Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Samankaltaiset tiedostot
Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op

Toispuoleiset raja-arvot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Johdatus reaalifunktioihin P, 5op

Funktiot ja raja-arvo. Pekka Salmi

5.6 Yhdistetty kuvaus

MATP153 Approbatur 1B Harjoitus 6 Maanantai

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

Johdatus matemaattiseen päättelyyn

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

Tenttiin valmentavia harjoituksia

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

Johdatus matematiikkaan

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

5 Differentiaalilaskentaa

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Täydellisyysaksiooman kertaus

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

Sisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25

2 Funktion derivaatta

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Ratkaisuehdotus 2. kurssikoe

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Reaalilukuvälit, leikkaus ja unioni (1/2)

Ratkaisuehdotus 2. kurssikokeeseen

Matematiikan tukikurssi

Matematiikan peruskurssi 2

3 Derivoituvan funktion ominaisuuksia

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Matematiikan peruskurssi 2

Diskreetti matematiikka Toinen välikoe Vastauksia. 1. Olkoot X = {a, b, c, d} ja Y = {1, 2, 3}, sekä R, S X Y relaatiot

6 Eksponentti- ja logaritmifunktio

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen,

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

Reaalifunktioista 1 / 17. Reaalifunktioista

Ominaisarvot ja ominaisvektorit 140 / 170

Matematiikan tukikurssi

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Analyysi I. Visa Latvala. 26. lokakuuta 2004

Matematiikan tukikurssi

Matematiikan tukikurssi

Positiivitermisten sarjojen suppeneminen

Johdatus matemaattiseen päättelyyn

Derivaatan sovellukset (ääriarvotehtävät ym.)

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Johdatus matemaattisen analyysin teoriaan

4 Integrointimenetelmiä

Matematiikan tukikurssi

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

1 Reaaliset lukujonot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Matematiikan tukikurssi

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

Kuvaus. Määritelmä. LM2, Kesä /160

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Analyysi A. Raja-arvo ja jatkuvuus. Pertti Koivisto

[E : F ]=[E : K][K : F ].

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Matematiikan tukikurssi, kurssikerta 1

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Koodausteoria, Kesä 2014

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

Transkriptio:

Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään n kappaletta erisuurta nollakohtaa. Pekka Salmi FUNK 9. syyskuuta 2016 33 / 1

Rationaalifunktiot Rationaalifunktio on funktio joka on muotoa R(x) = P(x) Q(x) = a nx n + a n 1 x n 1 + + a 1 x + a 0 b m x m + b m 1 x m 1 + + b 1 x + b 0 missä P(x) ja Q(x) ovat polynomifunktioita. Rationaalifunktion R määritysalue on {x R Q(x) 0} eli koko R lukuunottamatta polynomin Q(x) nollakohtia. Pekka Salmi FUNK 9. syyskuuta 2016 34 / 1

Esimerkki Olkoon R(x) = x + 1 x 2 1. Tällöin R:n määritysalue on R \ { 1, 1}. Voidaan huomata että x + 1 x 2 1 = x + 1 (x 1)(x + 1) = 1 x 1. kun x / { 1, 1}. Täten R voitaisiin luonnollisesti laajentaa funktioksi R 2 : R \ { 1} R, R 2 (x) = 1 x 1. Kuitenkin R ja R 2 ovat eri funktioita (niillä on eri määritysalueet). Pekka Salmi FUNK 9. syyskuuta 2016 35 / 1

Laskutoimituksia funktioilla Funktioiden väliset laskutoimitukset määritellään pisteittäin. Olkoot f : M f R, g : M g R ja c R vakio. Tällöin (f + g)(x) = f (x) + g(x) (fg)(x) = f (x)g(x) ( ) f (x) = f (x) g g(x). (erityisesti (cf )(x) = cf (x)) Luonnollinen määritysalue uusille funktioille on M f M g, paitsi funktion f /g tapauksessa määrittelyalue on (M f M g ) \ {x M g g(x) = 0}. Pekka Salmi FUNK 9. syyskuuta 2016 36 / 1

Summafunktio f (x) = x f (x) + g(x) = x + sin x g(x) = sin x Pekka Salmi FUNK 9. syyskuuta 2016 37 / 1

Yhdistetty funktio Funktioiden f ja g yhdistetty funktio eli yhdiste on funktio (f g)(x) = f ( g(x) ). Yhdistetyn funktion määritysalue on M f g = {x M g g(x) M f }. g f x g(x) f ( g(x) ) f g Joskus funktiota g kutsutaan sisäfunktioksi ja funktiota f ulkofunktioksi. Pekka Salmi FUNK 9. syyskuuta 2016 38 / 1

Esimerkki Olkoon h(x) = x 2 1. Tässä voidaan ajatella että h on kuvausten g(x) = x 2 1 ja f (x) = x yhdiste, sillä f g(x) = f (g(x)) = f (x 2 1) = x 2 1. Pekka Salmi FUNK 9. syyskuuta 2016 39 / 1

Käänteisfunktio Funktio g : Y X on funktion f : X Y käänteisfunktio mikäli (g f )(x) = x kaikilla x X ja (f g)(y) = y kaikilla y Y. Käänteisfunktiota merkitään f 1. Lause Funktiolla f : X Y on olemassa käänteisfunktio täsmälleen silloin kun f on bijektio eli 1 f on injektio: x 1 x 2 = f (x 1 ) f (x 2 ) 2 f on surjektio: f (X ) = Y Todistuksen idea: Määritellään g : Y X asettamalla g ( f (x) ) = x (jotta tämä on järkevää on f :n oltava bijektio). Tällöin g = f 1. Pekka Salmi FUNK 9. syyskuuta 2016 40 / 1

Esimerkki Tutkitaan funktiota f (x) = 3x + π. Nyt y = f (x) = 3x + π x = 1 (y π). 3 ( ) Yhtälöstä ( ) voidaan päätellä, että f : R R on bijektio: 1 f on injektio sillä f (x 1 ) = f (x 2 ) = 3x 1 + π = 3x 2 + π = x 1 = x 2 ; 2 f on surjektio sillä jokaisella y R löytyy x R, jolle f (x) = y (valitaan x = 1 (y π)). 3 Yhtälöstä ( ) voidaan myös nähdä että funktion f käänteiskuvaus f 1 : R R on f 1 (y) = 1 (y π). 3 Siis f 1 (f (x)) = x ja f (f 1 (y)) = y kaikilla x, y R. Pekka Salmi FUNK 9. syyskuuta 2016 41 / 1

Esimerkki Tutkitaan funktiota f (x) = x 2. Onko funktiolla f käänteisfunktiota? Kysymys on epätarkka. Jos määritysalue M f = R niin ei ole koska f ei tällöin ole injektio (f (x) = f ( x)). Jos määritysalue on esim. M f = [0, [, niin f on injektio, jonka kuvajoukko on [0, [. Käänteisfunktion g määrääminen: Merkitään y = f (x), jolloin x = g(y). Yhtälöstä y = x 2 saadaan x = y, joten g(y) = y. Käänteisfunktio on siis f 1 : [0, [ [0, [, f 1 (y) = y. Pekka Salmi FUNK 9. syyskuuta 2016 42 / 1

Monotoniset funktiot Olkoon M R jokin reaalilukuväli ja f : M R. Funktio f on 1 kasvava jos f (x 1 ) f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 2 vähenevä jos f (x 1 ) f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 3 aidosti kasvava jos f (x 1 ) < f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 4 aidosti vähenevä jos f (x 1 ) > f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 5 monotoninen jos se on kasvava tai vähenevä 6 aidosti monotoninen jos se on aidosti kasvava tai aidosti vähenevä. Pekka Salmi FUNK 9. syyskuuta 2016 43 / 1

Tehtävä Keksi esimerkit seuraavanlaisista funktioista mikäli mahdollista. 1 Aidosti vähenevä. 2 Aidosti vähenevä muttei vähenevä. 3 Kasvava muttei aidosti kasvava. 4 Sekä kasvava että vähenevä. Pekka Salmi FUNK 9. syyskuuta 2016 44 / 1

Aidosti monotonisella funktiolla on käänteisfunktio Lause Olkoon M R väli ja f : M R aidosti monotoninen. Tällöin f on injektio ja erityisesti f : M f (M) on bijektio. Funktion f käänteiskuvaus f 1 : f (M) M on aidosti kasvava jos f on aidosti kasvava ja f 1 on aidosti vähenevä jos f on aidosti vähenevä. Pekka Salmi FUNK 9. syyskuuta 2016 45 / 1

Todistus: f on injektio Todistus Oletetaan että f on aidosti kasvava (tapaus missä f on aidosti vähenevä on vastaava). Jos x 1, x 2 M ja x 1 x 2, niin joko x 1 < x 2 tai x 1 > x 2. Koska f on aidosti kasvava, niin ensimmäisessä tapauksessa f (x 1 ) < f (x 2 ) ja toisessa f (x 1 ) > f (x 2 ). Joka tapauksessa f (x 1 ) f (x 2 ), joten f on injektio. Täten f : M f (M) on bijektio ja sillä on käänteisfunktio f 1 : f (M) M. Pekka Salmi FUNK 9. syyskuuta 2016 46 / 1

Todistus: f 1 on aidosti kasvava Todistus jatkuu Osoitetaan vielä että f 1 on aidosti kasvava. Tehdään vastaoletus että näin ei ole. Tällöin on olemassa sellaiset y 1, y 2 f (M) että y 1 < y 2 mutta f 1 (y 1 ) f 1 (y 2 ). Nyt y 1 = f (x 1 ) ja y 2 = f (x 2 ) joillain x 1, x 2 M. Siis x 1 = f 1 (y 1 ) f 1 (y 2 ) = x 2. Siis x 1 x 2 mutta f (x 1 ) < f (x 2 ) mikä on ristiriita sen kanssa että f on aidosti kasvava. Pekka Salmi FUNK 9. syyskuuta 2016 47 / 1