VALMENNUSKIRJE 2013 (Lasse Franti) Palautukset postiin mennessä osoitteeseen : Lasse Franti Fysiikan laitos PL Helsingin yliopisto

Samankaltaiset tiedostot
Onnittelut pääsystä Suomen fysiikkalolympiajoukkueeseen 2014! (~ ⁵⁷⁸¹) Tässä tehtäväsetti, jonka avulla voitte valmistautua kilpailuun.

Tehtäviä valmistautumiseen

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a P en.pdf KOKEET;

FY9 Fysiikan kokonaiskuva

FY6 - Soveltavat tehtävät

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Theory Finnish (Finland)

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

5.3 Ensimmäisen asteen polynomifunktio

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

Fysiikan valintakoe , vastaukset tehtäviin 1-2

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

FYSA242 Statistinen fysiikka, Harjoitustentti

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

2 Pistejoukko koordinaatistossa

Luvun 10 laskuesimerkit

DEE Sähkötekniikan perusteet

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

Mekaniikan jatkokurssi Fys102

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

Luento 13: Periodinen liike

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

Voima ja potentiaalienergia II Energian kvantittuminen

Mekaniikan jatkokurssi Fys102

PYÖRÄHDYSKAPPALEEN PINTA-ALA

Mekaniikan jatkokurssi Fys102

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

E 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Luento 11: Periodinen liike

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

FYSIIKAN HARJOITUSTEHTÄVIÄ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Öljysäiliö maan alla

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

Differentiaali- ja integraalilaskenta

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Mekaniikan jatkokurssi Fys102

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä

Teoreettisia perusteita I

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

3 TOISEN ASTEEN POLYNOMIFUNKTIO

SEISOVA AALTOLIIKE 1. TEORIAA

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

1.1 Funktion määritelmä

2.3 Voiman jakaminen komponentteihin

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

KIERTOHEILURI JA HITAUSMOMENTTI

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

Luku 13. Kertausta Hydrostaattinen paine Noste

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

RATKAISUT: 19. Magneettikenttä

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Differentiaalilaskennan tehtäviä

Kvanttifysiikan perusteet 2017

H7 Malliratkaisut - Tehtävä 1

Erityinen suhteellisuusteoria (Harris luku 2)

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö

Integrointi ja sovellukset

BM30A0240, Fysiikka L osa 4

7. Resistanssi ja Ohmin laki

Shrödingerin yhtälön johto

Derivaatan sovellukset (ääriarvotehtävät ym.)

Coulombin laki. Sähkökentän E voimakkuus E = F q

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

Maxwell ja hänen yhtälönsä mitä seurasi?

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

HARJOITUS 4 1. (E 5.29):

Luento 11: Periodinen liike

Luvun 12 laskuesimerkit

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

7.4 PERUSPISTEIDEN SIJAINTI

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Transkriptio:

VALMENNUSKIRJE 2013 (Lasse Franti) Palautukset postiin 25.3.2013 mennessä osoitteeseen : Lasse Franti Fysiikan laitos PL64 00014 Helsingin yliopisto Tehtävät: 1. Suhteellisuusteoriaa a) Kaksi samalla kadulla sijaitsevaa myymälää ovat sopineet avaavansa samaan aikaan joka aamu. Katua pitkin liikkuva poliisiauto havaitsee kuitenkin kauppojen ovien avautuvan eri aikoihin. Kauppojen välimatka on 500 metriä ja poliisiauton nopeus 0,8 c. Kuinka suuren edun toinen kauppias sai poliisien mielestä? Mikä on kauppojen välimatka poliisien mielestä ja kuinka kauan heiltä kuluu aikaa tähän välimatkaan? b) Osoita, että nelivektorien x (paikka) ja u=, v (nelinopeus) pituus ei muutu koordinaatistomuunnoksessa. Johda nopeuksien yhteenlaskun kaavat nelinopeusvektorin avulla suorittamalla koordinaatistomuunnos. c) Johda Doppler-siirtymän kaava sekä relativistiselle että epärelativistiselle liikkeelle. Relativistinen tapaus on helpointa käsitellä sopivan nelivektorin avulla. 2. Fysiikassa on usein tarpeen käyttää differentiaalista ajattelutapaa tehtävien ratkaisemiseksi. Tuttuna johdatuksena tarkastellaan hitausmomenttien laskemista. Johda seuraavien kappaleiden hitausmomentit: a) homogeeninen ohut sauva päästä b) homogeeninen ohut sauva keskeltä. Miten saisit tämän suoraan a)-kohdasta? c)homogeeninen kiekko kiekon tasoa vastaan kohtisuoran akselin suhteen. Miten saat tästä helposti ohuen kiekon hitausmomentin halkaisijan suhteen? d)paksu sylinteri halkaisijan suhteen keskeltä (kuvat liitteenä). Samoin voidaan johtaa kaikki hitausmomentit, esim. suorakulmio, kolmio, pallo, ellipsoidi, epähomogeeniset kappaleet ym. e) laske kuvan kaltaisen kartiomaisen kappaleen resistanssi. Aineen resistiivisyys on. SÄHKÖ 3. Kondensaattori Kussakin piirissä on aluksi varaus Q kondensaattorissa C1. a)mikä on energia oheisissa piireissä ennen kytkimen k sulkemista? Kytkimet K suljetaan hetkellä t=0. Mikä on energia piireissä pitkän ajan kuluttua? (Piirit ovat erillisiä) b) Laske virta ajan funktiona piirissä 1, kun kytkin suljetaan hetkellä t=0. Tarkista tuloksen rajakäytöksen järkevyys. c)laske piirin lämpöteho ajan funktiona. d)laske piirissä lämmöksi muuttuva kokonaisenergia, ja totea sen olevan sopusoinnussa a)-kohdan kanssa.

4. Komponenteilla on reaalisesti sekä resistanssia,kapasitanssia että induktanssia. Laske oheisen koaksiaalikaapelin mallin a) resistanssi b)induktanssi c)kapasitanssi pituusyksikköä kohden. Tässä ei oteta huomioon vuotovirtaa eristeen läpi. Voit lisäksi olettaa johdinputkien paksuuden pieneksi. (itse asiassa sisäjohdin on umpinainen ja lasku täysin laskettavissa, mutta hankalampi). Kaapelissa on siis kaksi johdinta, esim. tasavirtasyötön plus ja miinus. (Vihjeitä: Laske ensin kentät tunnetulla virralla ja varauksella. Näistä voit johtaa kysytyt suureet. Kentän energiatiheydestä voi olla hyötyä.) AALTOLIIKE 5. a) Johda ohuen kuperan linssin kuvausyhtälö lähtien polttopisteen määritelmästä. (Geometriaa) b) Kala ui pallon muotoisessa kalamaljassa. Onko kalan mahdollista sokeutua tai keittyä elävältä joutumalla polttopisteeseen? Oletetaan, että ohut kalamalja ei sanottavammin muuta valon kulkusuuntaa.(lähinnä geometriaa) c)mikä on oheisen linssin polttoväli ohuen linssin rajalla? Kyseessä on siis sylinteri, jonka päät ovat pallopintoja sätein d 1 ja d 2. Tulosta ei tarvitse johtaa alusta saakka. d)veteen joutunut öljy huomataan hyvin pieninäkin määrinä värillisinä alueina veden pinalla. Eräs öljyisen maantielätäkön kohta vaikuttaa kellertävän katuvalon loisteessa mustalta. Laske öljykerroksen paksuus tässä kohdin. Öljyisen tuulilasin pinnalla näkyy myöskin värillisiä alueita. Mikä on kalvon paksuus kohdassa, joka myöskin vaikuttaa tummalta katuvalomme kajastuksessa? Taitekertoimia: Vesi 1.33; Lasi 1.6; Ilma 1.0;Öljy 1.5 6. a) Kuvan mukainen U-putki on täynnä vettä. Putken suulle puhalletaan, jolloin vesipintoihin syntyy ero. Tämän jälkeen paine poistetaan ja suut jäävät avoimiksi. Analysoi systeemin liikettä. b) Milloin matemaattisen heilurin liike on likimain harmonista? Osoita liikkeen harmonisuus. Miksi värähtelyt ovat luonnossa yleisiä ja yleensä kuvattavissa tasapainoaseman lähellä likimain harmonisina? c)miten laskisit tarkemman arvion matemaattisen heilurin jaksonajalle.(ideat riittävät) d)kieli, jonka massa on m ja pituus l on jännitetty voimalla F kahden tuen varaan. Laske ominaistaajuudet. e) Arvioi kuvan systeemin värähdystaajuus, kun massaa m poikkeutetaan hieman pystytasosta. Systeemissä siis kevyttä lankaa kiristetään voimalla F, ja langassa on keskellä massa m. 7.Kuvan mukaisessa pyöreässä viljasiilossa normaali keskustelu on lähes mahdotonta erittäin voimakkaan kaikumisen johdosta: normaali mölähdys on kuultavissa vielä noin 10 sekunnin kuluttua sen lopettamisesta. Siilon rakentamisen aikana muttereita kiinnitetään yksi toisensa perään akkutoimisella vääntimellä, jolloin siilon sisällä on kipurajaa hipova meteli. Vääntimessä on 3 ampeeritunnin 28 voltin akku, jolla väännin toimii noin 10 minuuttia. Siilon pohja on betonia, jonka voidaan approksimoida absorboivan suurimman osan äänestä. Heijastuskertoimet voidaan olettaa vakioiksi ja intensiteetti samaksi kaikkialla siilossa. Näin saadaan erittäin karkea malli siilon akustiikalle. Arvioi, kuinka suuri osa vääntimen tehosta menee ääneksi. Tästä tehtävässä ei olla kiinnostuneita kovin tarkasta arvosta. (Kesäprojekti 2009) 8.Kielen pituusmassa muuttuu kohdassa x, mikä aiheuttaa aallon nopeuden muuttumisen. a) aalto tulee suunnasta 1. Johda heijastus- ja läpäisykertoimet ja mahdolliset vaihesiirrot.

b) aalto tulee suunnasta 2. Johda heijastus- ja läpäisykertoimet ja mahdolliset vaihesiirrot. MEKANIIKKA 9. Kitkaton kiila on levossa vaakasuoran kitkattoman tason päällä. Kiilan kaltevalle sivulle asetetaan pieni kappale, joka vapautetaan hetkellä t=0. Jos kappaleen alkukorkeus on h, kuinka kauan kappaleelta kestää saavuttaa korkeus h 0 =0. Kiilan massa on M ja kappaleen m. Vihje: ÄLÄ laske jakamalla voima kaltevan tason suuntaiseen ja sitä vastaan kohtisuoraan voimaan etc. 10. Härveli Piirros esittää yleistä demonstraatiovälinettä, jollainen löytyy useimmista kouluista. Vaakasuora liukas tanko liikkuvine painoineen on hyvin laakeroitu pystysuoraan akseliinsa. Paino voidaan vetää lähemmäs akselia narun avulla. Laite pyörii aluksi kulmanopeudella 0 ja etäisyys on r 0. a) Määritä laitteen rungon hitausmomentti I 0 akselinsa suhteen ilman liukuvaa painoa. b) Mikä on kulmanopeus 1, kun paino on vedetty etäisyydelle r 1 akselista. Oletetaan sitten, että laite on valmistettu hiilikuidusta ja liikkuva paino jostain tiheästä aineesta (esim. osmium-metalli). Jos etäisyydet r 0 ja r 1 ovat myös riittävän suuret, voidaan asettaa I 0 0 ja olettaa paino pistemäiseksi. Laske näillä oletuksilla: c) Kulmanopeus 1 ' sekä systeemin pyörimisenergia ennen ja jälkeen painon siirtymisen. d) painon vetämiseen tarvittava voima F eri etäisyyksillä r akselista. e) voiman tekemä työ matkalla r 0 r 1. Täsmääkö tulos c)-kohdan kanssa? 11. a)pyörimätön kuula, jonka säde on R ja massa m heitetään vaakasuoraan alkunopeudella v 0 vaakasuoralle pöydälle. Liikekitkakerroin pallon ja pöydän välillä on. Ajanhetkellä t kuula alkaa vieriä liukumatta. Laske t, kun kuulan kosketushetkellä t=0. Laske kulmanopeus ja kuulan energia E hetkellä t. Kommentoi lyhyesti tuloksia. Jos kuulan energia hetkellä t halutaan maksimoida, kannattaako valita umpinainen vai ontto kuula? Miksi tämä valinta säilyttää suuremman osan energiasta? (Lyhyet kommentit). b) Kivi heitetään Kuun pinnalta vaakasuoraan. Kuinka suuri tulee kiven alkunopeuden olla, jotta kivi jäisi kiertämään Kuuta ympyrärataa? Entä ellipsirataa, jonka etäisin piste on Kuun säteen etäisyydellä pinnasta? Kuinka lujaa täytyy heittää, jotta kivi ei jää kiertoradalle? (Taivaanmekaniikka on molemmissa olympialaisissa melko suosittua) c)homogeeninen umpinainen puolipallo asetetaan kaltevalle tasolle. Määritä pallon halkaisupinnan ja vaakatason välinen kulma. Mitä voidaan päätellä vastauksen rajakäytöksestä. (katso kuva). Vihje: varsinainen lasku hoituu perusgeometrialla,eikä ole kovin olennaista fysiikan kannalta. 12.a)Pystyynnostetun lieriön muotoisen painesäiliön säde on R. Säiliössä on nestettä, jonka pinta on aluksi korkeudella H tankin pohjasta. Nesteen yläpuolella olevan kaasun paine P 0 pidetään vakiona ja nesteen tiheys on. Kuinka suurella nopeudella v(h) neste syöksyy ulos säiliön pohjaan liitetystä vaakasuorasta poistoputkesta, kun venttiili avataan. Poistoputken säde on r. Mitä tapahtuu poistoputkeen liitetyn painemittarin lukemalle? Entä säiliön kylkeen korkeudelle K<H liitetyn mittarin lukemalle? Virtauksen oletetaan olevan säiliössä ja putkessa yhdensuuntaista sekä nesteen likimain ideaalista. Tehtävässä ei tarvitse huolehtia virtauskentän muodosta säiliön ja putken liitoskohdan lähellä. Voidaan esimerkiksi ajatella säiliön olevan korkea ja kapea sekä mittareiden olevan kaukana liitoskohdasta. b)salaojituksessa johdetaan usein useammasta pienestä putkesta tuleva vesi yhteen suurempaan putkeen. Yleisesti putken valinnassa käytetään usein pinta-alasääntöä, jonka mukaan suuremman putken poikkipinta-alan on oltava vähintään pienempien putkien alojen summa. Arvioi säännön oikeellisuutta olettaen että putkien kaato on sama. Oleta siis että putki on täynnä vettä ja paine-ero

pituusyksikköä kohden on sama kaikissa putkissa. Voit olettaa, että virtaus on hidasta ja putken seinämä sileä. Kuinka paljon vettä virtaa putken läpi sekunnissa paine-eron, pituuden ja säteen funktiona? Veden dynaaminen viskositeetti olkoon. (Kesäprojekti 2010) LÄMPÖOPPI 13. a)pieni hiekanjyvänen liikkuu kitkatta yhtälön y=a x 2 mukaisessa yksiulotteisessa kourussa, missä a=1m 1. Laske lämpöliikkeen aiheuttama keskimääräinen x-poikkeama lepoasemasta. Mikä on lämpöliikkeen hiukkaselle antama keskimääräinen energia? Kommentoi tulosta. Arvioi tämän värähtelysysteemin kvanttimekaaninen minimienergiatila (perustila) ja kuinka monta energiatasoa mahtuu pelkkään lämpöliikkeeseen kylmänä talvipäivänä? Tee tarvittavat approksimaatiot. Vinkki a-osaan: e x 2 = b)johda isotermisen työn lauseke ja tämän avulla Carnot-hyötysuhteen kaava. Adiabaattista tilanyhtälöä ei tarvitse johtaa, ellei halua. Ohessa on Carnot-prosessin kuvaaja. Mikä on kuvaajan pinta-alan fysikaalinen tulkinta? c)mikä on kuvan kolmioprosessin hyötysuhde? Mikä on kuvaajan pinta-alan fysikaalinen tulkinta ja miksi? Esitä Carnot-prosessi tässä koordinaatistossa ja katso hyötysuhde. MODERNI FYSIIKKA 14. Jännitteellä E kiihdytetty epärelativistinen elektronisuihku tulee potentiaalirajalle kuvan mukaisesti. Kuinka suuri osa elektroneista kimpoaa takaisin ja kuinka suuri osa läpäisee rajapinnan tapauksissa U U 0 ja U U 0. Keskustele sanallisesti kuvan tapauksesta jossa potentiaali laskee lyhyen matkan jälkeen takaisin nollaan. Mitä tarkoittaa resonanssiläpäisy? b) Käsittele sanallisesti tilanne, jossa a-mittaisen vallin potentiaalienergia on suurempi kuin elektronin energia. 15. Tyhjyydessä levossa killuva neodyymiydin Nd-144 hajoaa kerralla ceriumiksi Ce-140. a) Kirjoita reaktioyhtälö b) Kuinka paljon energiaa vapautuu? c)kuinka suuri on ceriumytimen lisäksi reaktiossa emittoidun hiukkasen liike-energia? (Reaktion yksityiskohtiin ei tarvitse puuttua, tehkää kuten lukiossa teitte.) Toista soveltuvin osin reaktiolle, jossa tallium-208 hajoamistuotteena saadaan lyijy-208-ydin. Yleisohjeita tehtäviin Tehtävien pituus ja vaikeusaste vaihtelevat, toisin sanoen tehtävät olisivat pisteytettyinä eri arvoisia. Jotkin tehtävät siis ovat helpompia ja toiset vaikeampia, kumpaakaan ei kannata turhaan pelästyä, joskus helppo tehtävä tosiaan on helppo. Vähemmän helpot tehtävät saattavat kaivata lähdeteoksia, jollaisia löytyy paljon. Tämän kirjeen tehtävät käsittelevät osa-alueiden perusteita, jotka löytyvät useimmista lähteistä. Kirjastoissa on useimmiten jonkinlainen valikoima fysiikan kirjoja, katso myös muilta osastoilta kuin oppikirjoista. Tietysti myös netti auttaa, mutta tällöin olisi hyvä tutustua ensin aiheen perusteisiin jostakin kirjasta. Suuressa osassa näitä tehtäviä lukion oppimäärä tosin riittää lisätutkimusten pohjaksi. Olen valinnut mielestäni hyödyllisiä ja mukavia tehtäviä, joiden ei pitäisi olla liian pitkiä. Lukiotehtäviin verrattuina tehtävät saattavat tosin vaatia hieman enemmän asioiden selvittelyä, mutta tähän on hyvä tottua. Tehtävät ovat valmennustehtäviä, eivät tentti. Valmentautumisen kannalta kuusi tehtävää sadasta on parempi kuin viisi tehtävää viidestä, joten tehtäviä on runsaasti. Toivon, että yritätte ratkoa mahdollisimman monta tehtävää, suuresta osasta tehtäviä on hyötyä myös ylioppilaskirjoitusten kannalta.