HAVAITSEVAN TÄHTITIETEEN PERUSKURSSI II, RÖNTGEN -JA GAMMATÄHTITIEDE

Koko: px
Aloita esitys sivulta:

Download "HAVAITSEVAN TÄHTITIETEEN PERUSKURSSI II, RÖNTGEN -JA GAMMATÄHTITIEDE"

Transkriptio

1 HAVAITSEVAN TÄHTITIETEEN PERUSKURSSI II, RÖNTGEN -JA GAMMATÄHTITIEDE Juhani Huovelin Lauri Alha Report 1/2006 Observatory University of Helsinki ISBN ISSN

2 Johdanto Tässä monisteessa esitetään keskeiset perusasiat havaitsevan röntgen -ja gammatähtitieteen alalta. Tälle peruskurssin osalle on varattu 5 x 2 tuntia luentoja. Kurssin tästä osata pidetään kolmet laskuharjoitukset, jotka osin täydentävät luennoilla esitettyjä asioita. c 2006 Juhani Huovelin ja Lauri Alha. Kaikki oikeudet pidätetään. Monisteesta otettuja muuttamattomia kopioita saa levittää opetus- ja tutkimuskäyttöön. Dokumentin kaupallinen levitys ja muuttaminen ilman tekijöiden kirjallista suostumusta on kielletty.

3 Sisältö 1 Historiallinen katsaus 1 2 Röntgen- ja gammasäteilyä tuottavia ilmiöitä Mustan kappaleen säteily (blackbody radiation) Jarrutussäteily (bremsstrahlung) Synkrotronisäteily Radioaktiivisuus Laboratoriossa käytettävät isotooppilähteet Kosmisen säteilyn ja tähtienvälisen aineen vuorovaikutus Elektroni-positroni annihilaatio Radiatiivinen rekombinaatio ja törmäyseksitaatio Compton-sironta Röntgensäteilyn vuorovaikutus aineen kanssa Valosähköinen absorptio Röntgenfluoresenssi Röntgenkaukoputket ja kollimaattorit Kollimaattorit Hipaisevaan heijastukseen perustuvat kaukoputket Monikerrospeili Koodatut maskit Mittalaitteet Kaasutäytteiset verrannollisuuslaskurit Tuikeilmaisimet Mikrokanavalevyt Puolijohdeilmaisimet iii

4 iv SISÄLTÖ 5.5 Bragg-spektrometrit Kalorimetrit Havaintoaineistot ja niiden käsittely Punasiirtymä röntgenhavainnoissa

5 Luku 1 Historiallinen katsaus Röntgensäteilyyn kuuluu sähkömagneettisen säteilyspektrin osa suunnilleen välillä 10 nm λ 0.01 nm (aallonpituusasteikolla) Hz ν Hz (taajuusasteikolla) 0.1 kev E 100 kev (energia-asteikolla) Useimmiten röntgen- ja gammatähtitieteessä käytetään energia-asteikkoa. Röntgenkaistan pitkäaaltoisessa (eli matalaenergiaisessa, tai pehmeässä ) päässä alkaa ultraviolettialue ja lyhytaaltoisessa (eli korkeaenergiaisessa, tai kovassa ) vastaavasti gammasäteilyn alue. Jotkut puhuvat gammasäteilystä jo yli 50 kev:n (kiloelektronivoltin) fotoneilla, ja toisaalta 0.1 kev:n säteily on joidenkin määritelmien mukaan vielä ultraviolettisäteilyä (XUV tai EUV-säteilyä). Tarkkaan ottaen 1eV = J, mikä vastaa aallonpituutta nm. Mielivaltaisilla aallonpituuden arvoilla voidaan fotonin energia laskea relaation E = hc/λ avulla, missä h on Planckin vakio ja c valon nopeus. Röntgen- ja gamma-astronomian havaintoja ei voi tehdä maan pinnalta koska ilmakehän molekyylien ja atomien (mm. N 2, O 3, O 2, O) aiheuttama valosähköinen absorptio pysäyttää tehokkaasti suurienergiaisen säteilyn jo ultraviolettialueelta lähtien, alkaen otsonin (O 3 ) absorptiosta 300 nm aallonpituudella. Aina 50 kev:n energiaan saakka valosähköinen absorptio toimii ilmakehän tehokkaimpana absorptioprosessina. Suuremmilla energioilla ensin Compton-sironta ja sitten e + e -parinmuodostus alkavat dominoida absorptiota. Hyvin suurienergiainen (yli 100 GeV:n) gammasäteily aiheuttaa sähkömagneettisia kaskadeja ylimmissä ilmakehän osissa, ja kaskadeissa syntyvien erittäin suurienergiaisten elektronien ja positronien Cerenkovsäteily voidaan havaita maan pinnalla. Siten avaruuden suurienergiaisinta gammasäteilyä voidaan periaatteessa tutkia epäsuorasti myös maan pinnalta käsin. Havaitsevan röntgentähtitieteen historia alkoi 1940-luvulla, jolloin lähetettiin ensimmäiset röntgensäteilyä mittaavat laitteet ilmakehän yläosiin. Mittalaitteet olivat alkuaikoina Geiger-laskurin tyyppisiä ilmaisimia, jotka sijoitettiin toisen maailman- 1

6 2 LUKU 1. HISTORIALLINEN KATSAUS Kuva 1.1: Röntgensäteilyn absorboituminen maan ilmakehässä. Käyrä esittää korkeutta, jolla puolet ilmakehään kohtisuorasti tulevista röntgensäteistä on absorboitunut. (Culhane & Sanford: X-Ray Astronomy, s. 17) sodan saaliina saatujen saksalaisten V2-rakettien kärkiin räjähdyspanoksen paikalle. Ensimmäiseksi havaittiin auringon koronan röntgensäteily. Myöhemmin rakennettiin vartavasten tieteelliseen käyttöön suunniteltuja raketteja (mm. amerikkalaisten Aerobee-raketit), ja lyhytaikaiset, yleensä muutaman minuutin ajan kestävät rakettikokeet olivat röntgentähtitieteen pääasiallisena havaintotekniikkana vielä luvulla. Näillä välineillä löydettiin ensimmäiset aurinkokunnan ulkopuoliset röntgensäteilyn lähteet, joita olivat Härän tähdistössä oleva Rapusumu (supernovajäänne), Scorpius X-1 (lähekkäinen kaksoistähti), ja M87 (elliptinen jättiläisgalaksi Neitsyen tähdistössä; Neitsyen galaksijoukon keskusgalaksi) luvun alussa aloitettiin pitempikestoiset havaintojaksot maata kiertäviin satelliitteihin sijoitetuilla röntgenilmaisimilla. Satelliittien kiertoradat ovat käyttötarkoituksesta riippuen alle tuhannen kilometrin korkuisista hyvin eksentrisiin, apogeumissaan satojen tuhansien kilometrien korkuisiin ratoihin. Satelliittien toiminta-ajat ovat olleet tyypillisesti 2-6 vuotta. Tunnetuimpia olivat vuonna 1970, Kenian kansallispäivänä laukaistu amerikkalainen SAS-1 (=Uhuru; swahilin kieltä, suomeksi rauha ), ja seuraavana vuonna laukaistu OAO-3 (= Copernicus), sekä 1974 laukaistut ANS (=Astronomical Netherlands Satellite) ja englantilainen Ariel V. Näiden avulla tunnistettiin jo satoja röntgentaivaan kohteita (mm. Uhuru:n kartoituksessa 339 kohdetta). Vuosikymmenen huipentumana oli 1978 laukaistu ja 3 vuoden ajan toiminut NASA:n HEAO-2 (= Einstein) satelliitti, joka oli tuhat kertaa herkempi kuin esimerkiksi Uhuru. Einsteinin tekemä taivaan kartoitus paljastikin jo tuhansia uusia avaruuden röntgenlähteitä. Tunnettujen avaruuden röntgenlähteitten määrä on nykyisin lähes satoja kertoja suurempi verrattuna Uhurun kartoituksessaan löytämiin kohteisiin. Tässä yhteydessä kannattaa vielä mainita Euroopan Avaruusjärjestön (=ESA) ja NASA:n yhteistyönä ylläpidetty maratonsatelliitti IUE (International Ultraviolet Explorer) joka aloitti toimintansa vuonna 1978 ja toimi vuoteen 1996,

7 3 jolloin sen käyttö päätettiin lopettaa, ei teknisten, vaan rahoitusongelmien vuoksi. Kuva 1.2: Ylhäällä vasemmalla on kuva supernovajäänteestä SN1987A:sta optisella alueella. Oikella on sama kohde radioalueella. Alkuvissa SN1987A on kuvattu röntgenalueella. (credit: Optical: NASA/CfA/P.Challis et al; Radio: MIT/ATN/Gaensler and Manchester; X-ray: NASA/PSU/D. Burrows et al) 1980-luvulla laukaistuja röntgensatelliitteja olivat ESA:n EXOSAT ( ), Japanilainen ASTRO-C (Ginga, laukaisu 1987), ja neuvostoliittolainen, Mir-avaruusasemalla toiminut Kvant (aloitti 1989) luvun aloittivat BBXRT (Broad Band X-Ray Telescope, USA:n sukkulalennon yhteydessä kymmenen päivää toiminnassa vuonna 1990), ROSAT (Saksa- Englanti-USA, laukaistiin 1990) ja Granat (Venäjä, Saksa, Hollanti, Italia, laukaistiin 1990). Vuonna 1991 aloitti CGRO (Compton Gamma-Ray Observatory, USA), ja 1994 japanilainen ASCA (= ASTRO-D). Vuonna 1995 laukaistiin amerikkalainen Rossi-XTE (X-ray Timing Explorer), ja vuoden 1996 toukokuussa italialainen Beppo-SAX-röntgensatelliitti (Satellite per Astronomia X). Vuonna 1999 laukaistiin Euroopan Avaruusjärjestön kulmakiviohjelman XMM-Newton (= X-Ray Multi-Mirror) ja vuonna 2000 amerikkalainen AXAF (Advanced X-ray Astronomical Facility, Chandra), jotka ovat kummatkin toiminnassa edelleen vuonna 2006.

8 4 LUKU 1. HISTORIALLINEN KATSAUS Kuva 1.3: Röntgensatelliitti 1970-luvulta (UHURU; Culhane & Sanford, s. 75), luvulta (EXOSAT; Fraser, X-Ray Detectors in Astronomy, s. 54), sekä 1990-luvulta (Spectrum-X-Gamma; ei ole laukaistu). Avaruusobservatorioitten rakentaminen on hyvin kallista. Tiedesatelliitin rakentamis-, laukaisu- ja ylläpitokustannukset voivat olla jopa miljardeja euroja, ja siksi ne tavallisesti toteutetaan kansainvälisenä yhteistyönä, jolloin kustannukset valtiota kohden muodostuvat kohtuullisiksi. Joidenkin satelliittien käyttöoikeus onkin rajoitettu niiden rakentamiseen osallistuneisiin maihin. Useiden röntgensatelliittien havainto-ohjelmiin on kuitenkin ollut mahdollista kenen tahansa tieteentekijän osallistua ilmaiseksi yleisen havaintoajan hakukilpailun kautta (esim. EXOSAT, ROSAT, RXTE, Beppo-SAX). Tähän liittyy englanninkielinen termi AO=Announcement of Opportunity, joka tarkoittaa, tässä yhteydessä, tiedonantoa ja ohjeita havaintoaikaa hakeville. Näissä tapauksissa satelliiteille valitut havaintoaikakomiteat myöntävät ilmaiseksi havaintoaikaa tieteellisin perustein parhaille hakijoille. AO voi myös tarkoittaa ilmoitusta mahdollisuudesta tarjota omaa ideaa tiedeinstrumentiksi uuteen satelliittiprojektiin tai ideaa uudeksi tiedesatelliitiksi esim. ESA:lle.

9 5 Kuva 1.4: ESA:n INTEGRAL-satelliitti, joka laukaistiin lokakuun 17. päivänä 2002 Baikonurin kosmodromilta Kazakstanissa Proton-kantoraketilla. Satelliitiissa on mm. JEM-X-detektori, joka havaitsee kev:n fotoneita. JEM-X:n valmistukseen on osallistunut suomalainen Metorex Oy ja Helsingin yliopiston tähtitieteen laitos on JEM-X-instrumenttiryhmässä mukana tutkijastatuksella (=Co-I). Kuva 1.5: INTEGRAL-satelliitin kiertorata maapallon suhteen. Kuvassa on hahmoteltu myös ns. säteilyvyöhykkeet. Näiden sisällä ei voida tehdä havaintoja, koska säteilyvöissä on mm. maan magneettikentän vangitsemia suurienergisiä protoneita, jotka voivat vaurioittaa mittalaitteiden elektroniikkaa. Radan perigeum on n km ja apogeum km sekä kiertoaika n. 3 vuorokautta. ESA:ssa on suunnitelmissa toteuttaa vuoden 2015 tuntumassa todella massiivinen röntgensatelliittihanke, jota kutsutaan nimellä XEUS (=X-ray Evolving Universe

10 6 LUKU 1. HISTORIALLINEN KATSAUS Spectroscopy). Tässä teleskoopin röntgenoptiikka ja polttotason detektorit lentävät kummatkin erillisissä satelliittimoduleissa 50 metrin etäisyydellä toisistaan. Teleskoopin suurella efektiivisellä pinta-alalla on mahdollista havaita 100 kertaa himmeämpiä kohteita kuin mihin XMM-Newton kykenee. XEUS:n tieteellisinä tavoitteina on mm. nähdä syvälle varhaiseen maailmankaikkeuteen (punasiirtymä z = 5-10) ja havaita sieltä ensimmäisiä mustia aukkoja ajalta, jolloin kosmoksen perusrakenteet, tähdet ja galaksit alkoivat muodostua. Kuva 1.6: Kollaasissa on kuvattuna XEUS-yhdistelmäsatelliittin detektori- ja peilimodulit sekä sen tulevia havaintokohteita.

11 Luku 2 Röntgen- ja gammasäteilyä tuottavia ilmiöitä Havaitseva röntgen- ja gamma-astronomia ovat periaatteessa samanlaista tähtitieteen tutkimusta kuin havaitseva optinen tai radiotähtitiede, lukuunottamatta havaintovälineiden toimintaympäristöä, joka on maan ilmakehän ulkopuolinen avaruus. Röntgensäteilyä syntyy avaruuden kohteissa sekä kontinuumi- että viivasäteilynä (emissioviivoina). Lisäksi säteilyspektriä muokkaavat absorptio ja sironta sekä diffuusi röntgentaustasäteily. Näistä ilmiöistä syntyy se säteilyn jakautuma, joka kohtaa havaintolaitteen apertuurin. Suurienergistä säteilyä syntyy kuitenkin vain prosesseissa, joissa kaasussa esiintyy korkeita lämpötiloja tai ainehiukkasilla on muusta syystä suuret nopeudet ja energiat. Syntynyt säteily on luonteestaan johtuen hyvin läpäisykykyistä ja vuorovaikuttaa aineen atomien sisimpien elektronien (röntgensäteily) tai jopa atomiydinten (gammasäteily) kanssa. 2.1 Mustan kappaleen säteily (blackbody radiation) Jos kaasu on termisessä tasapainossa se säteilee lämpötilaansa vastaavan mustan kappaleen säteilyä, jonka intensiteettijakautuma on Planckin lain mukainen. Kuvassa 2.1 on esitetty mustan kappaleen säteilyjakautuma eri lämpötiloissa. Kun lämpötila on miljoonien asteiden luokkaa, osuu suurin osa säteilystä röntgenalueelle. Kohteita, joissa voi esiintyä mustan kappaleen röntgenspektri, ovat esimerkiksi kompakteja tähtiä ympäröivät optisesti paksut kertymäkiekot, joita kuumentavat keskuskappaleen säteily sekä kiekon differentiaalisen pyörimisliikkeen sisäinen kitka. Kompakteimmissa kohteissa, joissa kiekon keskuskappaleena on musta aukko, voi kiekon säteily muodostaa pääosan kohteen röntgenspektristä. 7

12 8 LUKU 2. RÖNTGEN- JA GAMMASÄTEILYÄ TUOTTAVIA ILMIÖITÄ Kuva 2.1: Mustan kappaleen säteilyjakautuma eri lämpötiloissa (Kraus: Radio Astronomy, McGraw-Hill, 1966) Terminen tasapaino edellyttää kaasulta suurta tiheyttä, joten optisesti ohut kaasu jossa fotonien vapaa matka on suuri ei emittoi mustan kappaleen säteilyä. Säteilyn spektrijakautuma saa tällöin muotonsa primäärimmistä fotonien syntyprosesseista, joita käsitellään seuraavissa kappaleissa. 2.2 Jarrutussäteily (bremsstrahlung) Jarrutussäteily on seurausta vapaasti liikkuvan elektronin joutumisesta aineen atomin sähköstaattiseen kenttään, jolloin elektronin suunta muuttuu ja se menettää kineettistä energiaa. Elektronin menettämä energia on sähkömagneettista säteilyä (free-free emissio), jonka energia voi olla korkeintaan sama kuin elektronin alkuperäinen kineettinen energia. Käytännössä jarrutussäteilyn spektrin muoto riippuu vapaiden elektronien nopeusjakautumasta. Siten puhutaankin termisestä jarrutussäteilystä (thermal bremsstrahlung), kun elektronien kineettinen energia on peräisin niiden lämpöliikkeestä, ja eitermisestä jarrutussäteilystä (non-thermal bremsstrahlung) jos elektronien liikettä kaasussa dominoi jokin muu tekijä (esim. gravitaatio tai ulkoinen sähkökenttä).

13 2.3. SYNKROTRONISÄTEILY 9 Kuva 2.2: Terminen jarrutussäteilyspektri optisesti ohuessa plasmassa, jonka lämpötila on 10 7 K ja alkuainejakautuma sama kuin auringossa. Emissioviivat syntyvät radiatiivisen rekombinaation tai törmäyseksitaation seurauksena. Röntgenalueen termistä jarrutussäteilyä voi esiintyä esimerkiksi tähden kuumassa koronassa, jossa plasma on optisesti ohutta ja lämpötila voi olla kymmeniä miljoonia asteita. Alemmissa lämpötiloissa (esim. Auringon korona) spektrin intensiteettijakautuma on hyvin jyrkkä. Maksimi siirtyy lämpötilan noustessa suuremmille energioille (lyhyemmille aallonpituuksille) ja intensiteettijakautuma loivenee. Sitä havaitaan myös supernovajäänteiden laajenevassa kaasupilvessä, sekä galaksijoukoissa galaksien välisessä kuumassa kaasussa. Ei-termistä jarrutussäteilyä esiintyy esimerkiksi neutronitähtien spektreissä, joissa sitä syntyy kuuman kaasun törmätessä hyvin suurella nopeudella tähden pintaan. 2.3 Synkrotronisäteily Erikoistapaus jarrutussäteilystä on mekanismi, jossa elektronit ohjautuvat ulkoisen magneettikentän mukaan. Tällöin on kyseessä synkrotronisäteily eli magneettinen jarrutussäteily. Magneettikenttä ei itsessään aja elektroneja liikkeeseen, vaan ohjaa liikettä siten että elektronien radat ovat magneettisten kenttäviivojen ympäri kulkevia spiraaleja. Synkrotronisäteily on voimakkaasti polarisoitunutta. Säteilyn energia on suoraan verrannollinen magneettikentän voimakkuuteen, ja intensiteettijakautuman maksimi osuu röntgenalueelle jos B Teslaa. Siksi synk-

14 10 LUKU 2. RÖNTGEN- JA GAMMASÄTEILYÄ TUOTTAVIA ILMIÖITÄ rotronisäteily röntgenalueella on varsin harvinainen ilmiö ja tällä tavalla säteilevä kohde on mitä todennäköisimmin neutronitähti, jonka magneettikenttä on voimistunut riittävän suureksi tähden luhistumisvaiheessa. Myös Rapusumu, joka on vuonna 1054 räjähtäneen supernovan jäänne, säteilee polarisoitunutta röntgensäteilyä, jolla on samantyyppinen energiajakautuma kuin synkrotronisäteilyllä. Se poikkeaa tässä suhteessa useimmista muista supernovajäänteistä, joilla räjähdyspilven röntgensäteily on shokkiaallon kuumentaman kaasun termistä jarrutussäteilyä. Kuva 2.3: Yhden elektronin synkrotronisäteilyspektri. Havaittava kokonaisspektri riippuu elektronien nopeusjakautumasta ja on yksittäisten elektronien spektrien summa (Giacconi & Gursky, X-ray Astronomy,1974). Synkrotronisäteilyn intensiteettijakautuma on muotoa di(e) = E α de (ns. power law spektri), jossa E on säteilyn energia (E = hν) ja α on ns. energiaindeksi. Usein tämäntyyppinen jakautuma ilmaistaan fotonien lukumääränä energia-intervallia kohden, dn(e) = di(e)/e, jolloin energian eksponentti on ns. fotoni-indeksi α = α + 1. Säteilyn energiariippuvuus on lähellä power-law-muotoa hyvin yleisesti silloin kun kyseessä on ei-terminen röntgensäteily (esim. ei-terminen jarrutussäteily, synkrotronisäteily tai Compton-sironta). 2.4 Radioaktiivisuus Luonnossa esiintyy ja keinotekoisesti voidaan tuottaa radioaktiivisia isotooppeja, jotka tuottavat viivasäteilyä spontaaniin hajoamisreaktioon liittyvillä diskreeteillä

15 2.5. LABORATORIOSSA KÄYTETTÄVÄT ISOTOOPPILÄHTEET 11 ominaisaallonpituuksilla. Tähtienvälisessä avaruudessa on supernovaräjähdysten jäänteinä useita radioaktiivisia isotooppeja, jotka säteilevät gamma-alueen viivoja. Taulukossa 2.4 on tietoja supenovaräjähdyksissä syntyneistä gammasäteilyä tuottavista radioaktiivisista isotoopeista ja niitten hajoamisketjuista. Kuva 2.4: Taulukko. (Longair: High Energy Astrophysics, s.145) 2.5 Laboratoriossa käytettävät isotooppilähteet On olemassa tiettyjä alkuaineita, joiden määrätyt isotoopit ovat radioaktiivisia ja tuottavat viivasäteilyä röntgenalueella. Paljon käytetty lähde on mm. Fe55-isotooppi, joka säteilee ns. MnKα (5.9 kev) ja MnKβ (6.5 kev) viivat. Viivaspektri syn-

16 12 LUKU 2. RÖNTGEN- JA GAMMASÄTEILYÄ TUOTTAVIA ILMIÖITÄ tyy elektronikaappauksen takia Fe55:ssa. Tässä prosessissa ydin kaappaa yhden K- kuoren elektronin alla olevan reaktion mukaisesti F e + e Mn + ν e Reaktiossa kaapattu elektroni muuttuu ytimen yhden protonin kanssa neutroniksi ja emittoi elektronineutriinon. K-kuorelta kaapatun elektronin paikan korvaaminen aiheuttaa ylempien kuorien elektronien uudelleenjärjestymistä, joka synnyttää karakteristiset viivaemissiot. Fe55-isotooppilähdettä käytetään laajasti röntgendetektorien laboratoriotesteissä ja niitä sijoitetaan myös satelliitteihin tuleviin detektoreihin, joilla mahdollistetaan lennonaikainen mitta-asteikon energiakalibrointi. Tämän rautaisotoopin puoliintumisaika on 2,73 vuotta. Laboratoriossa käytetään myös Cd109- isotooppilähdettä, joka säteilee n. 26 kev fotoneita elektronikaappauksen avulla. Kovalla röntgenalueella käytetään yleisesti Am241-lähdettä, joka emittoi mm. 60 kev:n fotoneja, jotka syntyvät ytimen viritystilan muuttuessa sen emittoidessa alfahiukkasen eli helium atomin ytimen. Kuva 2.5: Kuvassa on esitetty erään detektorin kalibrointispektri, joka on saatu aikaan primäärisesti Fe55-lähteellä, jonka pinnalle on liimattu n. 5 µm paksuinen Ti-kalvo. Näin saadaan neljä erillistä emissioviivaa, koska Fe55 indusoi titaanista kaksi fluoresenssiviivaa. 2.6 Kosmisen säteilyn ja tähtienvälisen aineen vuorovaikutus Kosmisen säteilyn hiukkaset törmäävät atomien ytimiin tähtienvälisessä kaasussa ja virittävät niitä. Viritystilojen lauetessa syntyy ydinten emissioviivasäteilyä gammaalueella. Kuvassa 2.6 on simuloitu gammaspektri Linnunradan keskuksen suunnassa. Toistaiseksi ei ole ollut käytettävissä gamma-alueen spektrometriä, jolla spektri olisi

17 2.7. ELEKTRONI-POSITRONI ANNIHILAATIO 13 voitu todellisuudessa mitata kuvan mukaisella energiavälillä ja spektrin resoluutiolla, mutta kapeampikaistaisilla spektrometreillä on voitu vahvistaa tällaisen säteilyn olemassaolo. 2.7 Elektroni-positroni annihilaatio Jos jossakin prosessissa syntyy paljon positroneja, ne annihiloituvat väliaineen elektronien kanssa menetettyään energiaa riittävästi (positronin liike-energia on noin 200 ev tai vähemmän). Tällöin osa positroneista vuorovaikuttaa kaasun atomien kanssa ja muodostuu positroniumia. Osa jatkaa hidastumista ja annihiloituu sitten suoraan kaasun elektronien kanssa. Annihilaatiossa syntyy viivasäteilyä energialla, joka vastaa positroni-elektroniparin massaenergiaa, siten että suoran annihilaation tapauksessa on yhdestä reaktiosta seurauksena kaksi fotonia joiden kummankin energia on 511 kev. Tämä näkyy emissiospektriviivana ko. energialla. Positronium-välitilan kautta etenevässä tapauksessa spektri on 511 kev:stä pieniin energioihin päin laskeva kontinuumi. Jos väliaine on neutraalia ja suhteellisen harvaa kaasua, positroniumkontinuumi on suhteessa voimakas. Toisaalta, jos kaasu on kuumaa (yli miljoona astetta) annihilaatio tapahtuu suoraan ilman positroniumin muodostumista. Kuva 2.6: Simuloitu kosmisen säteilyn aiheuttama gammaspektri tähtienvälisessä kaasussa Linnunradan keskuksen suunnassa MeV:n kohdalla näkyy myös voimakas positronin (e + ) emissioviiva joka syntyy e + e -annihilaatiossa.

18 14 LUKU 2. RÖNTGEN- JA GAMMASÄTEILYÄ TUOTTAVIA ILMIÖITÄ Annihilaatioviiva on havaittu esimerkiksi Linnunradan keskuksen lähistöllä. Positronien syntypaikkana on mahdollisesti Galaksin tiiviin keskusosan lähiympäristö, jossa positroneja syntyy hyvin voimakkaassa säteilykentässä fotonien keskinäisissä törmäyksissä tai suurienergisten fotonien joutuessa atominydinten vuorovaikutuskenttään. Yksittäisten fotonien hajoaminen tyhjässä avaruudessa itsestään positronielektronipareiksi on mahdotonta, koska tällöin eivät energia ja liikemäärä yhtäaikaa säily. Kuva 2.7: Elektroni-positroni annihilaatioprosessi. Lopputuloksena (alimpana) olevassa spektrissä on annihilaatiospektrin lisäksi oletettu power-law-tyyppinen voimakas kontinuumi. 2.8 Radiatiivinen rekombinaatio ja törmäyseksitaatio Kuumassa kaasussa olevat vapaat elektronit voivat joutua ionisoituneitten atomien kaappaamiksi (free-bound siirtymä), minkä seurauksena syntyy vapautunutta energiaa vastaava valokvantti. Näin syntyneellä säteilyllä on jatkuva spektri, koska prosessissa atomiin sitoutuvalla elektronilla voi olla mielivaltainen kineettinen energia

19 2.9. COMPTON-SIRONTA 15 joka muodostaa osan syntyvän valokvantin energiasta. Loppuosa tulee atomiin kaapatun elektronin sidosenergiasta. Edellä selostettu mekanismi, radiatiivinen rekombinaatio, synnyttää viritystiloja atomeihin, ja niiden purkautuminen tuottaa viivasäteilyä. Toinen viivasäteilyä tuottava mekanismi on elektronien epäelastiset törmäykset atomien sidottujen tilojen elektroneihin, mikä aiheuttaa elektronien virittymisen ylemmille sidotuille tiloille, eli törmäyseksitaation. Voimakkaasti ionisoituneen kaasun (eli kuuman plasman) viritystilat syntyvät atomien sisimmillä elektronikuorilla (koska ulommat kuoret ovat tyhjiä). Tilan laukeaminen synnyttää tällöin suurienergisen fotonin kaukoultravioletti- tai röntgenalueella. Törmäyseksitaatio on pääasiallinen röntgenalueen viivasäteilyn aiheuttaja kuumassa plasmassa. 2.9 Compton-sironta Compton-sironnaksi kutsutaan vuorovaikutusta, jossa valokvantti, fotoni, siroaa vapaasta tai sidotusta elektronista. Yleisessä tapauksessa fotoni menettää, tai saa, energiaa, joka voidaan laskea kun tunnetaan fotonin ja elektronin alkuperäiset liikesuunnat ja energiat. Klassisessa tapauksessa oletetaan elektronin olevan alunperin levossa, jolloin siitä siroava fotoni menettää energiaa. Jos lisäksi fotonin energia on paljon pienempi kuin elektronin massaenergia, E o m e c 2, fotonin aallonpituuden muutos voidaan laskea yksinkertaisella kaavalla λ = E o (1 cos θ), λ o m e c2 jossa λ o fotonin alkuperäinen aallonpituus, E o sitä vastaava energia, m e elektronin lepomassa, c valon nopeus, θ fotonin suunnan muutos, ja fotonin energia aallonpituuden funktiona on E = hc/λ. Muissa tapauksissa joudutaan käyttämään suhteellisuusteoriaa ja/tai relativistista kvanttimekaniikkaa oikean ratkaisun löytämiseksi. Näistä suurenergia-astrofysiikan kannalta mielenkiintoisin on tapaus, jossa elektroni liikkuu ultrarelativistisella nopeudella, eli γ = [1 (v/c) 2 ] 1/2 1 ja fotonin energia on paljon pienempi kuin elektronin energia. Tällöin fotonin energia kasvaa Compton-sironnassa ja sironneiden fotonien keskimääräinen energia on E E o γ 2. Tässä tapauksessa ilmiötä kutsutaan nimellä käänteinen Compton-sironta. Sironneiden fotonien suurin mahdollinen energia, 4 E o γ 2, saadaan jos fotoni siroaa takaisin tulosuuntaansa. Monissa tähtitieteellisissä kohteissa γ , joten

20 16 LUKU 2. RÖNTGEN- JA GAMMASÄTEILYÄ TUOTTAVIA ILMIÖITÄ Kuva 2.8: Compton-sironta, jossa energialla E varustettu fotoni siroaa kulmaan θ jolloin sen energia muuttuu määrällä E = E E o. Elektronin kineettisen energian muutos on vastaavasti E. käänteisessä Compton-sironnassa radiosäteily voi muuttua ultraviolettisäteilyksi ja kaukoinfrapunasäteily röntgensäteilyksi. Yllä oleva kaavat antavat viitteen Compton-ilmiön vaikutuksesta säteilyyn kahdessa erikoistapauksessa. Todellisen kohteen Compton-spektrin mallia varten tarvitaan yksityiskohtaisia laskuja, jotka sisältävät mm. sironnan integroimisen koko alkuperäisen säteilyspektrin sekä elektronien nopeusjakautuman yli. Jos kohteen säteilyspektri muodostuu lähes yksinomaan Compton-sironnan kautta puhutaan komptonisaatiosta (engl. comptonisation). Comptonsirontaa esiintyy esimerkiksi kompaktien kaksoistähtien ympärillä olevassa kuumassa kaasussa, aktiivisten galaksinytimien kuumassa plasmassa, galaksijoukoissa olevassa galaksien välisessä kaasussa, ja se modifioi myös kosmisen mikroaaltotaustasäteilyn spektriä (Sunyaev-Zeldovich-efekti). Sunyajev-Zeldovich-efektiä voidaan käyttää eräänä riippumattomana, mutta hankalana etäisyyden määrityskeinona kosmologisilla etäisyyksillä. SZE-menetelmä perustuu radio- ja röntgenalueen yhteishavaintoihin. Röntgenhavainnoilla saadaan määritettyä galaksijoukon sisältämän kaasun laajuus ja jakauma taivaalla sekä kaasussa olevien elektronien lukumäärätiheys ja lämpötila. Radioalueella havaitaan galaksijoukon läpi kulkeneiden kosmisen taustasäteilyn fotonien aallonpituuden muuttumista, jonka aiheuttavat galaksijoukon kuumat elektronit komptonisoimalla taus-

21 2.9. COMPTON-SIRONTA 17 tasäteilyn fotoneita. Mitä syvempi näkösäteen suunnassa galaksijoukko on, sitä e- nemmän taustasäteilyn fotonit komptonisoituvat ja siten 2.73 K:n kosmisen taustasäteilyn mustan kappaleen spektri deformoituu. Menetelmässä yksinkertaisimmillaan voidaan olettaa, että galaksijoukon kaasu muodostaa pallosymmetrisen jakauman. Röntgenhavainnoilla määritetään kaasun jakauman näkökulma taivaalla. Radiohavaintojen perusteella saadaan mitattua absoluuttisesti näkösäteen suunnassa galaksijoukon kaasun syvyys. Tämä radiohavainnoilla saatu absoluuttinen syvyys voidaan olettaa samaksi kuin röntgenhavainnoilla mitattu kaasun jakauman näkökulma taivaalla ja etäisyys galaksijoukkoon voidaan laskea alkeisgeometrialla. Kuva 2.9: Periaattellinen kaaviokuva kosmisen taustasäteilyn ja galaksijoukon kuuman kaasun välisestä vuorovaikutuksesta. Kaasussa olevien elektronien lämpötila voi olla kymmeniä miljoonia asteita. Mitä suurempi osa taustasäteilyn fotoneista saa potkun, sitä laajempi galaksijoukko on. Kaasun lämpötila ja sen tiheys vaikuttavat luonnollisesti myös komptonisaation voimakkuuteen.

22 18 LUKU 2. RÖNTGEN- JA GAMMASÄTEILYÄ TUOTTAVIA ILMIÖITÄ

23 Luku 3 Röntgensäteilyn vuorovaikutus aineen kanssa Säteilyn havaintotekniikka kannattaa yleensä perustaa sille vuorovaikutukselle, joka on dominoiva tutkittavalla aallonpituusalueella. Tärkeimmät vuorovaikutukset röntgen- ja gammasäteilyllä ovat valosähköinen ilmiö, Comptonin ilmiö ja e + e parinmuodostus (ks. Kuva 3.1). Niiden yhteisvaikutuksena syntyy havaittava kokonaisabsorptio ja -sironta. Kuva 3.1: Röntgen- ja gammasäteilyn vuorovaikutuksia aineen kanssa (Culhane & Sanford, s. 32.) 19

24 20 LUKU 3. RÖNTGENSÄTEILYN VUOROVAIKUTUS AINEEN KANSSA Alla olevassa kuvassa (3.2) on esitettynä eri vuorovaikutuksen voimakkuudet fotonin energian funktiona. Näistä Compton-sironta on jo käsitelty edellisessä kappaleessa, parinmuodostus on e + e -annihilaation käänteinen prosessi, ja uutena ilmiönä on valosähköinen absorptio. Kuva 3.2: Kokonaismassa-absorptiokerroin suurienergiaisilla fotoneilla lyijyssä, josta nähdään myös yleisemmin Compton-sironnan, valosähköisen absorption ja e + e - parinmuodostuksen keskinäinen voimakkuus sekä niiden yhteisvaikutus säteilyn energian funktiona (Longair s. 119.) 3.1 Valosähköinen absorptio Valosähköisessä ilmiössä (photoelectric effect) absorboituva valokvantti ionisoi atomiin sidotun elektronin, atomi + fotoni e + ioni Jos väliaine on riittävän tiheää ja syntyneellä fotoelektronilla (e ) on riittävästi kineettistä energiaa, se ionisoi edelleen uusia atomeja. Tästä ketjureaktiosta on seurauksena varauspilvi, jonka elektronien määrä (N) on ideaalisessa tapauksessa alkuperäisen valokvantin energia (E) jaettuna yhden elektronin ionisoimiseen tarvittavalla energialla (w), N = E/w.

25 3.2. RÖNTGENFLUORESENSSI 21 Tätä piirrettä käytetään säteilyn mittauslaitteissa siten että syntyneet vapaat varaukset (elektronit) ajautetaan ulkoisen sähkökentän avulla anodille, johon kertynyt varaussignaali vahvistetaan ja mitataan. Valosähköisen absorption vaikutus näkyy jatkuvassa emissiospektrissä jyrkkänä absorptioreunana fotoelektronin ionisaatioenergiaa vastaavalla aallonpituudella. Absorptioreunojen paikat spektrissä tunnetaan hyvin tarkasti eri aineiden kullekin elektronikuorelle. Säteily vaimenee absorption vaikutuksesta eksponentiaalisesti väliaineessa, jonka paksuus on x, eli, I = I o e µx jossa µ on lineaarinen vaimennuskerroin. Tässä tapauksessa fotonin keskimääräinen vapaa matka λ = 1/µ. Vaimennuskerroin on yleisesti energiasta ja väliaineen ominaisuuksista riippuva funktio jonka arvo pienenee energian kasvaessa. Gammasäteilyllä se on suunnilleen muotoa µ Z n /E 3.5, jossa Z on väliaineen atomien varausluku, E on säteilyn energia, ja n:n arvo on 4-5. Valosähköinen absorptio on ylivoimaisesti tärkein ilmiöistä joita sovelletaan suurienergisen säteilyn mittaukseen. Interstellaarisen kaasun aiheuttama valosähköinen absorptio myös modifioi avaruuden kohteiden havaittavaa säteilyä ultraviolettialueelta (vedyn ionisaatioenergiaa vastaava aallonpituus, n. 900 Å) pehmeälle röntgenalueelle (n. 2 Å, jonne ylettyy raskaimpien alkuaineiden absorptio). 3.2 Röntgenfluoresenssi Valosähköinen absorption seurauksena voi syntyä myös sekundääristä röntgenalueen säteilyä. Fluoresenssisäteily on viivasäteilyä, joka syntyy atomin sisäkuoren elektronin irrotessa. Käytännössä K-kuorella eli atomin sisimmällä kuorella oleva elektroni vuorovaikuttaa fotonin kanssa, jonka energia on suurempi kuin kyseisellä elektronilla. K-kuorelle muodostunut aukko paikkauttuu siten, että ylemmältä L-kuorelta siirtyy elektroni K-kuoren tyhjään paikkaan täyttäen sen. Samalla syntyy fotoni, jonka energia vastaa kyseisten kuorien elektronien sidosenergiaeroa. Röntgenfluoresenssin yhteydessä atomista voi myös irrota elektroneja ylemmiltä kuorilta, joten se on alkuaineesta riippuen hyvinkin moninainen ilmiö ja syntynyt fluoresenssispektri sisältää useita eri voimakkuuksia omaavia viivoja. Tätä ominaisuutta voidaan käyttää hyväksi mm. alkuaineanalyysissä, jossa tutkittavaa materiaalia säteilytetään esim. röntgenputkella ja mitataan näytteen säteilemä fluoresenssispektri, joka on jokaiselle alkuaineelle erilainen. Röntgenfluoresenssia voidaan käytää hyväksi kalibroitaessa röntgendetektorien energiaalueiden mitta-asteikkoja. Kalibroitavalla detektorilla mitataan tunnetun alkuaineen

26 22 LUKU 3. RÖNTGENSÄTEILYN VUOROVAIKUTUS AINEEN KANSSA fluoresenssispektri, jossa kunkin emissioviivan energia on tunnettu. Näin saadaan mitta-asteikko sovitettua kyseiselle detektorille.

27 Luku 4 Röntgenkaukoputket ja kollimaattorit Koska röntgensäteily absorboituu hyvin tehokkaasti eri materiaaleihin, on sen fokusoimiseen käytettävä erilaisia ratkaisuja kuin tavallisissa optisissa kaukoputkissa. Ensimmäisissä taivaan röntgenkartoitukseen tehdyissä laitteissa käytettiin kollimaattoreita joilla yksinkertaisesti rajoitettiin detektorin näkemä taivaanalue ilman fokusointia ja kuvanmuodostuskykyä. Myöhemmin kehitettiin kaukoputkia, jotka muistuttavat periaatteeltaan optista peilikaukoputkea, mutta käytetty säteilyn heijastuskulma peileistä on hyvin pieni. Tällöin puhutaan hipaisevaan heijastukseen perustuvasta optiikasta/teleskoopista (engl. grazing incidence optics). Toinen röntgenja erityisesti gammasäteilyn kuvanmuodostukseen käytetty ratkaisu on koodattu maski, jota sovelletaan kaikkein suurimmilla energioilla ( kev). 4.1 Kollimaattorit Röntgentähtitieteessä käytetään kahdentyyppisiä mekaanisia kollimaattoreita, jotka ovat tavallinen mekaaninen kollimaattori ja modulaatiokollimaattori. Seuraavassa esitellään näiden rakenneratkaisuja ja ominaisuuksia. Tavallinen mekaaninen kollimaattori on yleensä symmetrinen kenno, jossa on tasavälein putkimaisia aukkoja. Säteily pääsee kollimaattorin läpi vain, jos sen tulosuunta on tarpeeksi loiva kollimaattorin optisen akselin (= putkien suunta) suhteen. Kollimaattorin, kuten myös yksittäisten aukkojen, muoto voi optisen akselin suunnasta katsottuna olla ympyrä, neliö, tai kuusikulmio (eli heksagonaalinen). Kollimaattorin materiaalina voi röntgen- ja gammasäteilyn mittauksessa olla esim. beryllium, alumiini, tai ruostumaton teräs. Materiaalin ja geometrian valintaan (reikien muoto ja väliseinien paksuus) vaikuttavat päätekijät ovat lujuus-, jäykkyys-, ja massavaatimukset, sekä materiaalin absorptio- ja heijastuskyky eri aallonpituuksilla. Esimerkiksi neliön muotoisilla reijillä varustetun kollimaattorin avoimen (valoa 23

28 24 LUKU 4. RÖNTGENKAUKOPUTKET JA KOLLIMAATTORIT läpäisevän) pinta-alan suhde kollimaattorin kokonaispinta-alaan on D A o = ( D + d )2, jossa D on yhden aukon sisäläpimitta ja d on väliseinän paksuus. Pyöreiden ja heksagonaalisten reikien tapauksille voidaan tasogeometrian avulla vastaavasti johtaa oma A o :n lauseke (harjoitustehtävä). Kollimaattorin efektiivinen käyttöala on siis ensimmäisessä approksimaatiossa sen kokonaisala A o. Todellisissa systeemeissä säteilyn sironta, heijastuminen, sekä absorptio-emissioprosessit kollimaattorimateriaalissa aiheuttavat aallonpituudesta riippuvia poikkeamia tästä ideaalitapauksesta. Joka tapauksessa kollimaattorin materiaali ja väliseinien paksuus on valittava siten, ettei säteily mitattavalla aallonpituuskaistalla läpäise seiniä, eikä materiaali itse säteile röntgenfluoresenssin ja Compton-sironnan kautta sekundäärisäteilyä mitattavalla energiakaistalla. Tarkastellaan seuraavaksi mekaanisten kollimaattorien näkökenttää ja suuntainformaation tarkkuutta eli kulmaresoluutiota, sekä transmissiota. Jos kollimaattorin reikäkennoston syvyys optisen akselin suunnassa on L, voi ainoastaan säteily, jonka tulosuunta poikkeaa optisesta akselista vähemmän kuin θ c = arccot( L D ) läpäistä kollimaattorin törmäämättä reikien sisällä väliseiniin. Seinään törmäävä säteily voi tulokulmasta ja materiaalista riippuen joko heijastua tai absorboitua. Pienillä röntgensäteilyn energioilla kokonaisheijastuksen rajakulma voi olla suurempi kuin yo. θ c, ja säteily voi läpäistä kollimaattorin heijastumalla väliseinistä. Kollimaattorin rajoittama näkökenttä voi siten riippua myös säteilyn energiasta (aallonpituudesta). Pienille säteilyn tulokulmille θ ja pistemäiselle valonlähteelle voidaan mekaanisen kollimaattorin transmissio T (θ), joka on siis kollimaattorin läpäisevän säteilyn osuus siihen suunnasta θ tulevasta säteilystä, laskea yksinkertaisella kaavalla, T (θ) = A o (1 θ θ c ). Transmission kaavasta nähdään, että se on suoraan verrannollinen tulokulmaan θ. Näkökenttä, jossa transmissio on vähintään puolet maksimiarvosta (FWHM transmissio), on leveydeltään θ 1/2. Yllämainitussa tapauksessa θ 1/2 = θ c (kannattaa hieman pohtia miksi). Mekaanisen kollimaattorin kulmaresoluutio (δθ) riippuu kollimaattorin näkökentän lisäksi detektorin herkkyydestä, havaittavan kohteen ja taustasäteilyn voimakkuudesta, sekä mittausajan pituudesta, ja se voidaan laskea kaavalla δθ = θ 1/2 F min F,

29 4.1. KOLLIMAATTORIT 25 Kuva 4.1: Mekaanisen kollimaattorin rakenne (Fraser s. 6.) jossa F on kohteen aiheuttama säteilyvuo (pinta-ala-, aika-, ja energiayksikköä kohden). F min on vastaavasti ns. pienin havaittavissa oleva vuo (engl. minimum detectable flux), F min = S ( B ia b + QΩj d A s ) 1/2, QA s tδe joka määritellään vuona, joka aiheuttaa S:n standardipoikkeaman verran suuremman mittaustuloksen kuin keskimääräinen kokonaistaustan arvo (esim. S = 3 merkitsee että mittaustulos = B + 3 σ B ). Toisin sanoen S on signaalikohina-suhde joka vaaditaan siihen, että uskotaan mittauksen osoittavan kohteen olemassaolon (esim % varmuus edellyttää että S = 3). Muut suureet yo. kaavassa ovat: Q on laitteen kvanttihyötysuhde, A s kohteen ja diffuusin taustan fotoneita keräävä pinta-ala (eli kaukoputken aukon pinta-ala), A b mittalaitteen omaa taustasäteilyä keräävä pinta-ala, B i instrumenttitaustan voimakkuus (pinta-ala-, aika-, ja energiayksikköä kohden), Ω mittalaitteen aukko avaruuskulmayksiköissä (sr), j d diffuusi taustasäteilyvuo (pinta-ala-, aika-, ja energia, ja avaruuskulmayksikköä kohden), t mittausaika ja δe on laitteen mittaaman energiakaistan leveys.

30 26 LUKU 4. RÖNTGENKAUKOPUTKET JA KOLLIMAATTORIT Sekä kulmaresoluutio että valonkeruuteho siis molemmat paranevat A s :n kasvaessa, eli mekaaninen kollimaattori kannattaa periaatteessa rakentaa mahdollisimman suureksi. Toisaalta, θ 1/2 kasvaa reikien poikkipinta-alan D kasvaessa, joten kollimaattorin syvyyttä L on vastaavasti kasvatettava, jos halutaan säilyttää hyvä kulmaresoluutio. Tässä joudutaan ennen pitkää rakenteellisiin ongelmiin, koska suuren kollimaattorin reikiä (eli kanavia ) on vaikea tehdä riittävän tarkasti yhdensuuntaisiksi. Siksi mekaanisten kollimaattoreiden kulmaresoluutio on yleensä selvästi huonompi kuin kaariminuutti. Modulaatiokollimaattoreilla saavutetaan alle kaariminuutin kulmaresoluutio, ja samalla voidaan kuitenkin saada aikaan suuri näkökenttä. Yksi tällainen ratkaisu on esitetty kuvassa 4.2. Yhdellä tavallisella modulaatiokollimaattorilla ei saada yksikäsitteistä informaatiota kohteen paikasta. Tämä ongelma on joissakin tapauksissa ratkaistu kahdella kollimaattorilla, joilla on toisistaan hieman eroavat periodit. Kuva 4.2: Modulaatiokollimaattorin rakenne. Laite koostuu neljästä lankatasosta, joista kolme sisintä on tasavälein ja neljännen etäisyys kolmannesta on kaksinkertainen. Yleisesti n-tasokollimaattorille muiden tasojen etäisyydet ensimmäisestä ovat L/2 j, (j = 0, 1,..., n 2). Pienillä tulokulmilla (ψ) detektorille tuleva transmissiofunktio on periodinen kolmio, jonka leveys (fwhm) on s/l, ja periodi 2 n 2 (s/l). (Fraser, s. 9). Myös muita ratkaisuja on kehitetty, erityisen kiivaasti 60- ja 70-luvun vaihteessa. Näitä ovat rotaatiomodulaatiokollimaattori (Schnopper ja Thompson, 1968), sekä

31 4.2. HIPAISEVAAN HEIJASTUKSEEN PERUSTUVAT KAUKOPUTKET 27 muuttuvavälinen modulaatiokollimaattori (Adams ja kumppanit, 1972). Edellinen on optisella akselilla pyörivä kahden lankatason kollimaattori, jolla saadaan kohteen paikka yksikäsitteisesti Fourier-analyysin avulla, edellyttäen että kohteella on vakiokirkkaus koko mittausajan. Jälkimmäinen on myös kaksitasoinen kollimaattori, jossa toisen lankatason etäisyys muuttuu mittauksen aikana lankojen suunnan pysyessä vakiona. Kollimaattoreita ei ole saatu kehitettyä riittävän tarkoiksi kohteiden paikantamiseen laitteen herkkyyden siitä huomattavasti kärsimättä, ja niiden käyttö onkin 70-lukua myöhemmissä lähinnä kovaa röntgen ja gammasäteilyä mittaavissa kaukoputkissa keskittynyt pääasiassa näkökentän rajoittamiseen ja siten ylimääräisen diffuusin taustasäteilyn eliminoimiseen. 4.2 Hipaisevaan heijastukseen perustuvat kaukoputket Röntgensäteily on herkästi absorboituvaa, ja sen fokusoimiseksi täytyy heijastuskulmien peilipinnoista olla hyvin pieniä. Samasta syystä heijastuspintojen materiaalina käytetään usein alumiinia raskaampia metalleja (erityisesti kultaa, mutta myös iridium soveltuu). Pienistä heijastuskulmista johtuen puhutaan tässä yhteydessä hipaisevaan heijastukseen perustuvista kaukoputkista (vastaava engl. termi on grazing incidence ). Alla oleva esitys on karkea lähestyminen siihen fysiikkaan, josta hipaisevan heijastuksen käsite on peräisin. Röntgenalueella heijastuskerroin n on kompleksinen ja se on tapana ilmoittaa seuraavasti: n = 1 δ + iβ, Tässä tekijät δ ja β ovat kummatkin riippuvaisia fotonin energiasta. Käytännössä δ ja β saavat hyvin pieniä arvoja EUV:ssa ja pehmeässä röntgenalueessa, joista β on vielä merkittävästi pienempi kuin δ. Kun huomioidaan vielä se, että δ 1, voidaan taitekerroin ilmoittaa likimääräisesti röntgenalueella seuraavasti n = 1 δ. Täten heijastuskerroin on hieman pienempi kuin 1, joten Snellin lakiin sovellettuna voidaan johtaa lauseke ns. kriittiselle kulmalle θ c, jossa n 2 = 1 δ ja n 1 = 1. Kun sijoitetaan Snellin lakiin tulokulman φ 1 sijaan sen komplementtikulma θ c, saadaan alla oleva lauseke. n 1 sin(90 θ c ) = n 2 sin90 cosθ c = 1 δ

32 28 LUKU 4. RÖNTGENKAUKOPUTKET JA KOLLIMAATTORIT Tässä taittunut säde muodostaa suoran kulman (φ 2 = 90 ) heijastuspinnan kanssa, joten heijastunut säde etenee rajapintaa pitkin! Koska kriittinen kulma θ c on pieni ja lausutaan radiaaneissa, voidaan tehdä seuraava oletus. cosθ c θ2 c = 1 δ θ c = 2δ Kriittinen kulma on siis se kulma, jossa taittunut ja heijastunut säde ovat yksi ja sama säde. Geometrisen optiikan puitteissa ilmiö muistuttaa kokonaisheijastusta. Tarkempi analyysi kuitenkin osoittaa, että heijastunut säde vaimenee kulkiessaan rajapintaa pitkin, mikä johtuu pienestä, mutta kuitenkin nollaa suuremmasta taitekertoimen kompleksiosasta. Kriittinen kulma on verrannollinen pinnoitealkuaineen järjestysluvun (=Z) neliöjuureen ja kääntäen verrnnollinen fotonin energiaan. Perinteisiä röntgenteleskooppimalleja on rakenteeltaan kahdentyyppisiä: a) Kirkpatrick-Baez optiikkaan, ja b) Wolter optiikkaan perustuvia kaukoputkia. Yhteisenä ominaisuutena on valonsäteen heijastuminen perättäin kahdesta peilipinnasta, joka on edellytyksenä 2D-kuvan muodostumiselle. Tapauksessa a) heijastuspintoina on kaksi parabolisesti kaarevaa toisiaan vastaan kohtisuoraan kulmaan asetettua tasopintaa (ks. kuva 4.4). Käytännön ratkaisuissa on kummankin suuntaisia levyjä tavallisesti useita. Wolter-optiikassa käytetään heijastukseen pyörähdyspintoja, joista valon tulosuunnasta katsoen etummainen on paraboloidi ja jälkimmäinen hyperboloidi. Tätä rakennetta kutsutaan Wolter I-teleskoopiksi. Jos paraboloidi- ja hyperboloidipinnat korvataan katkaistuilla kartioilla, kutsutaan teleskooppia Wolter I-approksimaatioksi. Todellinen Wolter I-teleskooppi poikkeaa usein rakenteellisesti approksimaatiosta siten, että paraboloidi- ja hyperboloidipeilipinnat pitää valmistaa varsin jäykän ja siten raskaan rakenteen pinnalle. Eräs käytetty rakennemateriaali on zerodur (lasilaatu), joka on työstetty valmiiksi matemaattisesti vaadittuun muotoon. Zerodur voidaan pinnoittaa joko kullalla tai esim. iridiumilla. Nikkeliäkin on myös käytetty peilipinnoitteena. Mitä raskaampi pinnoitealkuaine on, sitä paremmin se heijastaa röntgenalueella. Oleellista on, että pinta kiillotetaan todella sileäksi, jotta vältytään heijastuneen säteen sirontaefekteiltä, jotka huonontavat heijastuskerrointa. Käytännön ratkaisuissa on samankeskisiä, säteeltään erisuuruisia heijastuspintoja sisäkkäin muutamia. Tämä itsekantava rakenne on raskas, mutta sen fokusointiominaisuus on hyvä. Wolter I-kartioapproksimaatiossa käytetään peilipintoina katkaistuja kartioita. Kun peilit tehdään ohuesta alumiinista, jotka päällystetään kullalla, saadaan kevyt ja kompakti rakenne. Peilejä voidaan sijoittaa sisäkkäin useita kymmeniä tai jopa pari sataa. Tosin tämä foliorakenne tarvitsee erillisen tukirakennelman ja peilipintojen tarkka asettelu on metrologinen haaste. Tässä konstruktiossa fokusointi on hieman karkeampi kuin oikeassa Wolter I-teleskoopissa, mutta rakenne on kevyempi ja efektiivinen pinta-ala saadaan suuremmaksi. Kummassakin mallissa optisen akselin suunnalta tuleva säteily ohjataan teleskoopin sisään kollimoidusti siten, että tuleva säde todella heijastuu kaksi kertaa ja fokusointi tapahtuisi kahdessa

33 4.2. HIPAISEVAAN HEIJASTUKSEEN PERUSTUVAT KAUKOPUTKET 29 ulottuvuudessa. Tämän vuoksi apertuuria peittävät samankeskiset renkaan muotoiset kollimaattorit, jotka estävät optisen akselin suuntaisten fotonien tulon kohdista, joista tullessaan ne osuisivat vain taaimmaisiin peilipintoihin ja fokusoituisivat vain yhdessä ulottuvuudessa. Luonnollisesti osa sisään tulevista fotoneista tulee sellaisessa kulmassa optiseen akseliin nähden, että ne heijastuvat vain kerran jälkimmäisen pakkauksen peileistä. Wolter-teleskooppien näkökenttä on yleensä alle yhden asteen. Kuvakentän reunoilta tulevat fotonit eivät kuvaudu tarkoitetulla tavalla, joka näkyy ns. PSF:n huononemisena. PSF eli Point Spread Function kuvaa optiikaan kykyä fokusoida pistelähde taivaalla pisteeksi polttotasolla. Pisteen kuva leviää aina kulkiessaan optiikan läpi jonkin kokoiseksi ympyräksi, jonka kokoa ja intensiteettijakaumaa PSF:llä tarkoitetaan. Kuvakentän reunoilta tulevat fotonit eivät edes kuvaudu Wolter-teleskoopeissa ympyröiksi, vaan voivat saada mielivaltaisia muotoja, joiden analyyttinen mallintaminen on mahdotonta. Tämän asian määrittämiseksi röntegenteleskoopit tulee kalibroida oikeilla laboratoriopistelähteillä, jotta kaukoputken käyttäytyminen tunnettaisiin jollakin tarkkuudella kuvakentän muillakin alueilla kuin vain teoreettisesti optisen akselin suunnassa. Kuva 4.3: Vasemman puoleinen kuvaaja esittää 5 kev:n fotonin heijastuskerrointa aluminiista välillä 0-2, j ossa on 30 nm:n kultapinnoitus. Oikealla olevassa kuvaajassa on heijastuskerroin esitetty samalle peilille fotonin energian funktiona välillä 0-10 kev heijastuskulman ollessa 1. Röntgenkaukoputkien hyvyyttä voidaan kuvata dimensiottomalla suhteella (A s /A b ) 1/2, jonka merkitys riippuu kaukoputken lisäksi sen fokuksessa fotoneita rekisteröivästä mittalaitteesta, detektorista. Jos detektorin paikkaherkkyys (paikkaresoluutio) on pienempi kuin kaukoputken PSF:n koko, on em. suhde suoraan kaukoputken aukon säde jaettuna PSF:n säteellä, ja kaava antaa suoraan fokusointisuhteen. Muussa tapauksessa A b on sama kuin detektorin paikkaresoluutio, ja kaava ei enää kuvaa kaukoputken fokusointikykyä. Jos detektorilla ei ole lainkaan paikkaherkkyyttä, eli detektoriin osuneen fotonin paikkaa ei voida määrittää, on A b em. kaavassa tulkittava koko detektorin pinta-alaksi. Silloin kaavan suhdeluku voidaan tulkita parametrina,

34 30 LUKU 4. RÖNTGENKAUKOPUTKET JA KOLLIMAATTORIT Kuva 4.4: Kirkpatrick-Baez-optiikan (b) sekä muodostuvan kuvan rakenne (c), jossa pisteen kuva on neliö (Fraser s. 20) joka kuvaa laitteen herkkyyttä kohteen erottamiseksi taustasta. Tätä suhdelukua, tai sen käänteisarvoa, voidaan siis eri yhteyksissä tulkita eri tavoin ja käyttää tapauksesta riippuen kuvaamaan useaa eri ominaisuutta. Lopuksi kannattaa tehdä vielä selväksi kaksi fokusoiviin röntgenkaukoputkiin liittyvää piirrettä. Toinen on peilien fotoneita heijastava pinta-ala, joka on tavallisesti hyvin suuri verrattuna kaukoputken aukkoon. Heijastava ala on riippuvainen fotonin energiasta (aallonpituudesta), ja esimerkiksi Einstein-satelliitin yhdessä kaukoputkessa oli suhde (aukon ala)/(heijastuspintojen ala) Toiseksi, kaukoputken aukon ala ei ole sama kuin fotoneita fokusoiva kaukoputken efektiivinen pinta-ala A eff. Efektiivinen pinta-ala on röntgenalueella säteilyn energiasta riippuva suure, ja se optimoidaan pinnoitteiden ja peilipinnan geometrian valinnalla kullekin kaukoputkelle parhaiten sopivaksi. Käyttämällä monikerrosrakennetta (eri metalleja ohuina kerroksina päällekkäin) voidaan saada aikaan hyvinkin kapeakaistaisia röntgenkaukoputkia. Fokusoivia röntgenkaukoputkia voidaan käyttää enintään muutaman kymmenen kev:n säteilylle, minkä jälkeen heijastuskulmat muuttuvat niin pieniksi, ettei tätä ratkaisua voida soveltaa. Hyvää, kaarisekuntien luokkaa olevaa paikkaresoluutiota tarvittaessa on yläraja vieläkin alempi ( 10 kev). Hipaisevaan heijastukseen perustuvaa optiikkaa voi myös toteuttaa mikrokanavalevyillä (MCP = Micro Channel Plate). MCP on lyijylasista valmistettu kiekko, jossa on suuri määrä pieniä neliön muotoisia reikiä. Levyn paksuus on yleisesti luokkaa 10

35 4.2. HIPAISEVAAN HEIJASTUKSEEN PERUSTUVAT KAUKOPUTKET 31 Kuva 4.5: Wolter-optiikan rakenne. F2 on parabolisten peilien, ja F1 hyperbolisten peilien polttopiste. Polttoväli z o mitataan para- ja hyperbolisen osan yhtymäkohdasta. Optisella akselilla pisteen kuva (engl. on-axis point spread function, PSF) on ympyränmuotoinen. Kun poiketaan optiselta akselilta, syntyy yleensä kuvausvirheitä, jotka muuttavat pisteen kuvan suuremmaksi ja epäsäännöllisen muotoiseksi (off-axis PSF) (Fraser s. 22). mm ja reikien sivumitat ovat n mm. Levy on taivutettu pallon pinnan muotoiseksi. Taivutetulla MCP:llä aikaansaatu optiikka on samanlainen kuin äyriäisten silmissä. Itse asiassa optiikan toimintaperiaate onkin kopioitu hummerilta. Siksi MCP:llä toteutettua optiikkaa kutsutaankin yleisesti hummerinsilmälinssiksi, vaikka siinä röntgensäteet eivät taivu, vaan toteuttavat kaksi erillistä heijastusta MCP:n pienissä reiässä. Kaksi peräkkäistä heijastusta pitää tapahtua kussakin reiässä kunkin reiän viereisistä sivuista, jotta optiikka olisi kuvaava eli kaksiulotteinen fokusointi toteutuisi. Polttotaso on hummerinsilmä-teleskoopilla myös pallon pinta. MCP:n reikien heijastusta voidaan parantaa kultaamalla niiden sisäpinnat. Optiikan läpi pääsee myös fotoneita, jotka heijastuvat vain reiän yhdestä seinästä. Tällaiset fotonit muodostavat pistefokuksen ympärille ristin muotoisen kuvion. Osa fotoneista pääsee optiikan läpi heijastumatta lainkaan. Nämä fotonit muodostavat diffuusin halon polttotasolle. Perinteisen MCP-optiikan toiminta on tässä suhteessa puutteellinen. Hummerinsilmä-optiikasta on olemassa kehittyneempi versio, jossa kaksi mikrokanavalevyä on yhdistetty päällekkäin. Kumpikin levy on taivutettu pallon pinnan muotoiseksi, mutta polttotason puoleisen levyn taivutussäde on pienempi kuin apertuu-

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS 35 3 SÄTEILYN JA AINEEN VUOROVAIKUTUS Säteilyn hiukkaset ja kvantit vuorovaikuttavat aineen rakenneosasten kanssa. Vuorovaikutusten aiheuttamat prosessit voivat muuttaa aineen rakennetta ja ominaisuuksia,

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

11. Astrometria, ultravioletti, lähiinfrapuna

11. Astrometria, ultravioletti, lähiinfrapuna 11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan

Lisätiedot

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 11. Muut aaltoalueet 1. 2. 3. 4. 5. 6. Gamma Röntgen Ultravioletti Lähiinfrapuna Infrapuna

Lisätiedot

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen 6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

Supernova. Joona ja Camilla

Supernova. Joona ja Camilla Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

Maailmankaikkeuden kriittinen tiheys

Maailmankaikkeuden kriittinen tiheys Maailmankaikkeuden kriittinen tiheys Tarkastellaan maailmankaikkeuden pientä pallomaista laajenevaa osaa, joka sisältää laajenemisliikkeessä olevia galakseja. Olkoon pallon säde R, massa M ja maailmankaikkeuden

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

7.4 Fotometria CCD kameralla

7.4 Fotometria CCD kameralla 7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi

Lisätiedot

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

Mustien aukkojen astrofysiikka

Mustien aukkojen astrofysiikka Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

10. Globaali valaistus

10. Globaali valaistus 10. Globaali valaistus Globaalilla eli kokonaisvalaistuksella tarkoitetaan tietokonegrafiikassa malleja, jotka renderöivät kuvaa laskien pisteestä x heijastuneen valon ottamalla huomioon kaiken tähän pisteeseen

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

40D. RADIOAKTIIVISUUSTUTKIMUKSIA

40D. RADIOAKTIIVISUUSTUTKIMUKSIA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 40D. RADIOAKTIIVISUUSTUTKIMUKSIA 1. TYÖN TAVOITE 2. TEORIAA Työssä tutustutaan radioaktiiviseen säteilyn kuvaamisessa käytettäviin käsitteisiin ja fysikaalisiin lakeihin,

Lisätiedot

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360)

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,

Lisätiedot

2.2 RÖNTGENSÄTEILY. (yli 10 kv).

2.2 RÖNTGENSÄTEILY. (yli 10 kv). 11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Kaukoputket ja observatoriot

Kaukoputket ja observatoriot Kaukoputket ja observatoriot Helsingin yliopisto, Fysiikan laitos kevät 2013 7. Kaukoputket ja observatoriot Perussuureet Klassiset optiset ratkaisut Teleskoopin pystytys Fokus Kuvan laatuun vaikuttavia

Lisätiedot

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA 1 VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA MOTIVOINTI Tutustutaan laservalon käyttöön aaltooptiikan mittauksissa. Tutkitaan laservalon käyttäytymistä yhden ja kahden kapean raon takana. Määritetään

Lisätiedot

Top Analytica Oy Ab. XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio

Top Analytica Oy Ab. XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio Röntgenfluoresenssi Röntgensäteilyllä irroitetaan näytteen atomien sisäkuorilta (yleensä K ja L kuorilta) elektroneja. Syntyneen vakanssin paikkaa

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

UrSalo. Laajaa paikallista yhteistyötä

UrSalo. Laajaa paikallista yhteistyötä UrSalo Laajaa paikallista yhteistyötä Ursalon ja Turun Ursan yhteistyö Tähtipäivät 2011 ja Cygnus 2012 Kevolan observatorio Tähtitieteen kurssit Yhteistyössä Salon kansalaisopiston ja Tuorlan tutkijoiden

Lisätiedot

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Pinnallinen tapa aurinkokennon virta-jännite-käyrän

Lisätiedot