x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Samankaltaiset tiedostot
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

LINEAARIALGEBRA. Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

LINEAARIALGEBRA. Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions

802320A LINEAARIALGEBRA OSA II

1 Sisätulo- ja normiavaruudet

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA III

1 Lineaariavaruus eli Vektoriavaruus

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF

Lineaarialgebra II P

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Kertausta: avaruuden R n vektoreiden pistetulo

1. Normi ja sisätulo

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

(1.1) Ae j = a k,j e k.

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Insinöörimatematiikka D

5 Ominaisarvot ja ominaisvektorit

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

1 Ominaisarvot ja ominaisvektorit

Ortogonaalisen kannan etsiminen

Kertausta: avaruuden R n vektoreiden pistetulo

JAKSO 2 KANTA JA KOORDINAATIT

Kuvaus. Määritelmä. LM2, Kesä /160

Matemaattinen Analyysi / kertaus

Kanta ja dimensio 1 / 23

Alkeismuunnokset matriisille, sivu 57

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

MS-C1340 Lineaarialgebra ja

2 / :03

Insinöörimatematiikka D

6. OMINAISARVOT JA DIAGONALISOINTI

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I

Avaruuden R n aliavaruus

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I

4. LINEAARIKUVAUKSET

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Ominaisvektoreiden lineaarinen riippumattomuus

Sisätuloavaruudet. 4. lokakuuta 2006

Insinöörimatematiikka D

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

1 Avaruuksien ja lineaarikuvausten suora summa

6 MATRIISIN DIAGONALISOINTI

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Lineaarialgebra ja matriisilaskenta I

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Kanta ja Kannan-vaihto

Ortogonaalinen ja ortonormaali kanta

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Lineaarikuvauksen R n R m matriisi

6. Lineaariset operaattorit

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ratkaisuehdotukset LH 7 / vko 47

Insinöörimatematiikka D

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Metriset avaruudet 2017

Lineaariset mollit, kl 2017, Harjoitus 1

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Insinöörimatematiikka D

MS-C1340 Lineaarialgebra ja

4. Hilbertin avaruudet

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Lineaarialgebra ja matriisilaskenta I

Tyyppi metalli puu lasi työ I II III

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Yleiset lineaarimuunnokset

Transkriptio:

LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ), aina, kun x 1,..., x n ; y 1,..., y n ; λ R. 2. Osoita, että (R 2, +, ) ei ole vektoriavaruus, kun vektoreiden x = (x 1, x 2 ), y = (y 1, y 2 ) laskutoimitukset on annettu seuraavasti: x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); λ x = (λx 1, 0), λ R. 3. Osoita, että (R 2,, ) ei ole lineaariavaruus, kun vektoreiden x = (x 1, x 2 ), y = (y 1, y 2 ) laskutoimitukset on annettu seuraavasti: x = y x i = y i i = 1, 2; x y = (x 1 y 1, x 2 + y 2 ); λ x = (λx 1, λx 2 ), λ R. 4. Olkoon K kunta ja 0, 1 K sen nolla- ja ykkösalkiot. Olkoon V lineaariavaruus kunnan K yli sekä 0 V sen nolla-alkio. Osoita lineaariavaruuden aksiomeja käyttäen, että (a) λ 0 = 0 kaikilla λ K. (b) λ v = ( λ) v = λ ( v) kaikilla λ K, v V ; (c) Jos λ v = λ w ja λ 0, niin v = w; 5. Olkoot W 1 = {(x, y, z, t) R 4 : x y + z t = 0}; W 2 = {(x, y, z, t) R 4 : x y + z = 0}; W 3 = {(x, y, z, t) R 4 : x y + z 1 = 0} (a) Osoita, että W 1 on vektoriavaruuden R 4 aliavaruus. (b) Onko W 2 on vektoriavaruuden W 1 aliavaruus?

(c) Onko W 2 on vektoriavaruuden R 4 aliavaruus? (d) Miksi W 3 ei ole vektoriavaruuden R 4 aliavaruus. 5 c-kohta VASTAUS: ON. RATKAISU: Osoitetaan, että aliavaruusaksiomit AA1: W ; AA2: jos w 1, w 2 W, niin w 1 + w 2 W ; AA3: jos w W ja λ R, niin λw W ; ovat voimassa. AA1: Koska 0 0 + 0 = 0, niin 0 = (0, 0, 0, 0) W 2, joten W 2 ; AA2: Olkoot w 1 = (x 1, y 1, z 1, t 1 ), w 2 = (x 2, y 2, z 2, t 2 ) W 2. Tällöin (1) x 1 y 1 + z 1 = x 2 y 2 + z 2 = 0 ja w 1 + w 2 = (x 1 + x 2, y 1 + y 2, z 1 + z 2, t 1 + t 2 ), (x 1 + x 2 ) (y 1 + y 2 ) + (z 1 + z 2 ) = x 1 y 1 + z 1 + x 2 y 2 + z 2 = 0, joten w 1 + w 2 W 2 ; AA3: Olkoot w = (x, y, z, t) W 2 ja λ R, tällöin (2) x y + z = 0 ja λw = (λx, λy, λz, λt), (λx) (λy) + (λz) = λ(x y + z) = 0, joten λw W 2. 6. Olkoon V lineaariavaruus kunnan K yli ja v, v 1, v 2 V sekä W 1 = {αv α K}; (a) Määrää lineaarinen verho v K. W 2 = {αv 1 + βv 2 α, β K}. (b) Määrää lineaarinen verho v 1, v 2 K. (c) Osoita, että W 1 on vektoriavaruuden V aliavaruus. (d) Onko W 2 on avaruuden V aliavaruus? (e) Onko W 1 on avaruuden W 2 aliavaruus, jos v = v 1 v 2? 7. Olkoon K kunta ja V = K n, n Z +. Merkitään e k = (0,..., 1,..., 0) K n, missä k:s koordinaatti on 1 ja muut nollia aina, kun k = 1, 2,..., n. Osoita, että vektorit e 1,..., e n ovat lineaarisesti vapaita kunnan K yli.

8. Olkoot F 1 = {f F(R, R) : f(t) = f(t + 2π) t R}; F 2 = {f C(R, R) : f = f}; F 3 = {f F(R, R) : f(π) = 0}. (a) Onko F 1 avaruuden F(R, R) aliavaruus? (b) Onko F 2 on avaruuden C(R, R) aliavaruus? Tässä f on funktion f derivaatta. (c) Onko F 3 avaruuden F(R, R) aliavaruus? 9. Kuuluuko polynomi x 2 joukon {x, x 3, x + 2x 2 + 3x 3 } Pol 3 (R, R) lineaariseen verhoon? 10. Olkoon S = {1, x, x 2,..., x k } Pol k (R, R). (a) Osoita, että S on lineaarisesti vapaa. (b) Osoita, että S R = Pol k (R, R). (c) Osoita, että S on polynomiavaruuden Pol k (R, R) kanta. (d) Määrää dim R Pol k (R, R). 11. Olkoon V = {p Pol 3 (R, R) : p(1) = p( 1) = 0}. Osoita, että V on avaruuden Pol 3 (R, R) aliavaruus ja määrää dim V. 12. Olkoon Sym(2, 2) = {A M(2, 2) : A = A T } symmetristen matriisien joukko. Osoita, että Sym(2, 2) on avaruuden M(2, 2) aliavaruus sekä laske dim M(2, 2) ja dim Sym(2, 2). 13. Olkoon V reaalinen sisätuloavaruus. Osoita, että reaaliselle sisätulolle pätee aina, kun α, β R ja v, u, w, z V. v αw + βz = α v w + β v z, 14. Olkoon n Z +. Määritellään kuvaus asettamalla z w = z w = n z k w k k=1 aina, kun z = (z 1,..., z n ), w = (w 1,..., w n ) C n. (a) Osoita, että (C n, ) on kompleksinen sisätuloavaruus. (b) Olkoon z = (i,..., i). Laske z z.

15. Määritellään kuvaus asettamalla x y = 5 x 1 y 1 + 3x 2 y2 aina, kun x = (x 1, x n ), y = (y 1, y n ). (a) Onko (R 2, ) on reaalinen sisätuloavaruus? (b) Onko (C 2, ) on kompleksinen sisätuloavaruus? 16. Määritellään kuvaus asettamalla x y = 5x 1 y 1 + 3x 2 y 2 aina, kun x = (x 1, x n ), y = (y 1, y n ). (a) Onko (R 2, ) on reaalinen sisätuloavaruus? (b) Onko (C 2, ) on kompleksinen sisätuloavaruus? 17. Määritellään kuvaus asettamalla p q = 2 p(k)q(k) k=0 aina, kun p, q Pol 2 (R, R). (a) Osoita, että näin saatu kuvaus on avaruuden Pol 2 (R, R) sisätulo. (b) Onko kuvaus avaruuden Pol 3 (R, R) sisätulo? 18. Olkoot n = (1, 0, 1) ja W = {w R 3 : w n = 0}. (a) Osoita, että W on avaruuden R 3 aliavaruus. (b) Määrää aliavaruudelle W jokin kanta. 19. Olkoon V kompleksinen sisätuloavaruus, λ C ja v, w V. (a) Osoita, että (b) Määrää v λw = λ v w. i v w + v i w. (c) Onko tulo v w w v reaaliluku? 20. Onko joukko A k ortogonaalinen, ja jos, niin onko se ortonormaali, kun (a) A 1 = {(1, 1, 1), (2, 0, 2), (1, 2, 1)}? (b) A 2 = {(i, 0, 0), (0, i, 0), (0, 0, i)}? (c) A 3 = {( 3, 0, 4, 0, 0), (0, 1, 0, 3, 0), (0, 0, 0, 0, 1)}? 5 5 2 2

21. Määritellään kuvaus 1 : R 2 R asettamalla x 1 = x 1 + x 2 kaikilla x = (x 1, x 2 ) R 2. Osoita, että 1 on normi. Piirrä joukko {x R 2 : x 1 1}. 22. Olkoon (V, ) normiavaruus. Osoita, että x y x y kaikilla x, y V. 23. Olkoon V reaalinen sisätuloavaruus ja x, y V. Osoita, että x y x + y 2 = x 2 + y 2. 24. Olkoon V sisätuloavaruus ja x, y V sellaiset vektorit, joille pätee x = 2, y = 2 ja x + y = 3. Laske vektoreiden x ja y välinen etäisyys x y. 25. Olkoot H sisätuloavaruus ja S sen kanta. Olkoon u H sellainen vektori, että u v kaikilla v S. Osoita, että u = 0. 26. Etsi Gram-Schmidtin menetelmällä aliavaruudelle H = ( 1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1) ortonormaali kanta. Mitkä ovat vektorin x = (1, 2, 3, 11) koordinaatit löytämässäsi kannassa? 26 RATKAISU alkuosaan: Ortogonaaliset vektorit ovat w 1 = ( 1, 1, 1, 1); w 2 = 1 (1, 5, 3, 3) 4 w 3 = (0, 0, 1, 1). 27. Olkoon L lineaarikuvaus. Osoita, että L(0) = 0. 27 RATKAISU: L(0) = L(0 0) = 0 L0 = 0. 28. Osoita, että nollakuvaus ja identtinen kuvaus ovat lineaarisia. 29. Määritellään kuvaus L : R 3 R 2, asettamalla L(x, y, z) = (x, y + z) aina,kun (x, y, z) R 3. Osoita, että kuvaus L lineaarinen? 30. Onko L : R 2 R, L(x 1, x 2 ) = e x 1+x 2 lineaarinen? 30 VASTAUS: EI. Esimerkiksi aksiomi LAb ei päde, kun λ = 0.

31. Onko L : R 2 R, L(x 1, x 2 ) = πx 1 lineaarinen? 31 VASTAUS: ON. 32. Olkoon L : R R sellainen lineaarikuvaus, että L( 7) = 14. Laske L(100). 32 RATKAISU: 14 = L( 7) = ( 7)L(1) L1 = 2 L(100) = 100L1 = 200. 33. Määritellään kuvaus L : R 2 Pol 2 (R, R), asettamalla aina, kun x = (a, b) R 2. L(x) = a + bx (a) Osoita, että kuvaus L on lineaarinen? (b) Määrää Ker L. (c) Onko L injektio? (d) Määrää Im L. (e) Onko L surjektio? (f) Onko L bijektio? (g) Määrää dim Ker L ja dim Im L ja vertaa tulosta dimensiokaavaan. 34. Olkoon V reaalinen sisätuloavaruus, dim K V = k Z + ja n V annettu. Määritellään kuvaus L : V R, asettamalla aina, kun x V. L(x) = n x (a) Osoita, että kuvaus L on lineaarinen. (b) Määrää dim Im L. (c) Määrää dim Ker L. 34 RATKAISU: Luentojen III osa: Esimerkki 13. 35. Määritellään lineaarikuvaus L : R 3 R 4, asettamalla L(x) = (x 1 + x 2, x 2 + x 3, x 1 + x 3, x 1 x 2 + x 3 ) aina, kun x = (x 1, x 2, x 3 ) R 3. (a) Määrää Ker L. (b) Onko L injektio? (c) Määrää dim Ker L ja dim Im L (käytä dimensiokaavaa). (d) Onko L surjektio? (e) Onko L bijektio?

(f) Määrää L:n matriisi [L] E3,E 4 luonnollisten kantojen E 3 = {e 1, e 2, e 3 } R 3 ja E 4 = {e 1, e 2, e 3, e 4 } R 4 suhteen. 35 VASTAUS: vertaa luentojen III osa: Esimerkit 11 ja 12: Ker L = {0}; ON injektio; dim Ker L = 0; dim Im L = 3; EI ole surjektio eikä bijektio; 1 1 0 [L] E3,E 4 = 0 1 1 1 0 1. 1 1 1 36. Lineaarikuvaksen L matriisi on 0 1 [L] E2,E 4 = 1 0 2 1. 1 2 Anna kuvaus L muodossa 36 RATKAISU: L(x, y) = (a, b, c, d) = ae 1 + be 2 + ce 3 + de 4. Le 1 = e 2 + 2e 3 + e 4 ; Le 2 = e 1 + e 3 2e 4, L(x, y) = L(xe 1 + ye 2 ) = xle 1 + yle 2 ) = ye 1 xe 2 + (2x + y)e 3 + (x 2y)e 4. 37. Lineaarikuvaus L : R 3 R 3 toteuttaa ehdot Lu 1 = u 1 u 2 + u 3, L(u 1 u 2 ) = u 1, ja L(u 1 u 2 + u 3 ) = 2u 2 u 3, missä {u 1, u 2, u 3 } on avaruuden R 3 kanta. Laske Lu 2 ja Lu 3. 37 RATKAISU: L(u 1 u 2 ) = u 1, Lu 1 Lu 2 = u 1, Lu 2 = Lu 1 u 1 = u 2 + u 3 ; L(u 1 u 2 + u 3 ) = 2u 2 u 3, Lu 1 Lu 2 + Lu 3 = 2u 2 u 3, Lu 3 = Lu 1 + Lu 2 + 2u 2 u 3 = u 1 + 2u 2 u 3.

38. Olkoon S = sin x, cos x R ja s = {sin x, cos x}. Tutkitaan lineaarikuvausta L : S S, L = D 2 + 2D + I, missä D on derivaattakuvaus ja I on avaruuden S identtinen kuvaus. Määritä [L] s,s. 38 VASTAUS: [L] s,s = [ ] 0 2. 2 0 39. Olkoon V sisätuloavaruus ja A avaruuden V aliavaruus. Osoita, että 39 RATKAISU: A A = {0}. x A A x A ja x A x x = 0 x = 0. 40. Näytä, että pisteen t kohtisuora projektio PROJ A (t) = p aliavaruudelle A on yksikäsitteinen.