4. Kaukoputket, observatoriot ja ilmaisimet
|
|
- Eero Keskinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 4. Kaukoputket, observatoriot ja ilmaisimet Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman HTTPKI, kevät 2011, luento 4 1
2 4. Kaukoputket ja observatoriot Perussuureet Klassiset optiset ratkaisut Teleskoopin pystytys Fokus Kuvan laatuun vaikuttavia tekijöitä Observatorion sijoituspaikka Teleskooppeja HTTPKI, kevät 2011, luento 4 2
3 4.1 Teleskooppia kuvaavat perussuureet Tärkeimmät ominaisuudet: Tyyppi (peili vai linssi) Objektiivin halkaisija D Polttoväli f Havaintoihin vaikuttaa: Valonkeräyskyky Aukkosuhde f/d kuvaa teleskoopin valovoimaa Kuvan mittakaava polttotasossa, yleensä yksiköissä /mm tai /pix Erotuskyky (käytännössä ilmakehä rajoittaa) Silmällä havaitessa: Suurennus w = f/f, jossa f on okulaarin HTTPKI, kevät 2011, luento 4 3
4 4.1 Teleskooppia kuvaavat perussuureet Esim. Tuorlan 1.05m teleskoopin erotuskyky on 0.13 Hubblen (2.4m) 0.06 ja NOTin 0.05 Yleensä seeing hyvälläkin paikalla , merenpinnan tasolla usein 3-5 Apupeilin pidike aiheuttaa diffraktiokuvion, joka hyvällä seeingillä ja/tai kirkkaiden tähtien kanssa voi aiheuttaa ongelmia HTTPKI, kevät 2011, luento 4 4
5 4.1 Teleskooppia kuvaavat perussuureet Mitat valitaan käyttötarkoituksen mukaan: Himmeät kohteet tai tarve hyvälle erotuskyvylle suuri D Laajat kohteet, pieni pintakirkkaus pieni f Pienet, mutta kirkkaat kohteet suuri f HTTPKI, kevät 2011, luento 4 5
6 4.2 Klassiset optiset ratkaisut Dioptriset eli linssiteleskoopit Kataoptiset eli peiliteleskoopit Katadioptriset eli sekä peilejä, että linssejä HTTPKI, kevät 2011, luento 4 6
7 4.2 Linssiteleskooppi + Umpinainen, tukeva rakenne + Huolto- ja säätövapaa + Ei apupeiliä - Pitkä ja näkökenttä pieni - Värivirheitä - Valmistaminen vaikeaa HTTPKI, kevät 2011, luento 4 7
8 4.2 Linssiteleskooppi Käytetään yleensä havaintoihin, joissa tarvitaan hyvää erotuskykyä (kaksoistähdet, planeetat, Aurinko, meridiaanikoneet) Swedish 1-m Solar Telescope, La Palma HTTPKI, kevät 2011, luento 4 8
9 4.2 Newtonin kaukoputki Pääpeili paraboloidi, apupeili tasopeili + Helppo valmistaa + Halpa - Instrumenttien asentaminen hankalaa - Voimakas koma - Aukkosuhde valittava isoksi, jotta apupeili ei kasva liian isoksi HTTPKI, kevät 2011, luento 4 9
10 4.2 Cassegrain teleskooppi Apupeili hyperboloidi Useimmat isot teleskoopit Cassegrain tai Ritchey-Chretien tyyppisiä (esim. VLT, Keck) Ritchey-Chretien teleskooppi on Cassegrainin parannettu muoto, jossa myös pääpeili on hyperboloidi HTTPKI, kevät 2011, luento 4 10
11 4.2 Cassegrain teleskooppi + Kompakti rakenne, helppo rakentaa vakaaksi + Instrumenttien asentaminen helppoa + Koma ja palloaberraatio pienempiä kuin Newtonissa + Ritchey-Chretien: ei komaa, eikä palloaberraatiota - Kuvakentän kaarevuus ja astigmatismi suurempia kuin vastaavassa Newtonissa - Ritchey-Chretien: korkea-asteiset pinnat vaikeita valmistaa - Fokusointi tehtävä tarkasti HTTPKI, kevät 2011, luento 4 11
12 4.2 Schmidt kamera Pallopeili + korjauslasi + Laaja kuvakenttä - Korjauslasi vaikea valmistaa - Yleensä umpinainen rakenne, lämpöongelmia - Kuvapinta kaareva (voidaan korjata) HTTPKI, kevät 2011, luento 4 12
13 4.2 Schmidt-Cassegrain + Lyhyt pitkästä polttovälistä huolimatta + Laaja ja lähes virheetön kuvakenttä - Vaikea valmistaa - kallis Telrad-Sucher (Kapege.de 2006) HTTPKI, kevät 2011, luento 4 13
14 4.2 Maksutov Sekä pääpeilin, että korjauslasin pinta pallopintoja Samat edut ja haitat kuin edellisellä Maksutoc-Cassegrain (Meade 2004) HTTPKI, kevät 2011, luento 4 14
15 4.2 Erikoisuuksia Esim. kameran (kaupallisella) linssioptiikalla varustettuja CCD -kameroita SuperWASP a HTTPKI, kevät 2011, luento 4 15
16 4.3 Teleskoopin pystytys Ekvatoriaalinen ja altatsimutaalineen eli atsimutaalinen Monta eri teknistä ratkaisua ekvatoriaaliseen pystytykseen: haarukka, saksalainen pystytys, englantilainen pystytys, hevosenkenkäpystytys (kuvat seuraavalla sivulla) HTTPKI, kevät 2011, luento 4 16
17 4.3 Teleskoopin pystytys Haarukka Saksalainen Englantilainen Hevosenkenkä (Palomar 5 m) HTTPKI, kevät 2011, luento 4 17
18 4.3 Teleskoopin pystytys HTTPKI, kevät 2011, luento 4 18
19 4.4 Fokus Primäärifokus Newton-fokus HTTPKI, kevät 2011, luento 4 19
20 4.4 Fokus Cassegrain fokus Hyöty: Minimoidaan peilien määrää Haitta: Mittalaite liikkuu Coude focus Hyöty: Mittalaite voi olla erillään teleskoopista HTTPKI, kevät 2011, luento 4 20
21 4.4 Fokus Nasmyth fokus Hyöty: Laite ei liiku Haitta: Ylimääräinen peili Teleskoopissa voi olla useita instrumentteja kiinni samaan aikaan eri fokuksissa HTTPKI, kevät 2011, luento 4 21
22 4.5 Kuvan laatuun vaikuttavia tekijöitä Optisen systeemin valinta Hionnan laatu Tarkkuus oltava ~/10 (Hubble /20) Pääpeilin tuenta Aktiivinen optiikka Suojaus hajavaloa vastaan (baffling) HTTPKI, kevät 2011, luento 4 22
23 4.5 Kuvan laatuun vaikuttavia tekijöitä HTTPKI, kevät 2011, luento 4 23
24 4.5 Kuvan laatuun vaikuttavia tekijöitä Kirkkaan tähden hajavalo CCD-kuvassa NOT:n hajavalon vähentäminen (Grundahl & Sörensen, 1996) HTTPKI, kevät 2011, luento 4 24
25 4.6 Terminen suunnittelu Lämpölähteitä: Teleskooppi, peili, rakenteet Teleskooppirakennus Instrumentti Havaitsija Huoltorakennukset, ympäröivä observatorio Maaperä HTTPKI, kevät 2011, luento 4 25
26 4.6 Terminen suunnittelu Miten terminen suunnittelu näkyy kuvassa? HTTPKI, kevät 2011, luento 4 26
27 4.6 Terminen suunnittelu NOT: Terminen suunnittelu optimoitu HTTPKI, kevät 2011, luento 4 27
28 4.6 Terminen suunnittelu Termisen suunnittelun haasteita: Teleskoopin kontrollihuone HTTPKI, kevät 2011, luento 4 28
29 4.7 Mekaaninen suunnittelu Laakerointi Tasapainotus Värähtelyn estäminen Tuulen sietokyky Peilin materiaalilla oltava pieni lämpölaajenemiskerroin HTTPKI, kevät 2011, luento 4 29
30 4.8 Havaintopaikan valinta Pilvisiä öitä mahdollisimman vähän Kuiva ilmasto Sijainti korkealla (ohut ilmakehä, taivas tumma) Hyvä seeing Pieni valosaaste Ympäröivä infrastruktuuri Hyviä havaintopaikkoja: La Palma, Havaiji, Chile, Arizona, Australia, Etelä-Afrikka HTTPKI, kevät 2011, luento 4 30
31 4.8 Havaintopaikan valinta HTTPKI, kevät 2011, luento 4 31
32 4.8 Havaintopaikan valinta Miksi Big Bear aurinkoobservatorio on rakennettu järvelle? HTTPKI, kevät 2011, luento 4 32
33 4.9 Teleskooppeja Suomen suurimpia: Turlan Cassegrain 1.03 m Metsähovin Ritchey-Chretien 60 cm Maailman suurimpia Keck 1 ja 2, 10 m (Mauna Kea) GTC, 10.4 m (La Palma) VLT 1-4, 4 x 8.2 m (ESO- Paranal) Subaru, 8.2 m (Mauna Kea) LBT, 2 x 8.4 m (Mt. Graham) Gemini North & South, 8.1 m (Mauna Kea & Cerro Pachon) LBT (NASA 2010) HTTPKI, kevät 2011, luento 4 33
34 4.9 Telskooppeja: Lähitulevaisuus GMT (Giant Magellan Telescope), 25 m, Las Campanas, 2018 TMT (Thirty Meter Telescope), 30 m, Mauna Kea, 2018 E-ELT (European Extremely Large Telescope), 42 m, Cerro Armazones, 2018 TMT (2008) E-ELT (ESO 2009) HTTPKI, kevät 2011, luento 4 34
35 4.9 Tehtävä Mitä etuja ja haittoja olisi sijoittaa observatorio seuraaviin paikkoihin? Mt. Everestin huipulle Antarktikselle Utön majakkasaarelle HTTPKI, kevät 2011, luento 4 35
36 4.10 Ilmaisimet Silmä Valokuvaus Valomonistinputki CCD CMOS HTTPKI, kevät 2011, luento 4 36
37 Silmä ja valokuvaus Silmällä tehtäviä havaintoja ei käytännössä ammattimaisessa tähtitieteessä enää käytetä Valokuvausfilmi oli huomattava parannus silmällä tehtäviin havaintoihin (mm. kyky objektiivisesti tallentaa vs. käsin piirtää), mutta filmit olivat usein hyvin epälineaarisia herkkyydessään, joten datan käsittely vaati taikuutta valokuvauslevyn kvanttihyötysuhde eli kvanttiefektiivisyys (QE) vain muutamia prosentteja Käytännössä valokuvalevyjäkään ei enää käytetä ollenkaan HTTPKI, kevät 2011, luento 4 37
38 Valomonistinputki Valomonistimeen osuva fotoni tuottaa elektronin (virtaa), joka vahvistetaan ~ kertaiseksi Kvanttihyötysuhde on 20-30% Valomonistinputki on lineaarinen käyttöalueellaan Vielä nykyään käytössä joissain fotometreissä ja polarimetreissä Etsimenä näissäkin usein CCD (valomonistinputki ei tuota kuvaa) Ongelmana mm. käytön hankaluus sekä korkeajännitevaatimus (turvallisuusriski) HTTPKI, kevät 2011, luento 4 38
39 CCD Ehdottomasti käytetyin detektori nykyaikaisessa tähtitieteessä Perustuu puolijohteissa tapahtuvaan valosähköiseen ilmiöön Lineaarinen alue hyvin laaja Kvanttiefektiivisyys erittäin hyvä Nykyisin kuvakenttäkin melko iso (>100 Mpix monoliitit vrt. yli Gpix mosaiikit) Kuva sellaisenaan valmis digitaaliseen kuvankäsittelyyn HTTPKI, kevät 2011, luento 4 39
40 CCD CCDn peruskuvaelementti on pikseli, joka on positiivisella varauksella aikaansaatu potentiaalikuoppa kun saapuva fotoni irrottaa puolijohteesta elektronin, jää se kuoppaan ja tieto saapuneesta fotonista tallentuu Jokainen elektroni heikentää potentiaalia, joten pikseli voi ottaa vastaan vain tietyn määrän fotoneita ennen kuin se saturoituu Valosähköisen ilmiön tehokkuus riippuu aallonpituudesta. esim. piin valosähköinen ilmiö tapahtuu 1.14eV:n energialla eli noin 1100nm aallonpituudella tätä matalammat energiat/ suuremmat aallonpituudet eivät rekisteröidy suuret energiat taas reagoivat usein jo liian aikaisin HTTPKI, kevät 2011, luento 4 40
41 CCD Kennoon kerätään valoa haluttu aika, jonka jälkeen se luetaan kellottamalla Elektronit pusketaan ensin esivahvistimeen joka jälkeen kennon ulkopuoliseen vahvistimeen ja sen jälkeen analogi-digitaali muuntimeen HTTPKI, kevät 2011, luento 4 41
42 CCD CCD signaalin perusyksikkö on ADU (analog to digital unit, usein puhutaan myös counts:eista), joka liittyy mittattuun signaaliin vahvistuskertoimen G=ne - /ADU avulla. Tyypillisesti n=1-5 Valitaan niin, että A/D muuntimen digitointiskaala (useimmin 16 bittiä=2 16 =65536) kattaa pikselin koko tallennuskapasiteetin esim. jos pikselin tallennuskapasiteetti elektronia, niin hyvä G olisi e - /65536 ADU=1.5e - /ADU HTTPKI, kevät 2011, luento 4 42
43 CCD Varauksensiirtotehokkuus kertoo siitä, kuinka suuri osa elektroneista oikeasti siirtyy kellotuksessa eteenpäin Jos se on huono, jää kirkkaista kohteista perään huntuja ja kuvan taustaan muodostuu selvä viimeisiä luettuja pikseleitä kohti kasvava gradientti Pimeävirta (dark current) on puolijohteessa lämpöliikkeen generoimista elektroneista johtuvaa kohinaa Piillä pimeävirta putoaa kolmasosaan, kun lämpötila putoaa kymmenen astetta tästä johtuen ammattimaiset CCD:t jäähdytetään nestetypellä erityisissä kryostaateissa (~-170 C, NIR heliumilla ~-210 C) HTTPKI, kevät 2011, luento 4 43
44 CCD Kaikiin CCD kuviin lisätään ennen digitointia pieni lisäjännite ns. bias, jolla estetään heikon signaalin leikkaantuminen digitoinnissa Bias vaihtelee yöstä toiseen jonkin verran Joissain kameroissa on mahdollisuus lukea tyhjää riviä sen jälkeen kun varsinainen kuva on luettu ja tallentaa tulos kuvan yhteyteen. Tämä ns. overscan alue kertoo suoraan kuvan bias -tason. HTTPKI, kevät 2011, luento 4 44
45 CCD-havaintojen kohina Fotonikohina johtuu Poisson statistiikasta asettaa alarajan kohinalle voidaan minimoida pidentämällä valotusta Lukukohina Pimeävirta voidaan mitata Pikselien herkkyysvaihtelut flat field -kuvat HTTPKI, kevät 2011, luento 4 45
46 CCD havaintojen kohina Muut kohinalähteet: kosmiset säteet blooming saturoituminen epälineaarisuus HTTPKI, kevät 2011, luento 4 46
47 Mosaiikki vs. monoliitti Yllä: Pan-STARRS:in Gigapixel Camera (1.4 Gpix) Vieressä: OMI 112 Mpix monoliittikenno HTTPKI, kevät 2011, luento 4 47
48 Mosaiikki vs. monoliitti Monoliitit vaikeita valmistaa Mosaiikit rakenteeltaan monimutkaisempia ja siksi kalliimpia Mosaiikeista saadaan paljon suurempia Mosaiikeissa yksittäisten kennojen liitoskohdissa railoja Mosaiikkien lukunopeus suurempi Monoliitit herkempiä vaurioitumiselle (mosaiikissa vaurio rajoittuu pienemmälle alueelle) Saturaatio pienempi ongelma mosaiikille (kenno jossa kirkas tähti voidaan esim. lukea aikaisemmin) Datan käsittely ja laadun valvonta yksinkertaisempaa monoliitilla HTTPKI, kevät 2011, luento 4 48
49 CMOS Complementary Metal Oxide Semiconductor on mm. valokuvakameroissa yleisesti käytetty puolijohdetekniikka. Siinä jokainen pikseli on itsenäinen yksikkö eli lukuelektroniikka sijaitsee samalla kennolla kuvaa keräävän pinta-alan kanssa efektiivinen pinta-ala pienempi kuin CCD:llä. Lukuaika on nopeampi kuin CCD:llä ja virrankulutus pienempi. CMOS on kohinaisempi johtuen kennolla sijaitsevasta roskasta eli ADU muuntimista yms. CCD:n pikselien välinen vertailtavuus on huomattavasti parempi johtuen yhteisestä lukuelektroniikasta. CMOS on CCD:tä kestävämpi johtuen kennon modulaarisesta rakenteesta. Ammattitähtitieteessä CMOS ei kuitenkaan ole saavuttanut vielä suurta asemaa. HTTPKI, kevät 2011, luento 4 49
5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys
6. Kaukoputket ja observatoriot
6. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 23.2.2012 Kalvot: Jyri Näränen ja Thomas Hackman HTTPKI, kevät 2011, luento 4 1 6. Kaukoputket ja observatoriot Perussuureet
5. Kaukoputket ja observatoriot
5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys 4. Fokus 5. Kuvan laatuun vaikuttavia tekijöitä 6. Observatorion sijoituspaikka 5.1 Teleskooppia kuvaavat
Kaukoputket ja observatoriot
Kaukoputket ja observatoriot Helsingin yliopisto, Fysiikan laitos kevät 2013 7. Kaukoputket ja observatoriot Perussuureet Klassiset optiset ratkaisut Teleskoopin pystytys Fokus Kuvan laatuun vaikuttavia
Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4.
Yleistä kurssiasiaa! Ekskursio 11.4.! Tentti 12.5. klo 10-14! Laskarit alkavat tulevaisuudessa 15.45, myös ensi tiistaina vaikka silloin ei ole luentoa! Laskaripisteet tulevat verkkoon (opiskelijanumerolla
6. Ilmaisimet ja uudet havaintotekniikat. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman (Kalvot: J.
6. Ilmaisimet ja uudet havaintotekniikat Havaitsevan tähtitieteen peruskurssi I, luento 21.2.2008 Thomas Hackman (Kalvot: J. Näränen) 6. Ilmaisimet ja uudet havaintotekniikat 1. Silmä, valokuvaus, valomonistinputki
Havaitsevan tähtitieteen pk 1 Luento 6: Ilmaisimet ja uudet havaintotekniikat. Jyri Näränen
Havaitsevan tähtitieteen pk 1 Luento 6: Ilmaisimet ja uudet havaintotekniikat Jyri Näränen Metsähovin ekskursio Tutustutaan teleskooppeihin ja observatorioalueeseen Jos sää on hyvä niin myös pyritään havaitsemaan
Havaitsevan tähtitieteen pk 1 Luento 5: Ilmaisimet ja uudet havaintotekniikat. Jyri Näränen
Havaitsevan tähtitieteen pk 1 Luento 5: Ilmaisimet ja uudet havaintotekniikat Jyri Näränen Metsähovin ekskursio Keskiviikko 11.3. klo 18.30-> Tutustutaan teleskooppeihin ja observatorioalueeseen Jos sää
Havaitsevan tähtitieteen peruskurssi I
4. Teleskoopit ja observatoriot Lauri Jetsu Fysiikan laitos Helsingin yliopisto (kuva: @garyseronik.com) Tavoite: Kuvata, kuinka teleskooppi rakennetaan aiemmin kuvatuista optisista elementeistä Teleskoopin
Tähtitieteen perusteet: Johdatusta optiseen havaitsevaan tähtitieteeseen. FT Thomas Hackman FINCA & HY:n fysiikan laitos
Tähtitieteen perusteet: Johdatusta optiseen havaitsevaan tähtitieteeseen FT Thomas Hackman FINCA & HY:n fysiikan laitos TT:n perusteet 2010-11, luento 3, 15.11.2010 1 Luennon sisältö Ilmakehän vaikutus
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Galilei 1609 Italiassa, keksitty edellisenä vuonna Hollannissa(?) vastasi teatterikiikaria (kupera objektiivi, kovera okulaari) Kepler 1610: tähtititeellinen
Teleskoopit ja observatoriot
Teleskoopit ja observatoriot Teleskoopin ensisijainen tehtävä on kerätä mahdollisimman paljon valoa (fotoneja) siihen liitettyyn instrumenttiin (kuten valokuvauslevy tai CCD-kamera). Kaukoputkea kuvaavat
Havaitsevan tähtitieteen pk1 luento 4, Ilmaisimet ja Kuvankäsittely. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 4, Ilmaisimet ja Kuvankäsittely Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 4. Ilmaisimet ja Kuvankäsittely 1. Silmä, valokuvaus, valomonistinputki 2.
Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia. (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen)
Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen) 13. Uusi havaintoteknologia 1. Mosaiikki vs. Monoliitti CCD 2. CMOS vs. CCD
13. Uusi havaintoteknologia
13. Uusi havaintoteknologia E-ELT Havaitsevan tähtitieteen peruskurssi I, Kevät 2017 Thomas Hackman (kalvot: Jyri Näränen, Mikael Granvik, Veli-Matti Pelkonen ja TH) 13. Uusi havaintoteknologia Mosaiikki
Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik)
Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik) 11. Uusi havaintoteknologia 1. Suuret teleskoopit 2. Monipeili- ja mosaiikkiteleskoopit 3. Aktiivinen ja adaptiivinen optiikka
CCD-kamerat ja kuvankäsittely
CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate
Havaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen
Havaitsevan tähtitieteen peruskurssi I
CCD kamera 6. CCD kamera Lauri Jetsu Fysiikan laitos Helsingin yliopisto CCD kamera CCD-kamera Yleistä (kuvat: @www.astro.virginia.edu) CCD-sirun valoherkät elementit: rivittäin pikseleitä + Kvanttitehokkuus:
7. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.
7. Kuvankäsittely 1. CCD havainnot 2. CCD kuvien jälkikäsittely 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja 6. Demo 7.1 CCD havainnot 1. Jäähdytys 2. Darkit (jos tarpeen) 3. Biakset
Havaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 3.5.2012, T Hackman & V-M Pelkonen 1 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannattaa käyttää? Minkälaista teleskooppia millekin
12. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.
12. Kuvankäsittely 1. CCD havainnot 2. CCD kuvien jälkikäsittely 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja 6. Demo 12.1 CCD havainnot 1. Jäähdytys 2. Darkit (jos tarpeen) 3. Biakset
Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely. Jyri Näränen
Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely Jyri Näränen 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen tekeminen 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja
Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit
Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.
Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik
Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik 7. Kuvankäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen
Harjoitukset (20h): Laskuharjoitukset: 6x2h = 12h Muut harjoitukset (ryhmätyöskentely): 8h Luentomateriaali ja demot:
Tähtitieteen perusteet (5 op): FT Pasi Nurmi/Tuorlan Observatorio, pasnurmi@utu.fi Luento-opetus ja seminaarit (30h): Aikataulu Ma 12.15-17 Ti 12.15-17 Ke 12.15-17 To 12.15-17 Pe 12.15-17 1.vko Luennot
7.4 Fotometria CCD kameralla
7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion
Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen
Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu Luento 9.4.2015, V-M Pelkonen 1 1. Luennon tarkoitus Havaintoaikahakemuksen (teknisen osion) valmistelu Mitä kaikkea pitää ottaa
Havaitsevan tähtitieteen peruskurssi I, kevät 2007
Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
Havaitsevan tähtitieteen peruskurssi I, kevät 2012
Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Luennoitsijat: FT Thomas Hackman & FT Veli-Matti Pelkonen Luentoajat: To 14-16, periodit 3-4 Kotisivu: http://www.helsinki.fi/astro/opetus/kurssit/havaitseva
Havaitsevan tähtitieteen peruskurssi I, kevät 2008
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: J. Lehtinen Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu
3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan
5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5
5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka
Radioteleskooppi. Alt atsimutaalinen pystytys. Apupeilin kiinnitys. Peilin tukirakenne. Apupeilin kannattajat. Elevaatio enkooderi.
Radioteleskooppi Apupeilin kiinnitys Peilin tukirakenne Apupeilin kannattajat Elevaatio enkooderi Jalusta Kiskot Perusta Atsimuuttienkooderi Alt atsimutaalinen pystytys Antennin pystytys + Keila ei kierry
NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin
NOT-tutkielma ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin 2 Johdanto Osallistuimme NOT-projektiin, joka on tähtitiedeprojekti lukiolaisille. Projektiin kuului tähtitieteen
3 Havaintolaitteet. 3.1 Ilmakehän vaikutus havaintoihin
3 Havaintolaitteet 3.1 Ilmakehän vaikutus havaintoihin Vain pieni osa sähkömagneettisesta säteilystä pääsee ilmakehän läpi. aallonpituus 0.001 nm 0.01 nm 0.1 nm 1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm
Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo
Polarimetria Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Sisällys 1. Polarimetria 1 2 1.1 Polarisaatio yleisesti 2 1.2 Lineaarinen polarisaatio 3 1.3 Ympyräpolarisaatio
Havaitsevan tähtitieteen pk I, 2012
Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin
Havaitsevan tähtitieteen peruskurssi I
1. Historia Lauri Jetsu Fysiikan laitos Helsingin yliopisto Johdanto Luennot (kuva: @www.astro.utu.fi) Lauri Jetsu (lauri.jetsu@helsinki.fi) Veli-Matti Pelkonen (veli-matti.pelkonen@helsinki.fi) Paikka
Faktaa ja fiktiota Suomi-asteroideista
Aurinkokuntatapaaminen 2019 Faktaa ja fiktiota Suomi-asteroideista Hannu Määttänen Yrjö Väisälä 1891 1971 Kuva: Turun yliopisto Kuva: Turun yliopisto Akateemikko Yrjö Väisälä ja observaattori Liisi Oterma
Havaitsevan tähtitieteen peruskurssi I
5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään
Havaitsevan tähtitieteen peruskurssi I Johdanto
Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti:
Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,
Fotometria. Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen
Fotometria Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen Sisällysluettelo 1 1. Fotometria 2 1.1 Fotometrian teoriaa 2 1.2 Peruskäsitteitä 2 1.3 Magnitudit 3 1.4 Absoluuttiset
Havaitseva tähtitiede 1
Havaitseva tähtitiede 1 19. elokuuta 2009 Leo Takalo puh. 3338229 email: takalo@utu.fi Kirjallisuutta Nilsson, Takalo, Piironen: Havaitseva tähtitiede I (kurssikirja) Kitchin: Astrophysical techniques
8. Fotometria (jatkuu)
8. Fotometria (jatkuu) 1. Magnitudijärjestelmät 2. Fotometria CCD kameralla 3. Instrumentaalimagnitudit 4. Havaintojen redusointi standardijärjestelmään 5. Kalibrointi käytännössä 6. Absoluuttinen kalibrointi
Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste
Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen
Kauniiden kuvien valmistus Nordic Optical Telescopella
1/16 Kauniiden kuvien valmistus Nordic Optical Telescopella Pauli Kemppinen Niina Kokkola Ville Ollikainen Jaakko Reponen Aksu Tervonen Mikkelin lukio 23.1.2011 matka 5.12. - 12.12.2010 2/16 Sisällysluettelo
Havaitsevan tähtitieteen peruskurssi I
Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä
Optiikkaa. () 10. syyskuuta 2008 1 / 66
Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten
11. Astrometria, ultravioletti, lähiinfrapuna
11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan
Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.
Havaitsevan tähtitieteen pk1 luento 7, Kuvankäsittely. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 7, Kuvankäsittely Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Kuvankäsittely 1. CCD havaintojen suunnittelu ja tekeminen 2. CCD kuvien jälkikäsittely:
Havaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen
Kaukoputkikurssin 2005 diat
Kaukoputkikurssin 2005 diat Järjestäjänä: Warkauden Kassiopeia ry. Kurssin vetäjät: Harri Haukka Jari Juutilainen Kurssin sisältö Kaukoputkien esittelyä mikä on kaukoputki ja mitä sillä näkee? kasaamme
Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta
8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 18.3. ja 25.3.2010 Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä Magnitudijärjestelmät
Suomalaisten löytämät asteroidit
Aurinkokuntatapaaminen 2018 Suomalaisten löytämät asteroidit Hannu Määttänen Yrjö Väisälä 1891 1971 Kuva: Turun yliopisto Lisätty Seppo Linnaluodon vihjeestä aiheeseen liittyvä katkelma Ursan julkaisusta
CCD-kuvaamisesta. Jouni Raunio / TaUrsa
CCD-kuvaamisesta Jalustat Kaukoputket Suodattimet CCD-kamerat ja kuvauspaketit Tarkennus ja epätarkennus Kuvakentän ratkaisu Maastoesteet, tuuli ja Kuu Seurannankorjaus Havaintodata Kalibrointidata Ohjelmistot
1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.
Polarimetria Tekijät: Immonen Antti, Nieminen Anni, Partti Jussi, Pylkkänen Kaisa ja Viljakainen Antton Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:
Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami
1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien
Kokeellisen tiedonhankinnan menetelmät
Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein
La Palma ja NOT. Auni Somero Tuorlan observatorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto 3.10.2012
La Palma ja NOT Auni Somero Tuorlan observatorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto 3.10.2012 28 45 26.2 N 17 53 06 W 60 10 14 N 24 56 15 E Lanzarote Teneriffa Fuerteventura Gran Canaria
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4.
7.4 PERUSPISTEIDEN SIJAINTI
67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli
Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio
Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz
10. Spektrometria. Havaitsevan tähtitieteen luennot & Thomas Hackman. HTTPK I kevät
10. Spektrometria Havaitsevan tähtitieteen luennot 30.3. & 6.4.2017 Thomas Hackman HTTPK I kevät 2017 1 10. Spektrometria Sisältö: Peruskäsitteet Spektrometrin rakenne Spektrometrian käyttö Havainnot ja
Miika Aherto Niko Nurhonen Wilma Orava Marko Tikkanen Anni Valtonen Mikkelin lukio. NGC246 kauniskuva / psnj044 spektri
Miika Aherto Niko Nurhonen Wilma Orava Marko Tikkanen Anni Valtonen Mikkelin lukio NGC246 kauniskuva / psnj044 spektri SISÄLLYSLUETTELO: 1. Abstrakti ja johdanto 2. Havainnot ja niiden käsittely 2.1 Nordic
Tähtitieteen pikakurssi
Tähtitieteen pikakurssi Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on
8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN, TH, VMP)
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 2.11. ja 9.11.2017 Thomas Hackman (Kalvot JN, TH, VMP) HTTPKI, syksy 2017, luennot 2.11. ja 9.11. 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä
Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8.2.6 Échelle-spektroskooppi Harva hila, n. 50 viivaa/mm Suuri blaze-kulma, n. 60 Havaitaan korkeita kertalukuja, m 20 60 suuri dispersio ja
2.11 Tähtiluettelot/tähtikartat
2.11 Tähtiluettelot/tähtikartat - Ptolemaios Almagest (100 jaa) 1025 - Bradley (1700-luvulla) 1000 tähden paikat - Argelander (1800 luvun alku) Bonner Durchmusterung (BD) 324 000 m
Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.
YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
Fotometria ja avaruuskuvien käsittely
NOT-tiedekoulu 2011 Fotometria ja avaruuskuvien käsittely Rapusumu Ryhmä 2: Anna Anttalainen, Oona Snicker, Henrik Rahikainen, Arttu Tiusanen ja Sami Seppälä Sisällysluettelo 1 Fotometria 1.1 Johdantoa
Teoreettisia perusteita I
Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran
Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)
Kohina Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) N on suoraan verrannollinen integraatioaikaan t ja havaittuun taajuusväliin
HÄRKÄMÄEN HAVAINTOKATSAUS
HÄRKÄMÄEN HAVAINTOKATSAUS 2008 Kierregalaksi M 51 ja sen seuralainen epäsää äännöllinen galaksi NGC 5195. Etäisyys on 34 miljoonaa valovuotta. M 51 löytyy l taivaalta Otavan viimeisen tähden t Alkaidin
7.-8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
7.-8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja 15.3.2012 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) HTTPKI, kevät 2012, luennot 7-8 1 7. Fotometria Sisältö: Johdanto Peruskäsitteitä
CCD-anturin lämpötilan vaikutus elektroluminesenssimittauksen signaali-kohinasuhteeseen
CCD-anturin lämpötilan vaikutus elektroluminesenssimittauksen signaali-kohinasuhteeseen 2.12.2014 Sampo Hyvärinen 1 TABLE OF CONTENTS 1 Johdanto... 3 2 Teoria... 4 2.1 Aurinkokenno... 4 2.2 Elektroluminesenssi...
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit
7. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8
7. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 17.3. ja 24.3.2011 Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8 1 8. Fotometria n Sisältö: q q q q q q q q q q Johdanto
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily
(VALO)KUVAN MUODOSTUMINEN
(VALO)KUVAN MUODOSTUMINEN Ensimmäinen ns. "valokuva" tehtiin v.1727. J.H.Schulze havaitsi, että hopeanitaraatin ja kalkin sekoitus muuttui tummaksi, kun se altistettiin valolle, mutta ei pystynyt "kiinnittämään"
MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma
MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen
10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria
9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1
DEE-53010 Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Pinnallinen tapa aurinkokennon virta-jännite-käyrän
Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 11. Muut aaltoalueet 1. 2. 3. 4. 5. 6. Gamma Röntgen Ultravioletti Lähiinfrapuna Infrapuna
Ilmaisimet. () 17. syyskuuta 2008 1 / 34
Ilmaisimet Ilmaisin eli detektori on laite, jolla kaukoputken kokoama valo rekisteröidään ja muutetaan käsiteltävään muotoon. Aina 1800-luvun puoliväliin saakka ainoana ilmaisimena oli silmä. Sen jälkeen
9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:
1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
Successive approximation AD-muunnin
AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register
10. Fotometria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
10. Fotometria Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 10. Fotometria Sisältö: Johdanto Peruskäsitteitä Magnitudijärjestelmät Fotometrit Fotometria
Kameran sensoritekniikka
Kameran sensoritekniikka T-75.5100 Kuvaus- ja näyttötekniikka Mikko Nuutinen, 12.9.2012 Luennon sisältö: Yleistä Varauksen keräys Varauksen siirto CCD-kamerassa CMOS-sensori & CMOS vs. CCD Kuvauslaitetyyppejä
Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n
141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen