Tähtitieteen perusteet: Johdatusta optiseen havaitsevaan tähtitieteeseen. FT Thomas Hackman FINCA & HY:n fysiikan laitos
|
|
- Juuso Mäki
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tähtitieteen perusteet: Johdatusta optiseen havaitsevaan tähtitieteeseen FT Thomas Hackman FINCA & HY:n fysiikan laitos TT:n perusteet , luento 3,
2 Luennon sisältö Ilmakehän vaikutus havaintoihin Optiset teleskoopit Ilmaisimet ja mittauslaitteet Radiotähtitiede käsitellään myöhemmin TT:n perusteet , luento 3,
3 3. Johdanto Havaitseva tähtitiede: Gamma Röntgen{Fotometria UV Polarimetria Optinen Spektrometria Infrapuna Kuvaaminen Astrometria Radio ESO, Euroopan eteläinen observatorio ORM, La Palman observatorio TT:n perusteet , luento 3,
4 3.0 Havaintolaitteet: Historiaa Ennen 1600-luvua Silmä + mekaanisia apuvälineitä Parhaimpien havaintojen tarkkuus ~ 30 (Hevelius) 1600 luku: Ensimmäiset tähtitieteelliset kaukoputket: Linssiteleskoopit: Lippershey 1608, Galilei 1609 Peiliteleskoopit: Gregory 1663, Newton 1670, Cassegrain luku: Akromaattinen linssi (Hall 1729) Galilein teleskooppi TT:n perusteet , luento 3,
5 3.0 Havaintolaitteet: Historiaa 1800 luku: Valokuvauksen käyttö Ensimmäiset fotometrit Hopeapäällysteiset lasipeili 1900-luku Valosähköiseen ilmiöön perustuvat ilmaisimet Radioteleskoopit Suuret peiliteleskoopit Satelliittihavainnot 2000-luku Uudet tekniikat: Mm. adaptiivinen optiikka ja interferometria ESO:n VLT:n laserohjaustähti (European Southern Observatory) TT:n perusteet , luento 3,
6 3.1 Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän transmissio (läpäisevyys) eri sähkömagneettisen säteilyn aallonpituuksilla TT:n perusteet , luento 3,
7 3.1.1 Ilmakehän vaikutus havaintoihin Sää Ekstinktio Diffuusi valo Seeing Refraktio NOT tammikuussa 2005 (J.Näränen) TT:n perusteet , luento 3,
8 3.1.1 Sää Havaintoihin vaikuttaa: Pilvet, sumu, kosteus Sääilmiöt lähinnä troposfäärissä (< 10 km) Täysin selkeitä (fotometrisiä) öitä: Suomessa ~ 30/vuosi ESO:ssa n. 250/vuosi TT:n perusteet , luento 3,
9 3.1.1 Sääolosuhteet Euroopan eteläisellä observatoriolla (ESO) TT:n perusteet , luento 3,
10 3.1.2 Ekstinktio Ilmakehän molekyylit: Absorptio Sironta Ekstinktio riippuu aallonpituudesta: Esim. Rayleigh sironta: R ( ) p ( p 0 0 1) 2, jossa p on havaintopa ikan ilmanpaine, p 0 on ilmanpaine merenpinna n tasolla, λ on aallonpitu us μm : ssä ja μ 0 on ilmakehän taitekerro in. TT:n perusteet , luento 3,
11 3.1.2 Ekstinktio Mustan kappaleen säteily Auringon säteily ilmakehän ulkopuolella Auringon säteily merenpinnalla Eli ero punaisen ja sinisen välillä = ilmakehän absorptio TT:n perusteet , luento 3,
12 3.1.3 Diffuusi valo Ilmakehästä sironnut valo Ilmahehku Revontulet (lähellä magneettisia napoja) Eläinratavalo (ei johdu ilmakehästä vaan aurinkokunnan pölyhiukkasista) Valosaaste Yötaivas maaseudulla ja kaupinkialueella (Kuva: J. Stanley 2007) TT:n perusteet , luento 3,
13 3.1.4 Seeing Ilman turbulenssi skintillaatio Tähden kuva: piste seeing-kiekko Muutokset Hz Merenpinnalla seeing ~ 2-4 NOT:lla (La Palma) seeing ~ Seeingin kannalta kriittistä: Lämpötilaerot Ilmanvirtaukset TT:n perusteet , luento 3,
14 3.1.4 Seeing 1 seeingillä (ylempi kuva) ja 2 seeingillä otetuttuja lyhyitä 10 ms valotuksia tähdistä (D.L. Burke, 2006, LSST tutorial) HUOM! Animaatio ei toimi PDF:ssä TT:n perusteet , luento 3,
15 3.1.5 Refraktio Valonsäde taipuu ilmakehässä Snellin laki: Taitekerroin riippuu: Tiheydestä Aallonpituudesta n 1 sin n 2 Differentiaalirefraktio matalan kohteen kuva hajoaa spektriksi sin Venus (D.L. Burke, 2006, LSST tutorial) TT:n perusteet , luento 3,
16 3.2 Optiset teleskoopit Teleskoopin koon merkitys: Suuri säde -> suuri keräävä pinta-ala Suuri säde -> parempi erotuskyky Dioptriset eli refraktorit eli linssikaukoputket Kataoptiset eli reflektorit eli peilikaukoputket Katadioptriset eli kaukoputket joissa sekä peilejä että linssejä TT:n perusteet , luento 3,
17 3.2.1 Teleskooppia kuvaavat perussuureet Tärkeimmät ominaisuudet: Tyyppi (peili vai linssi) Objektiivin halkaisija D Polttoväli f Havaintoihin vaikuttaa: Valonkeräyskyky Aukkosuhde f/d kuvaa teleskoopin valovoimaa Kuvan mittakaava polttotasossa, yleensä yksiköissä /mm tai /pix Erotuskyky (käytännössä ilmakehä rajoittaa) Silmällä havaitessa: Suurennus = f/f, jossa f on okulaarin TT:n perusteet , luento 3,
18 3.2.1 Teleskooppia kuvaavat perussuureet Mitat valitaan käyttötarkoituksen mukaan: Himmeät kohteet tai tarve hyvälle erotuskyvylle suuri D Laajat kohteet, pieni pintakirkkaus pieni f Pienet, mutta kirkkaat kohteet suuri f TT:n perusteet , luento 3,
19 3.2.1 Teleskooppia kuvaavat perussuureet Esim. Tuorlan 1.05m teleskoopin teoreettinen erotuskyky on 0.13 Hubblen (2.4m) 0.06 ja NOTin (2.6 m) 0.05 Yleensä seeing hyvälläkin paikalla , merenpinnan tasolla usein 3-5 Apupeilin pidike aiheuttaa diffraktiokuvion, joka hyvällä seeingillä ja/tai kirkkaiden tähtien kanssa voi aiheuttaa ongelmia TT:n perusteet , luento 3,
20 3.2.2 Linssiteleskooppi + Umpinainen, tukeva rakenne + Huolto- ja säätövapaa + Ei apupeiliä - Pitkä ja näkökenttä pieni - Värivirheitä - Valmistaminen vaikeaa Yerkesin teleskooppi (D=102 cm) TT:n perusteet , luento 3,
21 3.2.2 Linssiteleskooppi Käytetään yleensä havaintoihin, joissa tarvitaan hyvää erotuskykyä (kaksoistähdet, planeetat, Aurinko, meridiaanikoneet) Swedish 1-m Solar Telescope, La Palma TT:n perusteet , luento 3,
22 3.2.3 Peiliteleskoopit Yleisin kaukoputki tutkimustyössä Ei värvirheitä Ei kokorajoituksia Nykaikaiset isot peilit: Ohuita: Muotoa ohjataan aktiivisesti Usein mosaiikkeja Newton-, Cassegrain, ja Schmidt- Cassegrain-tyyppiset teleskoopit TT:n perusteet , luento 3,
23 3.2.3 Cassegrain teleskooppi Apupeili hyperboloidi Useimmat isot teleskoopit Cassegrain tai Ritchey- Chretien tyyppisiä (esim. VLT, Keck) Ritchey-Chretien teleskooppi on Cassegrainin parannettu muoto, jossa myös pääpeili on hyperboloidi Nordic Optical Telescope, D=2.56 m (Magnus Gålfalk 2003) TT:n perusteet , luento 3,
24 3.2.4 Kaukoputken pystytys Ekvatoriaalinen Tuntiakseli ja deklinaatioakseli Ongelmia isoilla teleskoopeilla Atsimutaalinen Pystysuora ja vaakasuora akseli Tavallisin ratkaisu tieteellisillä teleskoopeilla Ongelmia zeniitissä TT:n perusteet , luento 3,
25 3.2.4 Kaukoputken pystytys Selostaatti Kiertyvät peilit + kiinteä kaukoputki Käytetään aurinkoteleskoopeissa Meridiaaniympyrät ja ohikulkukoneet Kiinteästi etelämeridiaaniin Swedish Solar Telescope & Carlsberg Meridian Circle (La Palma) TT:n perusteet , luento 3,
26 3.2.5 Fokus Primäärifokus Newton-fokus TT:n perusteet , luento 3,
27 3.2.5 Fokus Cassegrain fokus Hyöty: Minimoidaan peilien määrää Haitta: Mittalaite liikkuu Coude focus Hyöty: Mittalaite voi olla erillään teleskoopista TT:n perusteet , luento 3,
28 3.2.5 Fokus Nasmyth fokus Hyöty: Laite ei liiku Haitta: Ylimääräinen peili Teleskoopissa voi olla useita instrumentteja kiinni samaan aikaan eri fokuksissa TT:n perusteet , luento 3,
29 3.2.6 Optisten havaintojen optimoiminen Optiikan suunnittelu Terminen suunnittelu Havaintopaikan valinta TT:n perusteet , luento 3,
30 3.2.6 Optiikan suunnittelu Optisen systeemin valinta Hionnan laatu Tarkkuus oltava ~ /10 (Hubble /20) Pääpeilin tuenta Aktiivinen optiikka Suojaus hajavaloa vastaan (baffling) NOT:n hajavalon vähentäminen (Grundahl & Sörensen, 1996) TT:n perusteet , luento 3,
31 3.2.6 Terminen suunnittelu Eliminoimalla lämpölähteitä -> parempi seeing Lämpölähteitä: Teleskooppi, peili, rakenteet Teleskooppirakennus Instrumentti Havaitsija Huoltorakennukset, ympäröivä observatorio Maaperä TT:n perusteet , luento 3,
32 3.2.6 Terminen suunnittelu Miten terminen suunnittelu näkyy kuvassa? TT:n perusteet , luento 3,
33 3.2.6 Havaintopaikan valinta Pilvisiä öitä mahdollisimman vähän Kuiva ilmasto Sijainti korkealla (ohut ilmakehä, taivas tumma) Hyvä seeing (voi vaihdella paljon paikallisesti) Pieni valosaaste Ympäröivä infrastruktuuri Hyviä havaintopaikkoja: La Palma, Havaiji, Chile, Arizona, Australia, Etelä-Afrikka TT:n perusteet , luento 3,
34 3.2.6 Havaintopaikan valinta Tehtävä: ESO päätti sijoittaa 42 metrisen E-ELT teleskoopin Cerro Armazones-vuorelle Atacaman (Chile) autiomaahan. Paikka sijaitsee n. 20 km ESO:n Cerro Paranal:n observatoriosta. Mitkä seikat todennäköisesti vaikuttivat tähän valintaan? TT:n perusteet , luento 3,
35 3.2.7 Uudet tekniikat Aktiivinen optiikka Adaptiivinen optiikka Mosaikkipeilit Monipeilitelskoopit Interferometria Satelliittihavainnot TT:n perusteet , luento 3,
36 3.2.7 Aktiivinen ja adaptiivinen optiikka Aktiivinen optiikka: Ohut pääpeili -> muotoa voidaan säätää Hyödyt: Pienempi paino ja parempi kuvalaatu Adaptiivinen optiikka Korjaa ilmakehän muutoksia jopa 1000 kertaa sekunnissa Aaltorintaman muotoa seurataan koko ajan ja muutokset kompensoidaan apupeilillä TT:n perusteet , luento 3,
37 3.2.7 Mosaiikkiteleskoopit Suurten monoliittipeilien yläraja ~8 metriä Mosaiikkiteleskooppi koostuu pienemmistä osista ja toimii kuin yksipeilinen Valmistaminen ja aktiivinen optiikka helpompaa Keck 2, Maua Kea TT:n perusteet , luento 3,
38 3.2.7 Monipeiliteleskoopit Erillisiä teleskooppeja yhdistetään Mahdollistaa interferometrian Esim. VLT-I, Keck 1-2, Large Binocular Telescope LBT ja Keck 1-2 teleskoopit (Kuvat: A.Ceranski ja NASA/JPL TT:n perusteet , luento 3,
39 3.2.7 Optinen interferometria Yhdistetään usea teleskooppi => resoluutio, joka on sama kuin teleskooppien välinen etäisyys Vaatii teleskooppien välimatkan tarkkaa hallintaa TT:n perusteet , luento 3,
40 3.2.7 Optiset satelliittihavainnot Hyöty: Pääsee eroon ilmakehän vaikutuksista Haitat: Kallista Avaruuden hiukkassäteily Havintolaitteiden korjaaminen vaikeata Satelliitteja: Hipparcos ( ) Hubble ST ( ??) Pienet satelliitit: Kepler, COROT... COROT & Kepler (CNES & NASA) TT:n perusteet , luento 3,
41 3.2.8 Teleskooppeja Suomen suurimpia: Turlan Cassegrain 1.03 m Metsähovin Ritchey-Chretien 60 cm Maailman suurimpia Keck 1 ja 2, 10 m (Mauna Kea) GTC, 10.4 m (La Palma) VLT 1-4, 4 x 8.2 m (ESO-Paranal) Subaru, 8.2 m (Mauna Kea) LBT, 2 x 8.4 m (Mt. Graham) Gemini North & South, 8.1 m (Mauna Kea & Cerro Pachon) Tulevaisuuden hankkeita: GMT, 21.4 m (2018?, Las Campanas) E-ELT, 42 m (2018?, Cerro Armazones) E-ELT (ESO) TT:n perusteet , luento 3,
42 3.3 Ilmaisimet ja mittalaitteet Ilmaisimien historiaa: -> 1800-luku: Silmä 1840-luku: Valokuvaus 1930-luku: Valomonistinputki 1970-luku: Puolijohdeilmaisimet (erit. CCD-kamera) Valomionistinputki (Wikipedia) TT:n perusteet , luento 3,
43 3.3.1 Silmä ja valokuvaus Silmällä tehtäviä havaintoja ei käytännössä ammattimaisessa tähtitieteessä enää käytetä Valokuvausfilmi oli huomattava parannus -> objektiivinen tallenne + hyvä resoluutio Valokuvauslevyn ongelmat: Epälineaarinen herkkyys Huono kvanttihyötysuhde => valokuvauslevyjä ei enää käytetä tutkimustyössä TT:n perusteet , luento 3,
44 3.3.2 Fotometri Fotometrin osia: Diafragma Suodin Kenttälinssi Valomonistinputki Elektroniikka: digimuunnin integrointi tallennus Automaattiset fotometriset teleskoopit Wolfgang & Amadeus (AIP) Monivärifotometri (V. Piirola) TT:n perusteet , luento 3,
45 3.3.3 CCD-kamera CCD = Charge Coupled Device) Ylivoimainen ominaisuuksiltaan: Korkea kvanttihyötysuhde (80-90%) Lineaarinen ja stabiili Laaja aallonpituusalue Kestää hyvin ylivalottumista Kuva suoraan digitaalisessa muodossa Suurimmat ongelmat: Kohinat ja pikselien herkkyysvaihtelut Saturaatio Vaatii jäähdytystä Hinta UV-alueelle sopiva CCD (Wikipedia) TT:n perusteet , luento 3,
46 3.3.3 CCD-kamera Puolijohdeilmaisin: Suorakulmainen doopattu Si pikselihila Valosähköisen ilmiön takia irronnut elektroni jää vangiksi pikseliin => lasketaan pikseliin osuneet fotonit Luetaan valotuksen jälkeen CCD:n lukeminen (Wikipedia) CCD blooming : Ylivalottuminen -> elektronit vuotavat (Hammatsu learning Center) TT:n perusteet , luento 3,
47 3.3.3 CCD-kuvan kohina Fotonikohina Statistinen Pidempi valotus -> pienempi Lukukohina: Nykyisin pieni Pimeävirta -> kasvaa valotusajan suhteessa Pikselien herkkyysvaihtelut Korjataan flat field -kuvilla TT:n perusteet , luento 3,
48 3.3.4 Spektrometrit Dispersiivinen elementti: Prisma Hila Grism: Uurrettu prisma Objektiivispektrografi Rakospektrografi Erityisratkaisuja Echelle-spektrogtafi Fourier-spektrografi Prisma (Wikipedia, animaatio ei toimi PDF:nä) Spektrometrin malli (Nilsson et al. 2003) TT:n perusteet , luento 3,
49 3.3.5 Polarimetrit Säteilyn polisaatiota kuvataan Stokesin parametreilla: I, Q, U, V Polarisaatio mitataan asettamalla ilmaisimen eteen polarisaattorin: Kaksinaistaittava materiaali Polaroidilevy λ/2 ja λ/4 aaltolevyt TT:n perusteet , luento 3,
5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys
5. Kaukoputket ja observatoriot
5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys 4. Fokus 5. Kuvan laatuun vaikuttavia tekijöitä 6. Observatorion sijoituspaikka 5.1 Teleskooppia kuvaavat
6. Kaukoputket ja observatoriot
6. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 23.2.2012 Kalvot: Jyri Näränen ja Thomas Hackman HTTPKI, kevät 2011, luento 4 1 6. Kaukoputket ja observatoriot Perussuureet
Havaitsevan tähtitieteen pk I, 2012
Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin
Kaukoputket ja observatoriot
Kaukoputket ja observatoriot Helsingin yliopisto, Fysiikan laitos kevät 2013 7. Kaukoputket ja observatoriot Perussuureet Klassiset optiset ratkaisut Teleskoopin pystytys Fokus Kuvan laatuun vaikuttavia
Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän
Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4.
Yleistä kurssiasiaa! Ekskursio 11.4.! Tentti 12.5. klo 10-14! Laskarit alkavat tulevaisuudessa 15.45, myös ensi tiistaina vaikka silloin ei ole luentoa! Laskaripisteet tulevat verkkoon (opiskelijanumerolla
Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.
4. Kaukoputket, observatoriot ja ilmaisimet
4. Kaukoputket, observatoriot ja ilmaisimet Havaitsevan tähtitieteen peruskurssi I, luento 10.2.2011 Thomas Hackman HTTPKI, kevät 2011, luento 4 1 4. Kaukoputket ja observatoriot Perussuureet Klassiset
Havaitsevan tähtitieteen peruskurssi I
4. Teleskoopit ja observatoriot Lauri Jetsu Fysiikan laitos Helsingin yliopisto (kuva: @garyseronik.com) Tavoite: Kuvata, kuinka teleskooppi rakennetaan aiemmin kuvatuista optisista elementeistä Teleskoopin
Havaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin
Havaitsevan tähtitieteen peruskurssi I, kevät 2007
Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
Havaitsevan tähtitieteen peruskurssi I, kevät 2012
Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Luennoitsijat: FT Thomas Hackman & FT Veli-Matti Pelkonen Luentoajat: To 14-16, periodit 3-4 Kotisivu: http://www.helsinki.fi/astro/opetus/kurssit/havaitseva
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Galilei 1609 Italiassa, keksitty edellisenä vuonna Hollannissa(?) vastasi teatterikiikaria (kupera objektiivi, kovera okulaari) Kepler 1610: tähtititeellinen
Havaitsevan tähtitieteen peruskurssi I, kevät 2008
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: J. Lehtinen Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
Havaitsevan tähtitieteen peruskurssi I Johdanto
Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti:
Teleskoopit ja observatoriot
Teleskoopit ja observatoriot Teleskoopin ensisijainen tehtävä on kerätä mahdollisimman paljon valoa (fotoneja) siihen liitettyyn instrumenttiin (kuten valokuvauslevy tai CCD-kamera). Kaukoputkea kuvaavat
Havaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen
Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik)
Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik) 11. Uusi havaintoteknologia 1. Suuret teleskoopit 2. Monipeili- ja mosaiikkiteleskoopit 3. Aktiivinen ja adaptiivinen optiikka
Havaitsevan tähtitieteen pk 1 Luento 5: Ilmaisimet ja uudet havaintotekniikat. Jyri Näränen
Havaitsevan tähtitieteen pk 1 Luento 5: Ilmaisimet ja uudet havaintotekniikat Jyri Näränen Metsähovin ekskursio Keskiviikko 11.3. klo 18.30-> Tutustutaan teleskooppeihin ja observatorioalueeseen Jos sää
6. Ilmaisimet ja uudet havaintotekniikat. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman (Kalvot: J.
6. Ilmaisimet ja uudet havaintotekniikat Havaitsevan tähtitieteen peruskurssi I, luento 21.2.2008 Thomas Hackman (Kalvot: J. Näränen) 6. Ilmaisimet ja uudet havaintotekniikat 1. Silmä, valokuvaus, valomonistinputki
Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit
Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.
13. Uusi havaintoteknologia
13. Uusi havaintoteknologia E-ELT Havaitsevan tähtitieteen peruskurssi I, Kevät 2017 Thomas Hackman (kalvot: Jyri Näränen, Mikael Granvik, Veli-Matti Pelkonen ja TH) 13. Uusi havaintoteknologia Mosaiikki
Havaitsevan tähtitieteen pk 1 Luento 6: Ilmaisimet ja uudet havaintotekniikat. Jyri Näränen
Havaitsevan tähtitieteen pk 1 Luento 6: Ilmaisimet ja uudet havaintotekniikat Jyri Näränen Metsähovin ekskursio Tutustutaan teleskooppeihin ja observatorioalueeseen Jos sää on hyvä niin myös pyritään havaitsemaan
Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia. (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen)
Havaitsevan tähtitieteen pk 1, Luento 13: Uusi havaintoteknologia (kalvot: Jyri Näränen, Mikael Granvik ja Veli-Matti Pelkonen) 13. Uusi havaintoteknologia 1. Mosaiikki vs. Monoliitti CCD 2. CMOS vs. CCD
Harjoitukset (20h): Laskuharjoitukset: 6x2h = 12h Muut harjoitukset (ryhmätyöskentely): 8h Luentomateriaali ja demot:
Tähtitieteen perusteet (5 op): FT Pasi Nurmi/Tuorlan Observatorio, pasnurmi@utu.fi Luento-opetus ja seminaarit (30h): Aikataulu Ma 12.15-17 Ti 12.15-17 Ke 12.15-17 To 12.15-17 Pe 12.15-17 1.vko Luennot
Havaitsevan tähtitieteen peruskurssi I
1. Historia Lauri Jetsu Fysiikan laitos Helsingin yliopisto Johdanto Luennot (kuva: @www.astro.utu.fi) Lauri Jetsu (lauri.jetsu@helsinki.fi) Veli-Matti Pelkonen (veli-matti.pelkonen@helsinki.fi) Paikka
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,
Havaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 3.5.2012, T Hackman & V-M Pelkonen 1 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannattaa käyttää? Minkälaista teleskooppia millekin
NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin
NOT-tutkielma ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin 2 Johdanto Osallistuimme NOT-projektiin, joka on tähtitiedeprojekti lukiolaisille. Projektiin kuului tähtitieteen
3 Havaintolaitteet. 3.1 Ilmakehän vaikutus havaintoihin
3 Havaintolaitteet 3.1 Ilmakehän vaikutus havaintoihin Vain pieni osa sähkömagneettisesta säteilystä pääsee ilmakehän läpi. aallonpituus 0.001 nm 0.01 nm 0.1 nm 1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm
Kokeellisen tiedonhankinnan menetelmät
Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein
Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta
Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo
Polarimetria Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Sisällys 1. Polarimetria 1 2 1.1 Polarisaatio yleisesti 2 1.2 Lineaarinen polarisaatio 3 1.3 Ympyräpolarisaatio
7.4 Fotometria CCD kameralla
7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion
Havaitseva tähtitiede 1
Havaitseva tähtitiede 1 19. elokuuta 2009 Leo Takalo puh. 3338229 email: takalo@utu.fi Kirjallisuutta Nilsson, Takalo, Piironen: Havaitseva tähtitiede I (kurssikirja) Kitchin: Astrophysical techniques
CCD-kamerat ja kuvankäsittely
CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate
11. Astrometria, ultravioletti, lähiinfrapuna
11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan
Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8.2.6 Échelle-spektroskooppi Harva hila, n. 50 viivaa/mm Suuri blaze-kulma, n. 60 Havaitaan korkeita kertalukuja, m 20 60 suuri dispersio ja
8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 18.3. ja 25.3.2010 Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä Magnitudijärjestelmät
Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen
Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu Luento 9.4.2015, V-M Pelkonen 1 1. Luennon tarkoitus Havaintoaikahakemuksen (teknisen osion) valmistelu Mitä kaikkea pitää ottaa
3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu
3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan
5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5
5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka
10. Spektrometria. Havaitsevan tähtitieteen luennot & Thomas Hackman. HTTPK I kevät
10. Spektrometria Havaitsevan tähtitieteen luennot 30.3. & 6.4.2017 Thomas Hackman HTTPK I kevät 2017 1 10. Spektrometria Sisältö: Peruskäsitteet Spektrometrin rakenne Spektrometrian käyttö Havainnot ja
Tähtitieteen pikakurssi
Tähtitieteen pikakurssi Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on
8. Fotometria (jatkuu)
8. Fotometria (jatkuu) 1. Magnitudijärjestelmät 2. Fotometria CCD kameralla 3. Instrumentaalimagnitudit 4. Havaintojen redusointi standardijärjestelmään 5. Kalibrointi käytännössä 6. Absoluuttinen kalibrointi
8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN, TH, VMP)
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 2.11. ja 9.11.2017 Thomas Hackman (Kalvot JN, TH, VMP) HTTPKI, syksy 2017, luennot 2.11. ja 9.11. 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä
Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen
Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.
7.-8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
7.-8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja 15.3.2012 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) HTTPKI, kevät 2012, luennot 7-8 1 7. Fotometria Sisältö: Johdanto Peruskäsitteitä
7. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8
7. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 17.3. ja 24.3.2011 Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8 1 8. Fotometria n Sisältö: q q q q q q q q q q Johdanto
9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 11. Muut aaltoalueet 1. 2. 3. 4. 5. 6. Gamma Röntgen Ultravioletti Lähiinfrapuna Infrapuna
Havaitsevan tähtitieteen peruskurssi I
Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä
2.11 Tähtiluettelot/tähtikartat
2.11 Tähtiluettelot/tähtikartat - Ptolemaios Almagest (100 jaa) 1025 - Bradley (1700-luvulla) 1000 tähden paikat - Argelander (1800 luvun alku) Bonner Durchmusterung (BD) 324 000 m
10. Fotometria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
10. Fotometria Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 10. Fotometria Sisältö: Johdanto Peruskäsitteitä Magnitudijärjestelmät Fotometrit Fotometria
1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.
Polarimetria Tekijät: Immonen Antti, Nieminen Anni, Partti Jussi, Pylkkänen Kaisa ja Viljakainen Antton Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4.
9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria
9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1
La Palma ja NOT. Auni Somero Tuorlan observatorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto 3.10.2012
La Palma ja NOT Auni Somero Tuorlan observatorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto 3.10.2012 28 45 26.2 N 17 53 06 W 60 10 14 N 24 56 15 E Lanzarote Teneriffa Fuerteventura Gran Canaria
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
Kaukoputkikurssin 2005 diat
Kaukoputkikurssin 2005 diat Järjestäjänä: Warkauden Kassiopeia ry. Kurssin vetäjät: Harri Haukka Jari Juutilainen Kurssin sisältö Kaukoputkien esittelyä mikä on kaukoputki ja mitä sillä näkee? kasaamme
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit
10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma
MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen
Fotometria ja avaruuskuvien käsittely
NOT-tiedekoulu 2011 Fotometria ja avaruuskuvien käsittely Rapusumu Ryhmä 2: Anna Anttalainen, Oona Snicker, Henrik Rahikainen, Arttu Tiusanen ja Sami Seppälä Sisällysluettelo 1 Fotometria 1.1 Johdantoa
Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit
Havaitsevan tähtitieteen peruskurssi I
5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään
Optiikkaa. () 10. syyskuuta 2008 1 / 66
Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten
Havaitsevan tähtitieteen pk1 luento 4, Ilmaisimet ja Kuvankäsittely. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 4, Ilmaisimet ja Kuvankäsittely Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 4. Ilmaisimet ja Kuvankäsittely 1. Silmä, valokuvaus, valomonistinputki 2.
Kauniiden kuvien valmistus Nordic Optical Telescopella
1/16 Kauniiden kuvien valmistus Nordic Optical Telescopella Pauli Kemppinen Niina Kokkola Ville Ollikainen Jaakko Reponen Aksu Tervonen Mikkelin lukio 23.1.2011 matka 5.12. - 12.12.2010 2/16 Sisällysluettelo
Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste
Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily
FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA
FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi
Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio
Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz
Polarisaatio. Timo Lehtola. 26. tammikuuta 2009
Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu
Radioteleskooppi. Alt atsimutaalinen pystytys. Apupeilin kiinnitys. Peilin tukirakenne. Apupeilin kannattajat. Elevaatio enkooderi.
Radioteleskooppi Apupeilin kiinnitys Peilin tukirakenne Apupeilin kannattajat Elevaatio enkooderi Jalusta Kiskot Perusta Atsimuuttienkooderi Alt atsimutaalinen pystytys Antennin pystytys + Keila ei kierry
Havaitsevan tähtitieteen peruskurssi I
CCD kamera 6. CCD kamera Lauri Jetsu Fysiikan laitos Helsingin yliopisto CCD kamera CCD-kamera Yleistä (kuvat: @www.astro.virginia.edu) CCD-sirun valoherkät elementit: rivittäin pikseleitä + Kvanttitehokkuus:
7.4 PERUSPISTEIDEN SIJAINTI
67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli
Fotometria. Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen
Fotometria Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen Sisällysluettelo 1 1. Fotometria 2 1.1 Fotometrian teoriaa 2 1.2 Peruskäsitteitä 2 1.3 Magnitudit 3 1.4 Absoluuttiset
UrSalo. Laajaa paikallista yhteistyötä
UrSalo Laajaa paikallista yhteistyötä Ursalon ja Turun Ursan yhteistyö Tähtipäivät 2011 ja Cygnus 2012 Kevolan observatorio Tähtitieteen kurssit Yhteistyössä Salon kansalaisopiston ja Tuorlan tutkijoiden
1 00:00:05,240 --> 00:00:08,840 Viemällä näköaistimme kauas esi-isiemme mielikuvituksen ulkopuolelle,
1 00:00:05,240 --> 00:00:08,840 Viemällä näköaistimme kauas esi-isiemme mielikuvituksen ulkopuolelle, 2 00:00:08,920 --> 00:00:13,200 nämä ihmeelliset instrumentit, kaukoputket, avaavat tien yhä syvempään
Faktaa ja fiktiota Suomi-asteroideista
Aurinkokuntatapaaminen 2019 Faktaa ja fiktiota Suomi-asteroideista Hannu Määttänen Yrjö Väisälä 1891 1971 Kuva: Turun yliopisto Kuva: Turun yliopisto Akateemikko Yrjö Väisälä ja observaattori Liisi Oterma
TÄHTITIETEEN PERUSKURSSI II Periodi IV, 2009 Harry J. Lehto, Ph.D., Dos Pasi Nurmi, FT
TÄHTITIETEEN PERUSKURSSI II Periodi IV, 2009 Harry J. Lehto, Ph.D., Dos Pasi Nurmi, FT hlehto@utu.fi, 3338290, http://www.astro.utu.fi/hlehto pasnurmi@utu.fi, 3338984 Demot: Samuli Kotiranta (jankot@utu.fi)
Teoreettisia perusteita I
Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran
Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely. Jyri Näränen
Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely Jyri Näränen 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen tekeminen 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja
Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik
Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik 7. Kuvankäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen
Löytöretki maailmankaikkeuteen
ESO Euroopan eteläinen observatorio Löytöretki maailmankaikkeuteen ESO ja tähtitiede Tähtitiedettä kutsutaan usein vanhimmaksi tieteeksi. Kirkkaana pimeänä yönä taivasta halkovan majesteettisen Linnunradan
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden
Työ 2324B 4h. VALON KULKU AINEESSA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada
SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma
SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta
matematiikka Tapio Helin Nuorten akatemiaklubi Helsinki 16.02.2015 Matematiikan ja tilastotieteen laitos
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Leipätyönä sovellettu matematiikka Tapio Helin Nuorten akatemiaklubi Helsinki 16.02.2015 Matematiikan ja tilastotieteen laitos Tapio Helin
Havaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Datan käsittely Helsingin yliopisto, Fysiikan laitos kevät 2013 3. Datan käsittely Luennon sisältö: Havaintovirheet tähtitieteessä Korrelaatio Funktion sovitus Aikasarja-analyysi 3.1 Havaintovirheet Satunnaiset
Spektrometria. Mikkelin Lukio NOT-projekti La Palma saarella
Mikkelin Lukio NOT-projekti La Palma saarella Spektrometria Tekijät: Tuomas Nykänen, Vili Paanila, Anna Maria Peltola, Petro Silvonen,Josua Viljakainen 1 Sisällysluettelo: 1. Johdanto......3 2. Teoria......4
d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia
7. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.
7. Kuvankäsittely 1. CCD havainnot 2. CCD kuvien jälkikäsittely 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja 6. Demo 7.1 CCD havainnot 1. Jäähdytys 2. Darkit (jos tarpeen) 3. Biakset
Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)
Kohina Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) N on suoraan verrannollinen integraatioaikaan t ja havaittuun taajuusväliin
12. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.
12. Kuvankäsittely 1. CCD havainnot 2. CCD kuvien jälkikäsittely 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja 6. Demo 12.1 CCD havainnot 1. Jäähdytys 2. Darkit (jos tarpeen) 3. Biakset