7.4 Fotometria CCD kameralla

Samankaltaiset tiedostot
8. Fotometria (jatkuu)

8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0

7. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8

8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN, TH, VMP)

7.-8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

10. Fotometria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

Havaitsevan tähtitieteen peruskurssi I, yhteenveto

Havaitsevan tähtitieteen peruskurssi I

Fotometria. () 30. syyskuuta / 69. emissioviiva. kem. koostumus valiaine. absorptioviiva. F( λ) kontinuumi

11. Astrometria, ultravioletti, lähiinfrapuna

Fotometria ja avaruuskuvien käsittely

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, yhteenveto

Fotometria. Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen

2. MITÄ FOTOMETRIA ON?

CCD-kamerat ja kuvankäsittely

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

Havaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

Havaitsevan tähtitieteen peruskurssi I

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Fotometria Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit

4 Fotometriset käsitteet ja magnitudit

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen

1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.

Mittaukset ja kalibrointi

CCD-kuvaamisesta. Jouni Raunio / TaUrsa

12. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.

7. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Mittaustulosten tilastollinen käsittely

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

5. Kaukoputket ja observatoriot

Havaitsevan tähtitieteen peruskurssi I

6. Ilmaisimet ja uudet havaintotekniikat. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman (Kalvot: J.

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik

Havaitsevan tähtitieteen pk1 luento 4, Ilmaisimet ja Kuvankäsittely. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

HÄRKÄMÄEN HAVAINTOKATSAUS

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Havaitsevan tähtitieteen peruskurssi I

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

Yksinkertainen ohje kuvien käsittelyyn

Havaitsevan tähtitieteen peruskurssi I

Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4.

Havaitsevan tähtitieteen peruskurssi I, kevät 2007

Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely. Jyri Näränen

Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi

a) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim.

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ

NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi

LIITE 1 VIRHEEN ARVIOINNISTA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

Havaitsevan tähtitieteen pk 1 Luento 5: Ilmaisimet ja uudet havaintotekniikat. Jyri Näränen

Havaitsevan tähtitieteen pk1 luento 7, Kuvankäsittely. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Tähtikallio Arto Oksanen

Mikroskooppisten kohteiden

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

SPEKTROMETRI, HILA JA PRISMA

Havaitsevan tähtitieteen peruskurssi I, kevät 2012

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily

Havaitsevan tähtitieteen peruskurssi I Johdanto

4.3 Magnitudijärjestelmät

Tähtitieteen pikakurssi

10. Spektrometria. Havaitsevan tähtitieteen luennot & Thomas Hackman. HTTPK I kevät

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V

Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia. (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen)

LIITE 1 VIRHEEN ARVIOINNISTA

Mustan kappaleen säteily

Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik)

LIITE 1 VIRHEEN ARVIOINNISTA

Tähtitieteen perusteet: Johdatusta optiseen havaitsevaan tähtitieteeseen. FT Thomas Hackman FINCA & HY:n fysiikan laitos

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)

Kokeellisen tiedonhankinnan menetelmät

Havaitsevan tähtitieteen pk 1 Luento 6: Ilmaisimet ja uudet havaintotekniikat. Jyri Näränen

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS

Havaitsevan tähtitieteen peruskurssi I, kevät 2008

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä:

Säteilyturvakeskuksen määräys ionisoimattoman säteilyn käytöstä kosmeettisessa tai siihen verrattavassa toimenpiteessä

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

4. Kaukoputket, observatoriot ja ilmaisimet

Projektisuunnitelma ja johdanto AS Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo

METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ

Metsähovin satelliitilaser lähiavaruuden kohteiden karakterisoinnissa

Alkuaineita luokitellaan atomimassojen perusteella

Transkriptio:

7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion vaikutus vähenee (fokus parempi) yleensä seeing sitä parempi, mitä pidemmillä aallonpituuksilla havaitaan 29

7.5 Absoluuttinen fotometria Absoluuttisessa fotometriassa kohde havaitaan fotometrisenä yönä Kun havaitaan myös standarditähtiä, voidaan kohteelle laskea absoluuttinen magnitudi Jos kyseessä on muuttuva kohde, on kalibrointi tehtävä joka yö (jos periodia ei tunneta tarkasti) 30

7.6 Standarditähdet Optisella alueella käytännössä standardi on Landolt (AJ 104,1,p.340) löytyy mm. ftp://ftp.lowell.edu/pub/bas/starcats/ Muitakin on (esim. Henden) ja ne ovat hyödyllisiä erityisesti siirryttäessä pois ekvaattorilta 31

7.7 Differentiaalifotometria Differentiaalifotometriassa itse varsinainen kohde on muuttuva tai sille on muuten hankala määrittää absoluuttista magnitudia Tällöin määritetään kohteen lähellä olevalle (stabiilille) tähdelle/tähdille absoluuttinen magnitudi ja niitä käytetään kentän standardeina Riittää, kun tämä tehdään kerran Ei niin kriittistä ilmakehän muutoksille, koska standardi on samassa kuvakentässä 32

7.8 Suhteellinen fotometria Suhteellisessa fotometriassa ei pyritä absoluuttisiin magnitudeihin Sillä tutkitaan usein muutoksia Kohteen lisäksi kentästä mitataan (mielellään) useita referenssitähtiä, joiden tulisi olla stabiileita ja mieluiten niillä tulisi olla hyvä S/N Referenssitähtien magnitudeista lasketaan keskiarvo ja kohteen magnitudia verrataan jokaisessa kuvassa tähän Menetelmä on melko hyvä huonoissakin sääolosuhteissa, koska sekä kohde, että referenssitähti kokevat samat muutokset 33

7.9 Instrumentaalimagnitudit Instrumentaalimagnitudilla tarkoitetaan kuvasta määritettyä raakamagnitudia CCD -kameralla tehdään kuvaan aluksi normaali redusointi, eli korjataan kuvasta bias -taso, pimeävirta ja flat-field Magnitudi voidaan määrittää kuvasta (ainakin) kahdella eri menetelmällä, apertuurifotometrialla tai PSF-fotometrialla 34

7.9 Apertuurifotometria Apertuurifotometriassa mitataan (yleensä) ympyränmuotoisen alueen sisään tulevan säteilyn energia Siitä vähennetään tausta, jolloin saadaan itse kohteesta tullut energia: N * =N AP -n pix N sky N ap on apertuurista mitattu energia, n pix = (r ap ) 2 on apertuurin pinta-ala ja N sky on tausta pikseliä kohti Instrumentaalimagnitudi saadaan nyt kaavasta m instr =-2.5 log N * 35

7.9 Apertuurifotometria Signaalikohina apertuurifotometriaan saadaan kaavasta: Jossa N s on taustataivaan taso, N d pimeävirran taso ja N R lukukohina Optimaalinen apertuuri riippuu kohteen kirkkaudesta, mutta hyvä nyrkkisääntö on 2-3 kertaa kohteen FWHM 36

7.9 Apertuurifotometria 37

7.10 PSF -fotometria Jos kohteet ovat lähellä toisiaan, niin apertuurifotometria ei toimi. Tällöin täytyy muodostaa kohteen muodosta malli (point spread function), joka sovitetaan kohteen päälle. Instrumentaalimagnitudi lasketaan sovituksesta 38

7.11 Havaintojen redusointi standardijärjestelmään Eri teleskoopeilla ja instrumenteilla tehdyt havainnot halutaan usein vertailukelpoisiksi Tätä varten täytyy havainnoista korjata ilmakehän ja instrumentin sekä teleskoopin aiheuttamat poikkeamat standardista 39

7.11 Havaintojen redusointi standardijärjestelmään Oletetaan, että on mitattu joukko kohteita ja standarditähtiä UBV kaistoilla. Niistä on mitattu instrumentaalimagnitudit u,b, ja v. Todelliset magnitudit ovat U, B, ja V. Näiden välille saadaan yhtälöryhmä: 40

7.11 Havaintojen redusointi standardijärjestelmään Ensimmäinen termi nollapiste (zero-point), toinen ja kolmas kuvaavat ilmakehän vaikutusta ja neljäs on väritermi Havaintojen kalibrointi tarkoittaa kertoimien, K, K,, ja määrittämistä standarditähtien avulla 41

7.11 Havaintojen redusointi standardijärjestelmään Nollapiste liittyy teleskoopin ja mittalaitteen ominaisuuksiin ja vaihtelee ajan mukana. Jos ilmakehää ei olisi, se olisi ainoa kalibroitava suure. X on ilmamassa, jonka laskemiseksi on annettu kaava aikaisemmin K on ensimmäisen kertaluokan ekstinktiokerroin K on toisen kertalukan ekstinktiokerroin, ns. väriekstinktio Voidaan yleensä unohtaa varsinkin isommilla korkeuksilla ja punaisemmilla suodattimilla, ja ovat ns. väritermit, jotka korjaavat mittausjärjestelmän poikkeamia standardista Voi yleensä jättää huomiotta 42

7.12 Kalibrointi käytännössä Termien määrittämiseksi on mitattava eri värisiä standarditähtiä eri ilmamassoilla ja ratkaistava kertoimet pienimmän neliösumman menetelmällä Yleensä K voi jättää huomiotta, ja ovat usein laitteen rakentajan valmiiksi määrittämiä eivätkä ne muutu kovin paljoa ajan myötä 43

7.13 Absoluuttinen kalibrointi Joskus halutaan tuntea kohteen kirkkaus energiayksiköissä magnitudin sijaan. Tällöin tarvitaan esimerkiksi tietoa siitä, mitä vuontiheyttä V=0 vastaa Absoluuttinen kalibrointi perustuu Vegasta tehtyihin mittauksiin Magnitudia V=0 vastaavat vuontiheydet taajuus- ja aallonpituusyksikköä kohden ovat: kun =555.6 nm ja N =94 800 000 fotonia s -1 m -2 nm -1. Kun Vegan V-magnitudi on 0.03 saadaan absoluuttinen kalibrointi havaitusta spektristä 44

7.14 Punertuminen Tähtien välinen aineen aiheuttama ekstinktio näkyy havaitun valon punertumisena, eli esim. väriindeksien (U-B) ja (B-V) kasvamista Punertumisen määrää kuvaa värieksessi, E Punertuminen on aallonpituus riippuvaista ja se on eri vahvuista eri suunnissa Se voidaan määrittää selvittämällä tähden ominaisväri sen spektristä ja vertaamalla sitä mitattuihin väri-indekseihin Punertuminen voidaan olettaa saman populaation kohteille yhtä suureksi 45