Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa

Samankaltaiset tiedostot
Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

2 AALTOLIIKKEIDEN YHDISTÄMINEN

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT

YLEINEN AALTOLIIKEOPPI

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

SEISOVA AALTOLIIKE 1. TEORIAA

766329A Aaltoliike ja optiikka

9 VALOAALTOJEN SUPERPOSITIO

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102

= 0.175m, 0.525m, 0.875m,...

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 15: Ääniaallot, osa 2

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

23 VALON POLARISAATIO 23.1 Johdanto Valon polarisointi ja polarisaation havaitseminen

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

Aaltojen heijastuminen ja taittuminen

, tulee. Käyttämällä identiteettiä

Luento 11: Periodinen liike

Mekaniikan jatkokurssi Fys102

Luvun 8 laskuesimerkit

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Aaltojen heijastuminen ja taittuminen

7.4 PERUSPISTEIDEN SIJAINTI

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102

Luento 13: Periodinen liike

ja siis myös n= nk ( ). Tällöin dk l l

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Aaltoliike ajan suhteen:

9 VALOAALTOJEN SUPERPOSITIO

Luento 10: Työ, energia ja teho

Pietarsaaren lukio Vesa Maanselkä

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

BM30A0240, Fysiikka L osa 4

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

11.1 MICHELSONIN INTERFEROMETRI

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

16 Ääni ja kuuleminen

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luento 11: Periodinen liike

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Mekaniikan jatkokurssi Fys102

Derivaatan sovellukset (ääriarvotehtävät ym.)

Shrödingerin yhtälön johto

Luvun 5 laskuesimerkit

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

Luvun 5 laskuesimerkit

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

Kvanttifysiikan perusteet 2017

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

3.4 Liike-energiasta ja potentiaalienergiasta

W el = W = 1 2 kx2 1

Sovelletun fysiikan pääsykoe

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

16 ÄÄNI JA KUULEMINEN (Sound and Hearing)

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Integrointi ja sovellukset

STATIIKKA. TF00BN89 5op

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe , malliratkaisut

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Useita oskillaattoreita yleinen tarkastelu

HARJOITUS 4 1. (E 5.29):

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

15 MEKAANISET AALLOT (Mechanical Waves)

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Kitka ja Newtonin lakien sovellukset

Transkriptio:

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä sini- että kosiniaallon. Erilaisia ilmiöitä tarkasteltaessa on usein laskennollisesti kätevämpää operoida kompleksiesityksellä kuin todellisella sini- tai kosinimuodolla. Monesti kirjoitetaan y x t i( kx-w t) (, ) Re{ Ae } =, jonka reaaliosa siis esittää todellista (reaalista) aaltoa (kosinimuodossa). On myös tavallista, että aallossa reaaliosan ottamista tarkoittava symboli Re jätetään kirjoittamatta. Tällöin on syytä olla varovainen. Jos aaltoon kohdistuvat laskuoperaatiot ovat lineaarisia (yhteenlasku, vakiolla kertominen,...), niin reaaliosa voidaan ottaa vasta lopputuloksesta ja näin saadaan oikea tulos. Mutta, jos laskutoimitukset eivät ole lineaarisia (neliöjuuri, toiseen korottaminen,...) reaaliosa on otettava ennen operaation suorittamista. Tästä on yksi tärkeä poikkeus. Jos lasketaan neliöllisen lausekkeen aikakeskiarvoa, riittää kun reaaliosa otetaan vasta lopputuloksesta. Esimerkki: Kirjoita aallon y( x, t) = Asin( kx- wt+ j ) kompleksiesitys siten, että yxt (,) on kompleksiesityksen reaaliosa. 0 Ratkaisu: ij Koska y( x, t) = Re{ Ae } = Acosj = Asin( j + p / ), kompleksiesityksen on oltava muotoa y% = Ae - + -. i( kx wt j0 p /)

14 1.4 AALLON NOPEUS Fysikaaliset suureet, jotka määräävät poikittaisen aallon etenemisnopeuden köydessä ovat köyden jännitysvoima (tension) ja köyden massa pituusyksikköä kohti. Jälkimmäista sanotaan myös lineaariseksi massatiheydeksi. Jännitysvoimalla puolestaan tarkoitetaan sitä voimaa, joka tarvittaisiin pitämään köyden osia edelleen yhdessä, jos köysi leikattaisiin poikki. Jännityksen lisääminen kasvattaa palauttavaa voimaa, joka pyrkii oikaisemaan köyden häiriön edetessä siinä. On helppo kuvitella, että jännityksen lisääminen kasvattaa aallon nopeutta. On myös helppo arvata, että massan kasvattaminen hidastaa nopeutta, koska köyden liikkeet tulevat jähmeämmiksi. Johdetaan seuraavassa aallon nopeudelle kaava, ja katsotaan siitä sattuivatko arvauksemme kohdalleen. Seuraavassa kuvassa tarkastellaan täysin notkeaa köyttä, jonka massa pituusyksikköä kohti on m (kg/m) ja johon tasapainoasemassa kohdistuu jännitysvoima F. Oletetaan lisäksi, että köysi on painoton, joten se kuvassa (a) on täsmälleen suorassa.

15 Hetkellä t = 0 köyden päähän kohdistetaan lisävoima F y ylöspäin, jolloin köysi lähtee nousemaan. Köysi on painoton, joten noustessaan se muodostaa kuvan (b) mukaisen kolmion, missä piste P erottaa liikkuvan osan vielä liikkumattomasta. Köyden liike on nyt se häiriö (pulssi, aalto), jonka jo aikaisemmin olemme todenneet etenevän vakionopeudella. Nyt siis piste P liikkuu vakionopeudella v. Vakiovoima F y ei tässä tapauksessa johda kiihtyvään liikkeeseen, koska massa, johon voima kohdistuu, kasvaa koko ajan. Siis pisteen P vasemmalla puolella oleva köyden osa liikkuu ylöspäin vakionopeudella v y. Jos liike olisi kiihtyvä, piste P etenisi myös kiihtyvällä nopeudella ja syntyisi ristiriita. Hetkellä t köyden pää on noussut matkan v y t ja piste P edennyt matkan v t (kuvan b tilanne). Voimien ja köyden muodostamista kolmioista voimme kirjoittaa F F y yt = v v t Þ Fy y = F v v. Seuraavaksi sovellamme mekaniikasta tuttua impulssiteoreemaa. Voiman F y impulssi Ft, y joka on kehittynyt aikavälillä 0 t, menee liikkuvan köydenosan liikemäärän muutokseksi mv y - 0. Tulee F t = mv. Tässä m= mv t on liikkuvan köydenosan massa. On siis y y v v = mvv y F t t ja kun tästä ratkaistaan v, saadaan y, F v =. (1.4.1) m

16 Intuitiivinen pohdiskelumme alussa johti siis oikeaan tulokseen. Aallon nopeus kasvaa, kun jännitysvoima ( F ) kasvaa ja pienenee, kun massa pituusyksikköä kohti (m ) kasvaa. Kaavan neliöjuurta emme intuitiivisesti keksineet, mutta se paljastuu helposti yksikkötarkastelulla. Tuloksessa (1.4.1) jännitysvoima F edustaa väliaineen (köyden) kimmoisuutta ja lineaarinen massatiheys m sen hitautta. Yleisesti pätee kaikille systeemeille kimmoisuus v = (1.4.) hitaus Esimerkki: Kolme L:n pituista köyttä yhdistetään, jolloin kokonaispituudeksi tulee 3L. Ensimmäisen osan lineaarinen massatiheys on m 1, toisen m = 4m1 ja kolmannen m3 = m1/4. Yhdistettyyn köyteen kohdistetaan jännitysvoima F. a) Mikä jännitysvoima vaikuttaa osaköysissä? b) Kuinka kauan pulssilta kestää kulkea köyden läpi? Ratkaisu: Huomaa, että jännitysvoima F vaikuttaa köyden molemmissa päissä. Jos se vaikuttaisi vain toisessa, köysi joutuisi kiihtyvään liikkeeseen (muistele mekaniikkaa). a) Jokaisessa osaköydessä vaikuttaa sama jännitysvoima F. Jos esimerkiksi ensimmäisen ja toisen osaköyden liitoskohdassa

17 ensimmäiseen osaan vaikuttaisi jokin muu voima (esim. F /3), niin ensimmäinen osaköysi joutuisi kiihtyvään liikkeeseen, koska sen toisessa päässä vaikuttaa F. b) Pulssin kulkuaika köyden läpi on L L L æ 1 3 tkok = t1 + t + t3 = + + = L m m m ö ç + + v1 v v3 è F F F ø æ 1ö m1 7 m1 = Lç 1+ + = L. è ø F F 1.5 AALLON ENERGIA Tarkastellaan taas köydessä positiivisen x-akselin suuntaan etenevää poikittaista aaltoa. Viereisessä kuvassa on esitetty hyvin pieni osa värähtelevästä köydestä pisteen a ympäristöstä. Pisteeseen a kohdistuu jännitysvoima F sekä pystysuorassa suunnassa liikkeen aiheuttava voima F y. Tämä voima F y on juuri se voima, jonka tekemä työ siirtyy köyttä pitkin eteenpäin oikealle. Köyden vasemmassa päässä tämä voima synnytetään käden liikkeellä, ks. kuva sivulla 14.

18 Köyden suunnassa (kulmakerroin y/ x) kokonaisvoima syntyy kahdesta komponentista, kuva (b), ja kuvan perusteella yxt (,) Fy(,) x t =-F, (1.5.1) x missä negatiivinen merkki on tarpeen, koska suhde Fy / F on negatiivinen silloin kun köyden kulmakerroin (slope) y/ x on positiivinen. Kun piste a liikkuu y-suunnassa, voima Pxt (,) = F(,) xtv (,) xt =-F y y F y tekee työtä. Teho on yxt (,) yxt (,). (1.5.) x t Tämä on hetkellinen teho, jolla pisteen a vasemmalla puolella oleva köyden osa siirtää energiaa pisteeseen a. Kaava siis kertoo millä teholla energiaa virtaa köyttä pitkin oikealle. Kaava on voimassa kaikenlaisille köydessä eteneville aalloille. Sinimuotoisten eli harmonisten aaltojen tapauksessa aaltofunktio on y( x, t) = Asin( kx- wt), josta ja hetkelliseksi tehoksi tulee yxt (,) = kacos( kx-wt), x yxt (,) =-wacos( kx-wt), t P( x, t) = FkwA cos ( kx- wt). (1.5.3) Kun vielä käytetään relaatioita w =v k ja v = F / m, saadaan P( x, t) = mfw A cos ( kx- wt). (1.5.4) Tästä näemme, että energia ei koskaan virtaa aallon etenemissuuntaa vastaan (teho aina positiivinen).

19 Funktion cos ( kx- wt) keskimääräinen arvo on 1/, joten keskimääräiseksi tehoksi saamme 1 Pav = mfw A. (1.5.5) Energian siirtymisnopeus on siis verrannollinen amplitudin neliöön ja taajuuden neliöön. Yleistys: P av 1 (hitaus) (kimmoisuus) = w A (1.5.6) - Esimerkki: Köyttä ( m = 5.00 10 kg/m) jännitetään 80.0 N:n voimalla. Millä keskimääräisellä teholla köyteen on syötettävä energiaa, jos siihen halutaan synnyttää harmoninen aalto, jonka taajuus on 60 Hz ja amplitudi 6.00 cm? Ratkaisu: Sovelletaan tulosta (1.5.5) - m = 5.00 10 kg/m F = 80.0 N (1 N = 1 kg m/s ) w= p f = p 60 1/s - A = 6.00 10 m 1 Pav = mfw A = 511.6403 kg m» 51W. s s ækg m Nm J ö ç = = = W 3 s s s è ø

0 Esimerkki: Jännitetyssä langassa, jonka lineaarinen massatiheys on.50 10-3 kg/m, etenee harmoninen aalto éë ùû. 1 1 y( x, t) =.30mm cos (6.98 m - ) x-(74 s - ) t Millä keskimääräisellä teholla aalto kuljettaa energiaa? Ratkaisu: Keskimääräinen teho yhtälöstä (1.5.5) 3 1 1 1 w Pav = mfw A = mv w A = m A, k missä ensin on käytetty tulosta (1.4.1) p w w v = ln = =. k p k Aaltofunktiosta luemme: amplitudi -3 A =.30 10 m kulmataajuus w = 74 s -1 aaltoluku k = 6.98 m -1, ja lineaarinen massatiheys on m F = mv ja sitten -3 =.50 10 kg/m. Lopulta tulee P av = 0.3870098 kgm 3 m ms = 0.387 W. kg m kgm m Nm J Yksikkötarkastelu: m = = = = W. 3 m s s s s s

1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin ja miten takaisinheijastuminen tapahtuu riippuu rajapinnan ominaisuuksista. Väliaineen reunaa kohti etenevä aalto ja jo aikaisemmin väliaineen reunasta takaisin heijastunut aalto voivat esiintyä yhtä aikaa samassa tilassa. Tästä seuraa ilmiöitä, joita sanotaan interferenssiksi. Se miten kaksi (tai useampi) samanaikaista aaltoa poikkeuttaa väliaineen osasia määräytyy ns. superpositioperiaatteesta. Kun systeemissä on kaksi rajapintaa, kuten esimerkiksi molemmista päistään kiinnitetyssä kitaran kielessä, syntyy toistuvia heijastuksia ja osoittautuu, että systeemissä voi edetä vain tietyn taajuiset aallot. Näitä erityisiä taajuuksia ja niihin liittyviä aaltojen muotoja sanotaan systeemin normaalivärähdysmuodoiksi. Nyt tutkimme edellämainittuja ilmiöitä mekaanisten aaltojen tapauksessa. Interferenssi-ilmiöt ovat tärkeitä myös ei-mekaanisilla aalloilla ja valon tapaukseen palaamme tarkemmin myöhemmin..1 HEIJASTUMINEN JA LÄPÄISY Tutkitaan aallon heijastumista kahden väliaineen rajapinnasta käyttäen esimerkkinä köydessä etenevää poikittaista aaltoa. Tarkastellaan kahta erilaista tapausta. Kuvassa vasemmalla köyden pää on kiinnitetty, eikä se pääse liikkumaan aallon osuessa siihen. Kuvassa oikealla köyden pää on vapaa ja se pääsee liikkumaan aallon vaikutuksesta ylös-alas-suunnassa.

Se ehto miten köysi on kiinnitetty on ns. rajapintaehto (rajaehto, reunaehto, boundary condition). Köyden rajapintaan (seinään, köyden päähän) saapuva pulssi heijastuu (kimpoaa takaisin). Jos pää on kiinnitetty, pulssi palaa takaisin ylösalaisin kääntyneenä. Tämä johtuu seinän köyteen kohdistamasta reaktiovoimasta, joka on yhtä suuri, mutta vastakkaissuuntainen kuin saapuvan pulssin seinään kohdistama voima. Pulssin ylösalaisin kääntyminen vastaa vaiheen siirtymistä 180 (puhutaan p :n vaihe-siirrosta). Jos köyden pää on vapaa liikkumaan, siihen ei kohdistu ulkoisia voimia ja heijastunut pulssi ei käänny. Vaihesiirtoa ei siis tapahdu. Kun aalto kohtaa absoluuttisen jäykän seinän, kaikki aallon energia heijastuu takaisin. Yleensä rajapinnat eivät kuitenkaan ole absoluuttisen jäykkiä ja osa aallon energiasta pääsee rajapinnan toiselle puolelle. Osa aallosta siis läpäisee rajapinnan. Viereisessä kuvassa kaksi erivahvuista köyttä on liitetty toisiinsa. Köysien liitoskohta edustaa nyt rajapintaa, jota kohti pulssi saapuu kuvassa (a). Rajapinnassa osa pulssista heijastuu takaisin ja osa menee läpi. Mitä raskaampi jälkimmäinen köysi on sitä vähemmän menee läpi ja

3 äärettömän raskaan köyden tapauksessa tilanne vastaa jo edellisen esimerkin seinää. Periodisen aallon tapauksessa läpäisseen aallon - taajuus f ei muutu (helppo ymmärtää) - nopeus v muuttuu, koska m muuttuu - aallonpituus muuttuu yhtälön l =v / f mukaisesti. Kuvassa (yllä) aalto saapuu "kevyemmästä" väliaineesta "raskaampaan", jolloin heijastuneessa aallossa havaitaan p :n vaihesiirto (vrt. köysi kiinnitetty seinään). Jos aalto saapuu raskaammasta väliaineesta kevyempään, vaihesiirtoa ei havaita. Läpimennyt aalto ei koskaan koe vaihesiirtoa. Esimerkki: Köydessä etenee siniaalto y( x, t) = Asin( kx- wt). Aaltoon aiheutetaan (tavalla tai toisella) yht äkkinen 180 asteen vaihesiirto. Osoita, että aalto kääntyy ylösalaisin. Ratkaisu: Vaihesiirto D f0 tarkoittaa: y( x, t) = Asin( kx- wt+d f0 ). Tässä D f0 = p eli 180 ja koska sin( a + b) = sinacos b + cosasin b saadaan y( x, t) = Asin( kx- wt)cos( p) + Acos( kx- wt)sin( p), mistä y( x, t) =-Asin( kx- wt) eli kääntynyt ylösalaisin alkuperäiseen verrattuna. Kuva piirretty ajanhetkellä t = 0:

4. SUPERPOSITIOPERIAATE Jos useampia aaltoliikkeitä vaikuttaa samanaikaisesti määrättyyn väliaineen pisteeseen, niin pisteen poikkeama tasapainoasemasta saadaan laskemalla yhteen eri aaltoliikkeiden erikseen aiheuttamat poikkeamat. Resultanttiaalto on siis yksittäisten aaltojen summa ja jos esimerkiksi y1( xt,) ja y( xt,) edustavat kahden osa-aallon aaltofunktioita, niin kokonaisaaltofunktio on y (,) xt = y(,) xt + y(,) xt. (..1) tot 1 Matemaattisesti summautuvuusominaisuus on seurausta aaltoyhtälön (1..3) y 1 y = x v t lineaarisuudesta. Lineaarisuus tässä tarkoittaa juuri sitä, että jos y1( xt,) ja y( xt,) ovat aaltoyhtälön ratkaisuja, niin myös niiden summa on ratkaisu. Tämä on helposti osoitettavissa sillä y1 1 y1 = ja x v t ja laskemalla nämä yhteen saadaan y 1 y x v t = y y 1 y 1 y x x v t v t josta 1 ( y 1+ y) = ( y 1+ y). x v t Myös summa siis toteuttaa aaltoyhtälön. 1 1 + = +

5 Yksi superpositioperiaatteen seurauksista on se, että kahden aallon kohdatessa ne jatkavat kohtaamisen jälkeen matkaansa täysin muuttumattomina aivan kuin mitään ei olisi tapahtunut. Tässä tarkastelimme aaltojen ns. lineaarista superpositiota. Se on voimassa silloin, kun amplitudi on niin pieni, että väliaineen palauttava voima noudattaa Hooken lakia, ts. on lineaarinen poikkeaman funktio. Jos amplitudi kasvaa suureksi, väliaine menettää elastisuutensa ja superpositioperiaate ei enää ole voimassa. Tästä sinänsä seuraa hyvin mielenkiintoisia ilmiöitä. Esimerkiksi voimakkaan laser-valon vuorovaikuttaessa materian kanssa havaitaan erinäisiä epälineaarisia ilmiöitä. Tällainen ns. epälineaarinen optiikka on yksi modernin optiikan tärkeimmistä tutkimusalueista. Esimerkki: Laske kahden aallon ìy1( x, t) = 1.0sin( kx-wt) í îy( x, t) = 0.9sin( kx- wt+ 1.0rad) superpositio eli resultantti(summa-)aalto. Ratkaisu: Lasketaan summa y= y1+ y = 1.0sin( a) + 0.9sin( a + 1.0), missä a = kx- wt sisältää paikka- ja aikariippuvuuden. Tunnetusti sin( a + b) = sinacos b + cosasin b, joten y = 1.0sin( a) + 0.9sin( a)cos(1.0) + 0.9cos( a)sin(1.0) = sin( a)[1.0 + 0.9cos(1.0)] + cos( a)0.9sin(1.0) = asin( a) + bcos( a), missä a ja b ovat vakioita. Kun merkitään a= Acos( b ) ja b= Asin( b ) voidaan käyttää uudelleen edellä mainittua trigonometristä identiteettiä ja kirjoittaa

6 y= Asin( a + b), missä A= a + b ja b = arctan( b/ a). Tässä a = 1.0 + 0.9cos(1.0) = 1.486 ja b = 0.9sin(1.0) = 0.7573, joten A = 1.668 ja b = 0.4713. Vastaukseksi kirjoitamme: y= 1.7sin( kx- wt+ 0.47rad).3 SEISOVA AALTOLIIKE Seisova aalto syntyy superpositioperiaatteen seurauksena silloin, kun annettu aalto esiintyy yhtä aikaa sekä eteenpäin menevänä että takaisin palaavana samassa tilassa samanaikaisesti. Tavallisesti tällainen tilanne havaitaan silloin, kun aalto jossakin etenemisensä pisteessä kokee heijastumisen. Tarkastellaan siis kahta vastakkaisiin suuntiin etenevää harmonista aaltoa, joilla on sama amplitudi, taajuus ja aallonpituus: Resultanttiaalloksi tulee 1 y1( x, t) = Asin( kx- w t), (.3.1) y( x, t) = Asin( kx+ wt). (.3.) yxt (,) = y(,) xt + y(,) xt = A[sin( kx - wt) + sin( kx + wt)]. (.3.3) Kun tässä kirjoitetaan ja sovelletaan identiteettiä saadaan a = kx+ wt ja b = kx-wt sina + sin b = sin ( a + b)cos ( a - b), 1 1 y( x, t) = (Asin kx)coswt, (.3.4) joka on seisova aalto. Aalto on esitetty kuvassa alla.

7 Suluissa oleva osa (Asin kx ) edustaa aallon ajasta riippumatonta amplitudia, joka riippuu vain paikasta x. Se kertoo, että kaikilla ajanhetkillä köysi muodostaa sinikäyrän, mutta toisin kuin etenevässä aallossa, sinikäyrä pysyy nyt paikoillaan. Se kylläkin värähtelee, hengittää, tekijän cosw t mukaisesti. Kaikki köyden osaset värähtelevät harmonisesti samalla taajuudella. +A -A Solmut (N = node) Seisovan aallon amplitudi on nolla, kun sinkx = 0, ts. kun p kx= x = mp, missä m = 0, ± 1, ±, K l eli siis paikoissa x= m l. (.3.5) Näissä paikoissa poikkeama y on nolla kaikilla ajanhetkillä. Paikkoja sanotaan seisovan aallon solmupisteiksi (nodes, N) tai solmukohdiksi. Solmupisteiden välimatka on l /. Solmupisteissä osa-aallot kumoavat aina toisensa. Kuvut (Antinode) Seisovan aallon amplitudilla on maksimi, kun sin( kx ) =± 1, ts. kun p p kx= x= + mp, missä m = 0, ± 1, ±, K l eli paikoissa æ 1 öl x= ç m+. (.3.6) è ø

8 Näissä paikoissa, solmukohtien puolessa välissä l / :n välein, osaaallot vahvistavat toisiaan ja synnyttävät ns. kuvut. Kupu maksimissa Seisovan aallon värähdellessä ajan funktiona sen poikkeama tasapainosta on maksimissaan, kun ajasta riippuva osa cosw t saa maksimiarvonsa, ts. cosw t =± 1. Näin käy, kun p wt = p ft = t = mp, missä nyt m = 0,1,, L T eli ajanhetkillä T t = m æ ö ç è ø. (.3.7) Köysi suorana Seisova aalto on kaikkialla nolla, kun cosw t = 0, ts. kun siis kun æ 1 ö wt = ç m+ p, missä m = 0,1,, L è ø Näillä ajanhetkillä köysi on täysin suora. 1 T t = æ ç m+ öæ ç ö è øè ø. (.3.8) Toisin kuin etenevät aallot, seisovat aallot eivät kuljeta energiaa. Tämä on helppo todeta esimerkiksi laskemalla aallon keskimääräinen teho lähtien hetkellisen teho lausekkeesta (1.5.3) ja käyttäen aaltofunktiona seisovaa aaltoa (.3.4). Esimerkki: Positiivisen x-akselin suuntaisen köyden toinen pää on kiinnitetty origoon ( x= 0, y= 0). Köydessä etenee negatiivisen x- akselin suuntaan siniaalto nopeudella 84.0 m/s, amplitudilla 1.50 mm ja taajuudella 10 Hz. Tämä aalto heijastuu kiinnityspisteestä x = 0. Heijastuneen ja tulevan aallon superpositiona syntyy seisova aalto.