Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Samankaltaiset tiedostot
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset

Johdatus logiikkaan I Harjoitus 4 Vihjeet

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:

Johdatus logiikkaan 1

Loogiset konnektiivit

Induktio kaavan pituuden suhteen

Luonnollisen päättelyn luotettavuus

Logiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate

isomeerejä yhteensä yhdeksän kappaletta.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Predikaattilogiikan malli-teoreettinen semantiikka

Miten osoitetaan joukot samoiksi?

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Totuusjakaumat. Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B.

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

SAT-ongelman rajoitetut muodot

Tehtävä 8 : 1. Tehtävä 8 : 2

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Tehtävä 4 : 2. b a+1 (mod 3)

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Todistusmenetelmiä Miksi pitää todistaa?

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

1 Lineaariavaruus eli Vektoriavaruus

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Insinöörimatematiikka A

Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

802320A LINEAARIALGEBRA OSA I

Matematiikan tukikurssi, kurssikerta 2

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )

MS-A0402 Diskreetin matematiikan perusteet

Johdatus matemaattiseen päättelyyn

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

4 Matemaattinen induktio

4.3. Matemaattinen induktio

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Johdatus logiikkaan 1

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

DFA:n käyttäytyminen ja säännölliset kielet

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

Lauselogiikka Tautologia

811120P Diskreetit rakenteet

Insinöörimatematiikka A

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

Vastaoletuksen muodostaminen

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät sivua Heikki Koivupalo ja Rami Luisto

Determinantti 1 / 30

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Ortogonaalisen kannan etsiminen

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?

Tehtävä 10 : 1. Tehtävä 10 : 2

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Logiikka I 7. harjoituskerran malliratkaisut Ratkaisut laati Miikka Silfverberg.

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.


Matematiikan tukikurssi

Johdatus matemaattiseen päättelyyn

Koodausteoria, Kesä 2014

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Äärellisten mallien teoria

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Transkriptio:

Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p 1, p 2, p 3 }, { p 2 }, { p 1, p 2 }, {p 1, p 3 }}. a. 1 {p 3 } oletus 2 { p 2, p 3 } oletus 3 { p 0, p 2 } oletus 4 {p 0 } oletus 5 { p 2 } (1, 2) 6 { p 0 } (3, 5) 7 (4, 6) b. 1 { p 0, p 2 } oletus 2 { p 2 } oletus 3 {p 0, p 1 } oletus 4 { p 1, p 2 } oletus 5 { p 0 } (1, 2) 6 {p 1 } (3, 5) 7 { p 1 } (2, 4) 8 (6, 7) c. 1 { p 2 } oletus 2 { p 1, p 2 } oletus 3 {p 1, p 3 } oletus 4 {p 1, p 2, p 3 } oletus 5 { p 1 } (1, 2) 6 { p 3 } (3, 5) 7 {p 2, p 3 } (4, 5) 8 {p 3 } (1, 7) 9 (6, 8) 1

Tehtävä 2 Osoita resoluution avulla, että (p 0 p 1 ) p 2 (p 0 p 2 ) (p 1 p 2 ). seuraa loogisesti oletuksesta Ollakseen (p 0 p 2 ) (p 1 p 2 ) looginen seuraus, pitää (p 0 p 1 ) p 2 negaation olla ristiriidassa (p 0 p 2 ) (p 1 p 2 ) kanssa. Tämä voidaan osoittaa näyttämällä, että oletuksesta (p 0 p 2 ) (p 1 p 2 ) ja (p 0 p 1 ) p 2 negaatiosta saadaan tyhjä klausuulijoukko. Annetuista kaavoista saadaan klausuulijoukko {{p 0 }, {p 1 }, { p 2 }, { p 0, p 1, p 2 }} 1 {p 0 } oletus 2 { p 0, p 1, p 2 } oletus 3 {p 1 } oletus 4 { p 2 } oletus 5 { p 1, p 2 } (1, 2) 6 {p 2 } (3, 5) 7 (4, 6) Tehtävä 3 Osoita resoluution avulla, että p 0 p 2 seuraa loogisesti oletuksista p 0 p 1 ja p 2 ( p 0 p 1 ) Annetuista kaavoista saadaan klausuulijoukko {{p 0 }, { p 2 }, { p 0, p 1 }, { p 0, p 1, p 2 }} 1 {p 0 } oletus 2 { p 0, p 1, p 2 } oletus 3 { p 2 } oletus 4 { p 0, p 1 } oletus 5 { p 1, p 2 } (1, 2) 6 { p 1 } (3, 5) 7 {p 1 } (1, 4) 8 (6, 7) 2

Tehtävä 4 Osoita resoluution avulla, että p 0 p 2 seuraa loogisesti oletuksista p 0 p 1 ja p 1 p 2 Annetuista kaavoista saadaan klausuulijoukko {{p 1, p 2 }, {p 1, p 1 }, {p 2, p 2 }, { p 0, p 1 }, {p 0, p 1 }, { p 0, p 2 }, {p 0, p 2 }} 1 {p 1, p 2 } oletus 2 {p 0, p 2 } oletus 3 {p 0, p 1 } oletus 4 { p 1, p 2 } oletus 5 { p 0, p 1 } oletus 6 { p 0, p 2 } oletus 7 {p 0, p 1 } (1, 2) 8 {p 0 } (3, 7) 9 { p 0, p 1 } (4, 6) 10 { p 0 } (5, 9) 11 (8, 10) Tehtävä 5 Selvitä resoluution avulla, onko A B lausejoukon {A (B C), C} looginen seuraus. Perustele resoluution käyttö, eli miksi ratkaisusi toimii. Osoitetaan ensin, että lause p 0 p 1 on lausejoukon A := {p 0 (p 1 p 2 ), p 2 } looginen seuraus. Tehdään tämä kuten edellisissä tehtävissä, eli muodostetaan klausuulijoukko {{ p 0, p 1, p 2 }, {p 0 }, {p 1 }, { p 2 }} ja osoitetaan, että siitä voidaan resoluutiolla päätellä tyhjä joukko. 1. { p 0, p 1, p 2 } oletus 2. {p 0 } oletus 3. {p 1 } oletus 4. { p 2 } oletus 5. { p 1, p 2 } (1, 2) 6. {p 2 } (3, 5) 3

7. (4, 6) Nyt siis p 0 p 1 on lausejoukon A looginen seuraus, joten lause ((p 0 (p 1 p 2 )) p 2 ) (p 0 p 1 ) on tautologia. Nyt intuitiivisesti on melko selvää, että jos jokin lause A on tautologia, niin se pysyy tautologiana vaikka sen propositiosymbolit korvattaisiin toisilla propositiolauseilla. Esimerkiksi lause p 0 p 0 on tautologia ja selvästi myös A A on tautologia riippumatta siitä mikä lause A on. Osoitetaan tämä intuitio todeksi formaalisti. Näytetään tätä varten ensin, että propositiologiikassa pätee seuraava lause: Olkoot D 1,..., D n propositiolauseita jollain n N, v totuusjakauma ja v sellainen totuusjakauma että { v v(d i ), kun i {1,..., n}, (p i ) = v(p i ), muulloin Tällöin kaikilla propositiolauseilla A pätee v (A ) = v(a (D 1 /p 1,..., D n /p n ))(Tässä merkintä A (D i /p i ) tarkoittaa lausetta, joka saadaan kun kaikki propositiosymbolin p i esiintymät lauseessa A korvataan lauseella D i.) Käytetään lauseelle A (D 1 /p 1,..., D n /p n ) lyhennysmerkintää A ( D/ p). Todistus: Osoitetaan väite induktiolla lauseen A rakenteen suhteen. Alkuaskel: Jos A = p i ja i {1,..., n}, niin A ( D/ p) = D i ja jakauman v määritelmän nojalla v (A ) = v(d i ) = v(a ( D/ p)). Jos taas A = p j ja j > n, niin A ( D/ p) = p j ja saadaan v (A ) = v (p j ) = v(p j ) = v(a ). Siis lause pätee propositiosymboleille. Induktioaskel: IO: Olkoon B ja C propositiolauseita joille todistettava väite pätee. Jos nyt A = B, niin A ( D/ p) = B ( D/ p). Tällöin induktio-oletuksen nojalla v (A ) = v ( B ) = 1 v (B ) = 1 v(b ( D/ p)) = v( B ( D/ p)) = v(a ( D/ p)). Siis lause pätee negaation tapauksessa. Jos taas A = B C, niin A ( D/ p) = B ( D/ p) C ( D/ p). Nyt IO:n nojalla v (A ) = v (B C ) = v (B ) v (C ) = v(b ( D/ p)) v(c ( D/ p)) = v(b ( D/ p) C ( D/ p)) = v(a ( D/ p)). Väite pätee siis myös disjunktiolle. Samalla tavalla voidaan väite osoittaa muillekin konnektiiveille. Tosin konnektiivijoukko {, } on täydellinen, eikä muiden konnektiivien läpikäyminen ole siis edes tarpeen. Nyt haluttu lause on siis todistettu kaikille propositiolauseille A. Edellä todistetun lauseen suora seuraus on, että jos propositiolause A on tautologia ja D 1,.., D n mielivaltaisia propositiolauseita, niin myös lause A( D/ p) on tautologia. Todistus: Olkoon v mielivaltainen totuusjakauma ja määritellään sitten totuusjakauma v kuten äsken todistetussa lauseessa. A:n tautologisuuden nojalla 4

v (A) = v(a( D/ p)) = 1. Koska v oli mielivaltainen, niin myös A( D/ p) on tautologia. Nyt voimme yhdistää äskeisen tuloksen ja tiedon, että lause ((p 0 (p 1 p 2 )) p 2 ) (p 0 p 1 )) on tautologia ja saamme, että myös lause ((A (B C)) C) (A B) on tautologia riippumatta siitä minkälaisia lauseet A, B ja C ovat. Tehtävä 6 Propositiologiikan resoluutio pysähtyy aina, joko siihen, että saadaan tyhjä joukko pääteltyä, tai siihen, että uusia klausuuleja ei enää muodostu. Laske yläraja resoluution pituudelle, jos oletukset koostuvat m klausuulista, joissa kussakin esiintyy korkeintaan n literaalia. Olkoon n, m N 1, C := {A 1,..., A m } joukko klausuuleja, C = m ja A i n jokaisella i {1,..., n}. Osoitetaan, että klausuulijoukosta C voidaan korkeintaan päätellä 2 mn klausuulia ja täten suurin päättelly, jossa ei toistu klausuuleja on pituudelta korkeintaan 2 mn. Todistus: Koska resoluutiopäättellyssä ei tuoda uusia literaaleja pääteltävään, niin kaikki kokoelmasta C pääteltävät klausuulit koostuvat niistä literaaleista, jotka esiintyvät kokoelman C klausuuleissa. Seuraava pätee yhdisteen alkioiden lukumäärälle (eli kaikkien literaalien lukumäärälle) A 1 A 2 A m A 1 + A 2 + + A m mn. Jokaiselle kokoelmasta C pääteltävälle klausuulille C varmasti pätee, että C A 1 A m. Koska mielivaltaista osajoukkoa C konstruoitaessa voidaan jokaisesta literaalista valita, että se joko kuuluu tai ei kuuluu klausuuliin C, joten tuloperiaatteen nojalla tällaisia joukkoja C on täsmälleen 2 A1 Am 2 mn. Siten klausuulikokoelmasta C pääteltäviä klausuuleja on korkeintaan 2 mn kappeletta. Tehtävä 7 Muodosta luvun 6.1 tekniikalla C A kun A = (p 0 p 1 ). Kaikki lauseen A alilauseet ovat p 0, p 1, p 0 p 1, (p 0 p 1 ) Merkitään B := p 0 p 1. Nyt uudet A:n alilauseita vastaavat propositiosymbolit ovat q po, q p1, q B, q A. Nämä vastaavat siis oikeasti tavallisia propositiosymboleja, jotka eivät esiinny lauseessa A (esim. q p0 = p 2 ja q p1 = p 3 jne.), mutta selkeyden vuoksi niistä käytetään tällaista merkintää. Käydään läpi luvussa 5

6.1 esitelty menetelmä kohta kohdalta sen mukaan mitä alilauseita lauseessa A esiintyy: Kohta 1: {q p0, p 0 }, { q p0, p 0 }, {q p1, p 1 }, { q p1, p 1 } C A. Kohta 5: Kohta 2: Kohta 7: { q B, q p0, q p1 }, {q B, q p0 }, {q B, q p1 } C A {q A, q B }, { q A, q B } C A {q A } C A Näin saadaan C A = {{q p0, p 0 }, { q p0, p 0 }, {q p1, p 1 }, { q p1, p 1 }, { q B, q p0, q p1 }, {q B, q p0 }, {q B, q p1 }, {q A, q B }, { q A, q B }, {q A }} 6