Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Samankaltaiset tiedostot
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

,ܾ jaü on annettu niin voidaan hakea funktion

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Estimointi. Vilkkumaa / Kuusinen 1

Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

7. laskuharjoituskierros, vko 10, ratkaisut

Sovellettu todennäköisyyslaskenta B

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin (2008) 1/5

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

tilastotieteen kertaus

Väliestimointi (jatkoa) Heliövaara 1

Sovellettu todennäköisyyslaskenta B

Maximum likelihood-estimointi Alkeet

Korrelaatiokertoinen määrittely 165

Osa 2: Otokset, otosjakaumat ja estimointi

Sovellettu todennäköisyyslaskenta B

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Todennäköisyyden ominaisuuksia

Regressioanalyysi. Kuusinen/Heliövaara 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Sovellettu todennäköisyyslaskenta B

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Tilastollinen aineisto Luottamusväli

3.6 Su-estimaattorien asymptotiikka

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Ó Ó Ó

Regressioanalyysi. Vilkkumaa / Kuusinen 1

y=-3x+2 y=2x-3 y=3x+2 x = = 6

Sovellettu todennäköisyyslaskenta B

6.1.2 Luottamusjoukon määritelmä

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

V ar(m n ) = V ar(x i ).

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

9. laskuharjoituskierros, vko 12-13, ratkaisut

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Johdatus regressioanalyysiin. Heliövaara 1

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Tekijä Pitkä matematiikka

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Testejä suhdeasteikollisille muuttujille

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Differentiaalilaskenta 1.

Kopulafunktiot. Joonas Ollila 12. lokakuuta 2011

6. laskuharjoitusten vastaukset (viikot 10 11)

Moniulotteiset satunnaismuuttujat ja jakaumat

origo III neljännes D

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Kohdeyleisö: toisen vuoden teekkari

1 Ensimmäisen asteen polynomifunktio

031021P Tilastomatematiikka (5 op) viikko 6

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

805306A Johdatus monimuuttujamenetelmiin, 5 op

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Matematiikan tukikurssi, kurssikerta 3

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

4.0.2 Kuinka hyvä ennuste on?

Sovellettu todennäköisyyslaskenta B

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Valintahetket ja pysäytetyt martingaalit

Transkriptio:

24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ Ý ja satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on Määritä µ, µ ja ÓÖ µ. µ Ratkaisu: Kaksiulotteisen normaalijakauman tapauksessa regeressiofunktiot ovat ݵ Ý µ µ µ missä siis µ, µ, ÎÖ µ, ÎÖ µ ja ÓÖ µ. Jos ݵ korvataan :llä ja µ korvataan Ý:llä saadaan regressiosuorat Ý µ Ý Ý µ ja sijoittamalla Ý edelleiseen ja jälkimmäiseen yhtälöön, nähdään, että kumpikin suora kulkee pisteen µ kautta. Lasketaan siis annetujen suorien leikkauspiste ja sijoittamalla edellisestä yhtälöstä jälkimmäiseen saadaan Ý Ý Ý josta seuraa, että Ý. Sijoittamalla tämä luku edelliseen yhtälöön saadaan. Todetaan siis, että ja. Koska niin saadaan µ µ joten koska kulmakertoimet ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee. 2. Olkoot pisteet Ý µ, annettu ja oletetaan, etteivät kaikki :t ja etteivät kaikki Ý :t ole yhtä suuria. Miten voidaan järkevällä tavalla sovittaa tähän pistejoukkoon suora? Ratkaisu: Ensimmäinen tapa on valita suora Ý ¼ siten, että ¼ Ý on mahdollisimman pieni.

Jos merkitään ¼ µ È ¼ Ý niin, olettaen että pienin arvo saavutetaan jossain pisteessä (mikä ei ole kovin vaikeata osoittaa), niin siinä pisteessä pätee ¼ ¼ µ ¼ µ ¼. Tästä saadaan yhtälösysteemi ¼ ¼ ¼ ¼ Ý Ý Tämän yhtälösysteemin ratkaisu voidaan hakea monella eri tavalla ja tässä valitaan niistä yksi: Merkitään È ja Ý È Ý. Silloin ensimmäisestä yhtälöstä seuraa, että ¼ Ý eli Ý ¼ Käyttäen tätä tulosta nähdään, että jälkimmäisestä yhtälöstä seuraa, että ¼ ¼ Ý µ ¼ Ý ¼ ݵ µ Tästä voidaan ratkaista ja saadaan µ Ý Ýµ µ µ ¼ ¼ Ý Ý µ Ý Ýµ ¼ missä Ý Näin ollen suoran kulmakerroin on È µ Ý Ýµ È Ý µ µ Ý Ýµ ja µ että Ý Ö Ý Ý Toinen tapa on vaihtaa :n ja Ý:n paikka laskuissa jolloin on haettava luvut ¼ ja siten, ¼ Ý on mahdollisimman pieni.

Silloin saadaan, samalla tavalla kuin edellä Tällä tavalla saadun suoran kulmakerroin on Ý Ý ¼ Ý Ý Ý Ý ÖÝ Tästä nähdään, että saadaan samat suorat ainoastaan siinä tapauksessa, että Ö Ý. Mutta koska ¼ Ý ja ¼ Ý niin piste ݵ on sekä suoralla Ý ¼ että suoralla ¼ Ý eli tämä piste on suorien leikkauspiste kun Ö È Ý. Kolmas tapa valita suora Ý ¼ on valita se siten, että on mahdollisimman pieni missä on pisteen Ý µ etäisyys suorasta Ý ¼. Jos lisäksi vaaditaan, että niin on valittava, ja siten, että Ý µ on mahdollisimman pieni. Näin ollen saamme Lagrangen funktion µ È Ý µ µ. Tämän funktion gradientin nollakohdat toteuttavat yhtälösysteemin Ý µ Ý µý Ý µ ¼ ¼ ¼ Viimeisestä yhtälöstä seuraa, että Ý ja jos lisäksi viimeinen yhtälö kerrotaan :lla ja vähennetään ensimmäisestä yhtälöstä ja sitten kerrotaan Ý:lla ja vähennetään toisesta yhtälöstä niin saadaan eli µ Ý Ýµ µ µ Ý Ýµ Ý Ýµ Ý Ý Ý eli kyseessä on ominaisarvoprobleema jolla on kaksi ominaisvektoria joista toinen antaa kohdefunktiolle minimin ja toisen maksimin. Jos tästä laskee eteenpäin todetaan, että minimi saavutetaan kun suoran kulmakerroin on Õ Ý Ý µ Ý Ý

ja suora kulkee pisteen ݵ kautta. Erikoisesti jos Ý niin kulmakerroin on jos Ý ¼ ja jos Ý ¼. Jos kahdella ensimmäisellä tavalla laskettujen suorien kulmakertoimet ovat Ý ja niin tällä tavalla laskettu kulmakerroin on ¼ ¼ Ý Ý Ý Ý Ý ¼ Ý ¼ 3. Oletetaan, että pisteet Ý µ, on annettu ja että ¼ ja on laskettu pienimmän neliösumman menetelmän avaulla, eli Osoita, että jos niin ja Ý ja ¼ Ý ¼ Ý Ö Ý µ Õ µ Ö Ô Ý Ô Ratkaisu: Yksinkertaisella laskulla osoitetaan, että ¼ Ý µ Ý Ýµ joten Ö Ý Ý µ µ Ý Ýµ Ý Ýµ µ Ý Ý Ý Ý µ Ý µ Ý Ö Ý Ý Ý Ý µ Ý Ö Ý µ Koska määritelmän mukaan Ý Ý Ö Ý Ö Ý µ Ý Ö Ý µ

niin Ö Ö Ý µ Ý Tästä seuraa, että µ Ö Ý µ Ö Ô Ý Ô Ö Ý µ koska ja Ö Ý ovat samanmerkkiset. µ µ Ö Ý 4. Oletetaan, että ¼, missä Æ ¼ µ ovat riippumattomia. Määritellään satunnaismuuttuja È µ µ È µ Määritä :n jakauma. Ratkaisu: Koska satunnaismuuttujat ovat riippumattomia ja normaalijakautuneita, niin myös satunnaismuuttujat ovat riippumattomia ja normaalijakautuneita. Lisäksi µ µ ¼ ¼ joten nähdään, että on riippumattomien normaalijakautuneiden satunnaismuuttujien summa jolloin on myös normaalijakautunut ja µ È µ ¼ µ È µ È µ ¼ µµ È µ È µ µ È µ Koska :t ovat riippumattomia ja jokaisen :n varianssi on saadaan varianssiksi È µ ÎÖ µ È µ µ È µ 5. Oletetaan, että ¼, missä Æ ¼ µ ovat riippumattomia. Jos nyt ¼ ¼ missä ¼ Æ ¼ µ niin voidaan muodostetaa satunnaismuuttujan odotusarvon µ kaavalla missä Määritä Í:n jakauma. Í ¼ È µ µ È µ µ

Ratkaisu: Selvästikin Í µ µ µ µ ¼ µ ¼ joten estimaattori on harhaton. Aikasempien tulosten perusteella µ µ ja µ ovat riippumattomia ja siitä seuraa, että ja ovat riippumattomia. Koska molemmat ovat normaalijakautuneita todetaan, että Í on myös normaalijakautunut ja sen varianssi on ÎÖ Í µ ÎÖ µ µ ÎÖ µ µ È µ 6. Oletetaan, että ¼, missä Æ ¼ µ ovat riippumattomia. Havaintoaineistosta Ý µ, ¼ on laskettu tunnusluvut ¼, Ý,, Ý ¼ ja Ý ¼. Jos nyt ja ¼ missä Æ ¼ µ, niin määritä %:n luottamusväli odotusarvolle µ ¼. Ratkaisu: Havaintoaineistosta laskettu regressiosuora on Ý ¼ Ý Ý Korrelaatiokertoimeksi saadaan ¼ ja ¼ Ý ¼¼ Ö Ý ja jäännösvarianssin estimaatiksi saadaan Nyt Ý Ý ¼ Ý Ö Ý µ µ missä Jos nyt Ý ¼ Ý ¼ µ ¼ missä Í µ È µ µ È µ niin aikaisempien tulosten perusteella Í Æ Lisäksi voidaan osoittaa, että ¼ µ È µ Í ¼ µ Õ Ø µ Ë µ È µ

missä Ë È µ µµ. Koska halutaan laskea %:n luottamusväli on laskettava ؼ¼¼ ¼ µ ja koska ¼ niin %:n luottamusväliksi saadaan ¼ È ¼ µ µ ¼¼ ¼¼ ¼ ¼¼ ¼ 7. Havaintoarvoista Ý µ on laskettu Ö Ý ¼. Muodosta korrelaatiokertoimelle %:n luottamusväli käyttäen hyväksi Fisherin Þ-muunnosta Þ Ö Ð ÖÝ, jolloin vastaava satunnaismuuttuja ainakin approksimatiivisesti (tietyin ole- Ö Ý tuksin) noudattaa jakaumaa Ö Æ Ð Ratkaisu: Jos Í Æ µ ja on saatu havaintoarvo Ù niin :n %:n Õluottamusväli on Ù Þ¼¼¼ Ù Þ¼¼¼ missä siis Þ¼¼¼. Tässä tapauksessa ¼ ja Ù Ð ¼µ ¼¼¼. Näin ollen saadaan ¼µ Ð :lle luottamusväliksi ¼¼¼ ¼ ¼¼¼ ¼ ¼¼ ¼¼ Yksinkertainen lasku osoittaa, että Þ Ö Ð täsmälleen silloin kun Ö eþ Ö e Þ ja koska tämä funktio on kasvava niin saadaan :lle (approksimatiivinen) luottamusväli e ¼¼µ e ¼¼µ e¼¼ e ¼¼ ¼ ¼¼.