyn spektriviivojen aallonpituudet saadaan yksinkertaisesta kaavasta. Vertaamalla tähtien spektrejä laboratoriossa tuotettuihin eri alkuaineiden spektreihin voitiin päätellä, mistä aineista spektriviivat olivat peräisin. Tähtien kemiallinen koostumus alkoi selvitä, vaikka spektriviivojen syntymekanismia ei vielä ymmärrettykään. Vasta kvanttimekaniikka tarjosi seli tyksen spektriviivojen synnylle.

25 Käsitteitä spektroskopia ja spektrometria käytetään lähes synonyymeinä. Tarkkaan ottaen spektrometria viittaa spektrien mittaamiseen ja spektroskopia spektrien katseluun. Varhaisimmat laitteet olivat spektroskooppeja, joilla spektriä tarkkailtiin visuaalisesti. Nykyisin spektri tallennetaan tavalla tai toisella pysyvään muotoon, jolloin kyseessä on spektrometri.

26 Heti kun valokuvaus oli keksitty, sitä alettiin käyttää myös tähtitieteessä. Ensimmäisen kuukuvan otti tunnetun spektritutkijan Henry Draperin isä John Draper vuonna Kaukoputki oli kolmen tuuman linssiputki ja valotus-aika puoli tuntia. Seuraavana vuonna Draper onnistui jo kuvaamaan Auringon spektrin.

27 Tähtitieteellisessä valokuvauksessa on yleensä käytetty lasilevyjä. Jonkin aikaa käytettiin märkälevymenetelmää, jossa valoherkkä emulsio levitettiin lasilevylle, valotettiin sen ollessa vielä märkänä ja kehitettiin saman tien. Menetelmä oli käytännössä erittäin hankala. Vasta kuivalevymenetelmä teki valokuvauksesta käyttökelpoisen tähtitieteen apuvälineen. Siinäkin emulsio levitettiin lasilevylle, mutta sen käsittelyssä ei tarvinnut pitää kiirettä ja levyjä voitiin valottaa miten kauan tahansa. Ensimmäisiä kuivalevymenetelm käyttäjiä oli spektroskopian uranuurtaja William Huggins ( ). Vuonna 1875 hän valokuvasi Vegan spektrin ja pian sen jälkeen myös muiden kirkkaiden tähtien, planeettojen, Kuun ja Auringon spektrit.

28 Helsingissä kuvattu Carte du Ciel -levy. Levyn koko on cm ja kuvan kenttä noin 2 deg 2 deg. Levylle on valotettu erikseen koordinaattiruudukko, jonka viivojen väli on 5. Valokuvauksen kehittyessä siitä tuli luonnollinen tähtien paikkojen mittaamisen apuväline. Ensimmäinen suurisuuntainen valokuvauksellinen kartoitustyö oli 1800-luvun lopulla alkanut Carte du Ciel -projekti. CCD-kameroiden syrjäytettyä valokuvauksen myös valoherkkien lasilevyjen valmistus on lopetettu 1990-luvulla.

29 Valosähköiseen ilmiöön perustuvilla ilmaisimilla on valokuvauslevy parempi kvanttihyötysuhde. Valomonistinputkella kohteesta ei kuitenkaan saada kuvaa luvun puolivälin jälkeen on kokeiltu erilaisia televisiokameran tapaisia laitteita, mutta niiden merkitys on jäänyt vähäiseksi. Vasta CCD-kamera merkitsi huomattavaa edistysaskelta kuvausmenetelmissä CCD-kameran (Charge Coupled Device) historia alkaa vuodesta 1969, jolloin Bellin laboratorion tutkijat W. S. Boyle ja G. E. Smith sovelsivat ensimmäisen kerran alunperin tietokoneiden muistilaitteeksi tarkoitettua piisirua kuvaukseen. Ensimmäiset tähtitieteelliset CCD-havainnot julkaistiin 1975 (kohteena oli Uranus), minkä jälkeen CCD-kameroiden kehitys on ollut nopeaa. Nykyisin CCD-siru on detektorina lähes kaikissa instrumenteissa ja se on syrjäyttänyt valokuvauslevyt ammattikäytössä käytännöllisesti katsoen kokonaan.

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 1. Historia Lauri Jetsu Fysiikan laitos Helsingin yliopisto Johdanto Luennot (kuva: @www.astro.utu.fi) Lauri Jetsu (lauri.jetsu@helsinki.fi) Veli-Matti Pelkonen (veli-matti.pelkonen@helsinki.fi) Paikka

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 4. Teleskoopit ja observatoriot Lauri Jetsu Fysiikan laitos Helsingin yliopisto (kuva: @garyseronik.com) Tavoite: Kuvata, kuinka teleskooppi rakennetaan aiemmin kuvatuista optisista elementeistä Teleskoopin

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Kaukoputket ja observatoriot

Kaukoputket ja observatoriot Kaukoputket ja observatoriot Helsingin yliopisto, Fysiikan laitos kevät 2013 7. Kaukoputket ja observatoriot Perussuureet Klassiset optiset ratkaisut Teleskoopin pystytys Fokus Kuvan laatuun vaikuttavia

Lisätiedot

Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4.

Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4. Yleistä kurssiasiaa! Ekskursio 11.4.! Tentti 12.5. klo 10-14! Laskarit alkavat tulevaisuudessa 15.45, myös ensi tiistaina vaikka silloin ei ole luentoa! Laskaripisteet tulevat verkkoon (opiskelijanumerolla

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo

Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Polarimetria Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Sisällys 1. Polarimetria 1 2 1.1 Polarisaatio yleisesti 2 1.2 Lineaarinen polarisaatio 3 1.3 Ympyräpolarisaatio

Lisätiedot

Teleskoopit ja observatoriot

Teleskoopit ja observatoriot Teleskoopit ja observatoriot Teleskoopin ensisijainen tehtävä on kerätä mahdollisimman paljon valoa (fotoneja) siihen liitettyyn instrumenttiin (kuten valokuvauslevy tai CCD-kamera). Kaukoputkea kuvaavat

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Harjoitukset (20h): Laskuharjoitukset: 6x2h = 12h Muut harjoitukset (ryhmätyöskentely): 8h Luentomateriaali ja demot:

Harjoitukset (20h): Laskuharjoitukset: 6x2h = 12h Muut harjoitukset (ryhmätyöskentely): 8h Luentomateriaali ja demot: Tähtitieteen perusteet (5 op): FT Pasi Nurmi/Tuorlan Observatorio, pasnurmi@utu.fi Luento-opetus ja seminaarit (30h): Aikataulu Ma 12.15-17 Ti 12.15-17 Ke 12.15-17 To 12.15-17 Pe 12.15-17 1.vko Luennot

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin

NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin NOT-tutkielma ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin 2 Johdanto Osallistuimme NOT-projektiin, joka on tähtitiedeprojekti lukiolaisille. Projektiin kuului tähtitieteen

Lisätiedot

Fotometria ja avaruuskuvien käsittely

Fotometria ja avaruuskuvien käsittely NOT-tiedekoulu 2011 Fotometria ja avaruuskuvien käsittely Rapusumu Ryhmä 2: Anna Anttalainen, Oona Snicker, Henrik Rahikainen, Arttu Tiusanen ja Sami Seppälä Sisällysluettelo 1 Fotometria 1.1 Johdantoa

Lisätiedot

3 Havaintolaitteet. 3.1 Ilmakehän vaikutus havaintoihin

3 Havaintolaitteet. 3.1 Ilmakehän vaikutus havaintoihin 3 Havaintolaitteet 3.1 Ilmakehän vaikutus havaintoihin Vain pieni osa sähkömagneettisesta säteilystä pääsee ilmakehän läpi. aallonpituus 0.001 nm 0.01 nm 0.1 nm 1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

CCD-kamerat ja kuvankäsittely

CCD-kamerat ja kuvankäsittely CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate

Lisätiedot

Fotometria. () 30. syyskuuta 2008 1 / 69. emissioviiva. kem. koostumus valiaine. absorptioviiva. F( λ) kontinuumi

Fotometria. () 30. syyskuuta 2008 1 / 69. emissioviiva. kem. koostumus valiaine. absorptioviiva. F( λ) kontinuumi Fotometria Fotometriassa on tavoitteena mitata kohteen vuontiheys F jollakin aallonpituuskaistalla λ. Ideaalinen tilanne olisi tietysti se, että tunnetaan F (λ) koko aallonpituusalueella, jolloin saadaan

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

Ilmaisimet. () 17. syyskuuta 2008 1 / 34

Ilmaisimet. () 17. syyskuuta 2008 1 / 34 Ilmaisimet Ilmaisin eli detektori on laite, jolla kaukoputken kokoama valo rekisteröidään ja muutetaan käsiteltävään muotoon. Aina 1800-luvun puoliväliin saakka ainoana ilmaisimena oli silmä. Sen jälkeen

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Valo, valonsäde, väri

Valo, valonsäde, väri Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Valo, valonsäde, väri Näkeminen, valonlähteet Pimeässä ei ole valoa, eikä pimeässä näe. Näkeminen perustuu esineiden lähettämään valoon,

Lisätiedot

Kauniiden kuvien valmistus Nordic Optical Telescopella

Kauniiden kuvien valmistus Nordic Optical Telescopella 1/16 Kauniiden kuvien valmistus Nordic Optical Telescopella Pauli Kemppinen Niina Kokkola Ville Ollikainen Jaakko Reponen Aksu Tervonen Mikkelin lukio 23.1.2011 matka 5.12. - 12.12.2010 2/16 Sisällysluettelo

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0 PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys

Lisätiedot

AstroMaster-sarjan kaukoputket

AstroMaster-sarjan kaukoputket SUOMI AstroMaster-sarjan kaukoputket KÄYTTÖOHJE AstroMaster 90 EQ # 21064 AstroMaster 130 EQ # 31045 AstroMaster 90 EQ-MD # 21069 AstroMaster 130 EQ-MD # 31051 Sisällysluettelo JOHDANTO... 3 KOKOAMINEN...

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

Varoitus. AstroMaster-kaukoputkilla on kahden vuoden rajoitettu takuu. Lisätietoja saat internetsivustoltamme osoitteesta www.celestron.

Varoitus. AstroMaster-kaukoputkilla on kahden vuoden rajoitettu takuu. Lisätietoja saat internetsivustoltamme osoitteesta www.celestron. AstroMaster-sarjan kaukoputket KÄYTTÖOHJE AstroMaster 70AZ # 21061 AstroMaster 90AZ # 21063 AstroMaster 114AZ # 31043 Sisällysluettelo JOHDANTO... 3 KOKOAMINEN... 6 Kolmijalan kokoaminen... 6 Kaukoputken

Lisätiedot

Miika Aherto Niko Nurhonen Wilma Orava Marko Tikkanen Anni Valtonen Mikkelin lukio. NGC246 kauniskuva / psnj044 spektri

Miika Aherto Niko Nurhonen Wilma Orava Marko Tikkanen Anni Valtonen Mikkelin lukio. NGC246 kauniskuva / psnj044 spektri Miika Aherto Niko Nurhonen Wilma Orava Marko Tikkanen Anni Valtonen Mikkelin lukio NGC246 kauniskuva / psnj044 spektri SISÄLLYSLUETTELO: 1. Abstrakti ja johdanto 2. Havainnot ja niiden käsittely 2.1 Nordic

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1)

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) Johdanto Maito on tärkeä eläinproteiinin lähde monille ihmisille. Maidon laatu ja sen sisältämät proteiinit riippuvat useista tekijöistä ja esimerkiksi meijereiden

Lisätiedot

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Pinnallinen tapa aurinkokennon virta-jännite-käyrän

Lisätiedot

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami 1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien

Lisätiedot

TÄHTITIETEEN PERUSTEET (8OP)

TÄHTITIETEEN PERUSTEET (8OP) TÄHTITIETEEN PERUSTEET (8OP) HEIKKI SALO, KEVÄT 2013 (heikki.salo@oulu.fi) Kurssin sisältö/alustava aikataulu: (Luennot pe 12-14 salissa FY 1103) PE 18.1 1. Historiaa/pallotähtitiedettä I to 24.1 Kollokvio

Lisätiedot

Yhteystiedot: www.ursa.fi/yhd/planeetta Sähköposti: kajaanin.planeetta@gmail.com

Yhteystiedot: www.ursa.fi/yhd/planeetta Sähköposti: kajaanin.planeetta@gmail.com Julkaisija: Kajaanin Planeetta ry Päätoimittaja: Jari Heikkinen Teksti ja kuvat: Jari Heikkinen, jos ei muuta mainita Ilmestyminen: Kolme numeroa vuodessa (huhtikuu, elokuu, joulukuu) Yhteystiedot: www.ursa.fi/yhd/planeetta

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

VALONTAITTOMITTARIN KÄYTTÖ

VALONTAITTOMITTARIN KÄYTTÖ VALONTAITTOMITTARIN KÄYTTÖ MERKITSE KUVAAN VALONTAITTOMITTARIN OSAT. 1. Okulaarin säätörengas 2. Asteikkorengas 3. Käyttökatkaisin 4. Linssipitimen vapautin 5. Linssialusta 6. Linssipidin 7. Linssipöytä

Lisätiedot

Optiikkaa. () 10. syyskuuta 2008 1 / 66

Optiikkaa. () 10. syyskuuta 2008 1 / 66 Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten

Lisätiedot

Kaukoputkikurssin 2005 diat

Kaukoputkikurssin 2005 diat Kaukoputkikurssin 2005 diat Järjestäjänä: Warkauden Kassiopeia ry. Kurssin vetäjät: Harri Haukka Jari Juutilainen Kurssin sisältö Kaukoputkien esittelyä mikä on kaukoputki ja mitä sillä näkee? kasaamme

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007 TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 24AB S4h. LASERTYÖ JA VALON SPEKTRIN ANALYSOINTI TYÖN TARKOITUS LASERTYÖ Lasereita käytetään esimerkiksi tiedonsiirrossa, analysoinnissa ja terapiassa ja työstämisessä.

Lisätiedot

32X AUTOMATIC LEVEL SL SI BUL 1-77-238/241 AL32 FATMAX A A

32X AUTOMATIC LEVEL SL SI BUL 1-77-238/241 AL32 FATMAX A A KITL32 32X UTOMTI LEVEL 32X UTOMTI LEVEL 5 SL SI UL 1-77-238/241 L32 FTMX 5 6 7 Fig. 1 3 2 1 8 9 11 12 13 10 4 Fig. 2 L32 FTMX 67 OMINISUUDET (Kuva 1) 1 lalevy 2 Vaakasuora säätörengas 3 Vaakasuoran säätörenkaan

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

24AB. Lasertutkimus ja spektrianalyysi

24AB. Lasertutkimus ja spektrianalyysi TURUN AMMATTIKORKAKOULU TYÖOHJ 1/7 24AB. Lasertutkimus ja spektrianalyysi 1. Työn tarkoitus Lasereilla on runsaasti käytännön sovelluksia esimerkiksi tiedonsiirrossa, aineiden analysoinnissa ja työstämisessä

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Fysiikan perusteet 3 Optiikka

Fysiikan perusteet 3 Optiikka Fysiikan perusteet 3 Optiikka Petri Välisuo petri.valisuo@uva.fi 27. tammikuuta 2014 1 FYSI.1040 Fysiikan perusteet III / Optiikka 2 / 37 Sisältö 1 Heijastuminen ja taittuminen 4 1.1 Joitain hyödyllisiä

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen!

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen! Kasvihuoneongelma Valon ja aineen vuorovaikutus Herra Brown päätti rakentaa puutarhaansa uuden kasvihuoneen. Liian tavallinen! Hänen vaimonsa oli innostunut ideasta. Hän halusi uuden kasvihuoneen olevan

Lisätiedot

UrSalo. Laajaa paikallista yhteistyötä

UrSalo. Laajaa paikallista yhteistyötä UrSalo Laajaa paikallista yhteistyötä Ursalon ja Turun Ursan yhteistyö Tähtipäivät 2011 ja Cygnus 2012 Kevolan observatorio Tähtitieteen kurssit Yhteistyössä Salon kansalaisopiston ja Tuorlan tutkijoiden

Lisätiedot

34. Geometrista optiikkaa

34. Geometrista optiikkaa 34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla Tähtitieteellinen merenkulkuoppi on oppi, jolla määrätään aluksen sijainti taivaankappaleiden perusteella. Paikanmääritysmenetelmänäon ristisuuntiman

Lisätiedot

aurinkokunnan kohteet (planeetat, kääpiöplaneetat, kuut, asteroidit, komeetat, meteoroidit)

aurinkokunnan kohteet (planeetat, kääpiöplaneetat, kuut, asteroidit, komeetat, meteoroidit) Tähtitaivaan kohteet Mitä kaikkea taivaalla on: tähdet Aurinko, tavallinen tähti tähtien ryhmät (kaksoistähdet, avoimet joukot, pallomaiset joukot) tähtienvälinen aine Linnunrata muut galaksit galaksiryhmät

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

Mittaukset ja kalibrointi

Mittaukset ja kalibrointi Mittaukset ja kalibrointi Teleskoopin vaste (esim. jännitteenä tai countteina) riippuu paitsi lähteen vuontiheydestä, myös antennista, vastaanottimesta, säästä, elevaatiosta, jne... Havainnot täytyy kalibroida

Lisätiedot

FOKUKSENA OPTRONIIKKA. Mitä silmä ei näe, siihen tarvitaan optroniikkaa

FOKUKSENA OPTRONIIKKA. Mitä silmä ei näe, siihen tarvitaan optroniikkaa FOKUKSENA OPTRONIIKKA Mitä silmä ei näe, siihen tarvitaan optroniikkaa T U O T E K E H I T Y S, V A L M I S T U S J A K O K O O N P A N O Millog Optroniikalla on 70-vuotiset perinteet ja osaaminen optisten

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia. (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen)

Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia. (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen) Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen) 13. Uusi havaintoteknologia 1. Mosaiikki vs. Monoliitti CCD 2. CMOS vs. CCD

Lisätiedot

Fotometria. Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen

Fotometria. Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen Fotometria Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen Sisällysluettelo 1 1. Fotometria 2 1.1 Fotometrian teoriaa 2 1.2 Peruskäsitteitä 2 1.3 Magnitudit 3 1.4 Absoluuttiset

Lisätiedot

Top Analytica Oy Ab. XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio

Top Analytica Oy Ab. XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio Röntgenfluoresenssi Röntgensäteilyllä irroitetaan näytteen atomien sisäkuorilta (yleensä K ja L kuorilta) elektroneja. Syntyneen vakanssin paikkaa

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Uudet tarkkuuslämpökamerat ja asfalttipäällysteet? Timo Saarenketo, Roadscanners Oy

Uudet tarkkuuslämpökamerat ja asfalttipäällysteet? Timo Saarenketo, Roadscanners Oy Uudet tarkkuuslämpökamerat ja asfalttipäällysteet? Timo Saarenketo, FT Roadscanners Oy Lämpökameratekniikasta Eräs nopeimmin viime vuosien aikana kehittyneistä mittausteknologioista on infrapunasäteilyä

Lisätiedot

TUOTELUETTELO TERVEYDENHUOLTO

TUOTELUETTELO TERVEYDENHUOLTO 2015 TUOTELUETTELO TERVEYDENHUOLTO 2015 TUOTELUETTELO TERVEYDENHUOLTO [ 082 ] 04 DELTA 20 PLUS HEINE DELTA 20 Plus dermatoskooppi LED-valaisu HEINE-laadulla (HQ) LED HQ Dermatoskooppiseen tutkimukseen

Lisätiedot

Käyttöoppaasi. LEICA DM750 P http://fi.yourpdfguides.com/dref/2871279

Käyttöoppaasi. LEICA DM750 P http://fi.yourpdfguides.com/dref/2871279 Voit lukea suosituksia käyttäjän oppaista, teknisistä ohjeista tai asennusohjeista tuotteelle. Löydät kysymyksiisi vastaukset käyttöoppaasta ( tiedot, ohjearvot, turvallisuusohjeet, koko, lisävarusteet

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a)

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) 1 b) Lasketaan 180 N:n voimaa vastaava kuorma. G = mg : g m = G/g (1) m = 180 N/9,81 m/s 2 m = 18,348... kg Luetaan kuvaajista laudan ja lankun taipumat

Lisätiedot

TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen:

TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen: A sivu 1(3) TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit

Lisätiedot

3.4. TULIPALLOHAVAINNOT

3.4. TULIPALLOHAVAINNOT 30 3.4. TULIPALLOHAVAINNOT Meteoroidit kiertävät auringon ympäri aivan kuten planeetat. Kun meteoroidi törmää maan ilmakehään, se kuumenee äkillisesti valtavan kitkan vuoksi ja tällainen pieni avaruuden

Lisätiedot

Johdatusta FT-IR spektroskopiaan (Fourier Transform Infrared) Timo Tuomi Eila Hämäläinen. LUMA-koulutus 15.1.2015

Johdatusta FT-IR spektroskopiaan (Fourier Transform Infrared) Timo Tuomi Eila Hämäläinen. LUMA-koulutus 15.1.2015 Johdatusta FT-IR spektroskopiaan (Fourier Transform Infrared) Timo Tuomi Eila Hämäläinen LUMA-koulutus 15.1.2015 Historiaa Jean Baptiste Joseph Fourier Albert Abraham Michelson 21.3. 1768 16.5.1830 *Ranskalainen

Lisätiedot

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen 6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

Spektrometria. Mikkelin Lukio NOT-projekti La Palma saarella

Spektrometria. Mikkelin Lukio NOT-projekti La Palma saarella Mikkelin Lukio NOT-projekti La Palma saarella Spektrometria Tekijät: Tuomas Nykänen, Vili Paanila, Anna Maria Peltola, Petro Silvonen,Josua Viljakainen 1 Sisällysluettelo: 1. Johdanto......3 2. Teoria......4

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

HÄRKÄMÄEN HAVAINTOKATSAUS

HÄRKÄMÄEN HAVAINTOKATSAUS HÄRKÄMÄEN HAVAINTOKATSAUS 2008 Kierregalaksi M 51 ja sen seuralainen epäsää äännöllinen galaksi NGC 5195. Etäisyys on 34 miljoonaa valovuotta. M 51 löytyy l taivaalta Otavan viimeisen tähden t Alkaidin

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI TEORIA Spektroskopia on erittäin yleisesti käytetty analyysimenetelmä laboratorioissa, koska se soveltuu

Lisätiedot

Kokemuksia matkan varrelta

Kokemuksia matkan varrelta Kokemuksia matkan varrelta 15 v. oman, laajennetun järjestelmän ja 12 v. asiakkaiden järjestelmien seurantaa Päätuotteemme on kotimainen integroitu suurkeräin -juuret Turun yliopiston aurinkoenergian tutkimusryhmässä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

www.nikkostirling.com

www.nikkostirling.com www.nikkostirling.com FI Pikatarkennusrengas Varmistusrengas Objektiivi Parallaksin säätö Runkoputki Tornin suojus Korkeussäätö Sivuttaissäätö Suurennuksen säätö Valaistus Okulaari 36 Onnittelut Nikko

Lisätiedot

5. Sähkövirta, jännite

5. Sähkövirta, jännite Nimi: LK: SÄHKÖOPPI Tarmo Partanen Laboratoriotyöt 1. Työ 1/7, jossa tutkit lamppujen rinnan kytkennän vaikutus sähkövirran suuruuteen piirin eri osissa. Mitataan ensin yhden lampun läpi kulkevan virran

Lisätiedot

JAKSOLLINEN JÄRJESTELMÄ

JAKSOLLINEN JÄRJESTELMÄ JASOLLINEN JÄRJESTELMÄ Oppitunnin tavoite: Oppitunnin tavoitteena on opettaa jaksollinen järjestelmä sekä sen historiaa alkuainepelin avulla. Tunnin tavoitteena on, että oppilaat oppivat tieteellisen tutkimuksen

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Materiaalien käytettävyys: käsikäyttöisten lämpömittarien vertailututkimus

Materiaalien käytettävyys: käsikäyttöisten lämpömittarien vertailututkimus Raimo Ruoppa & Timo Kauppi B Materiaalien käytettävyys: käsikäyttöisten lämpömittarien vertailututkimus LAPIN AMK:N JULKAISUJA Sarja B. Raportit ja selvitykset 19/2014 Materiaalien käytettävyys: käsikäyttöisten

Lisätiedot

Meteoritutkimuksen historia ja nykyhetki. Esitelmä Cygnuksella 2012 Meteorijaosto Markku Nissinen

Meteoritutkimuksen historia ja nykyhetki. Esitelmä Cygnuksella 2012 Meteorijaosto Markku Nissinen Meteoritutkimuksen historia ja nykyhetki Esitelmä Cygnuksella 2012 Meteorijaosto Markku Nissinen Esitelmän runko Muinaiset uskomukset Kreikkalaisten selitysmalli Leonidien meteorimyrsky Havainnot meteoriparvista

Lisätiedot

TÄHTITIETEEN PERUSKURSSI II Periodi IV, 2009 Harry J. Lehto, Ph.D., Dos Pasi Nurmi, FT

TÄHTITIETEEN PERUSKURSSI II Periodi IV, 2009 Harry J. Lehto, Ph.D., Dos Pasi Nurmi, FT TÄHTITIETEEN PERUSKURSSI II Periodi IV, 2009 Harry J. Lehto, Ph.D., Dos Pasi Nurmi, FT hlehto@utu.fi, 3338290, http://www.astro.utu.fi/hlehto pasnurmi@utu.fi, 3338984 Demot: Samuli Kotiranta (jankot@utu.fi)

Lisätiedot

Työ 15B, Lämpösäteily

Työ 15B, Lämpösäteily Työ 15B, Läpösäteily urssi: Tfy-3.15, Fysiikan laoratoriotyöt Ryhä: 18 Pari: 1 Jonas Ala Antti Tenhiälä Selostuksen laati: Jonas Ala Mittaukset tehty:.3.000 Selostus jätetty:..000 1. Johdanto Läpösäteily

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

Veden puhdistus Tiederetriitti, 09.01.-11.01.2015 Tomi Kupiainen & Natalia Lahén

Veden puhdistus Tiederetriitti, 09.01.-11.01.2015 Tomi Kupiainen & Natalia Lahén Veden puhdistus Tiederetriitti, 09.01.-11.01.2015 Tomi Kupiainen & Natalia Lahén Tutkimussuunnitelma Onko mahdollista selvittää yksinkertaisin fysikaalisin metoiden veden juomakelpoisuutta? Ovatko retkeilijöiden

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

35 VALON INTERFERENSSI (Interference)

35 VALON INTERFERENSSI (Interference) 13 35 VALON INTERFERENSSI (Interference) Edellisissä kappaleissa tutkimme valon heijastumista ja taittumista peileissä ja linsseissä geometrisen optiikan approksimaation avulla. Approksimaatiossa aallonpituutta

Lisätiedot

Lego Mindstorms NXT. OPH oppimisympäristöjen kehittämishanke 2011-2013. (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1

Lego Mindstorms NXT. OPH oppimisympäristöjen kehittämishanke 2011-2013. (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1 Lego Mindstorms NXT OPH oppimisympäristöjen kehittämishanke 2011-2013 (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1 Anturi- ja moottoriportit A B C 1 2 3 4 (C) 2012 Oppimiskeskus Innokas! All Rights

Lisätiedot