Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen kolme alkiota sisältävä särmäjoukko E [V ] tuottaa kokoelmaan H kuuluvan verkon. Tällöin joukon H koko selviää laskemalla joukon [V ] kolme eri alkiota sisältävien osajoukkojen lukumäärä. Joukon [V] koko on ( ) 5 = 5!!3! = 5 4 = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä ( ) 10 = 10! 3 3!7! = 10 9 8 = 10 3 eri tavalla. Kysytynlaisia verkkoja on siis yhteensä 10 kappaletta. b) Tuodaan aluksi esille eräs yksinkertainen havainto. Lemma. Olkoot H ja K äärellisiä verkkoja ja f : V (H) V(K) niiden välinen isomorfismi. Tällöin jokaisella x V(H) on ehto deg H (x) = deg K ( f (x)) voimassa. Todistus. Olkoon solmu x V (H) mielivaltainen. Isomorfian määritelmän nojalla jokaisella y V(H) on ehto {x,y} E(H) { f (x), f (y)} E(K) voimassa. Toisaalta kuvaus f on bijektio. Siten saadaan suoraan tulos deg H (x) = {y V (H) : {x,y} E(H)} = {z V(K) : { f (x),z} E(K)} = deg K ( f (x)), mikä osoittaa halutun väitteen todeksi. 1
Aloitetaan tehtävän varsinaisen väitteen tarkastelu kiinnittämällä kokoelman H eräitä jäseniä. Otetaan käyttöön merkinnät ( A := V, { {0,1},{0,},{0,3} }), ( B := V, { {0,1},{0,},{1,} }), ( C := V, { {0,1},{0,},{1,3} }) sekä ( D := V, { {0,1},{0,},{3,4} }). 3 1 4 0 A B Nämä neljä verkkoa ovat kokoelman H jäseniä. Lisäksi ne ovat kaikki keskenään epäisomorfisia, mikä voidaan perustella edellisen aputuloksen avulla. Verkko A on nimittäin ainoa, jossa jonkin solmun aste kolme. Toisaalta verkko B on nimetyistä verkoista ainoa, jossa on kolme eri solmua, joiden kaikkien aste on kaksi. Edelleen ainoastaan verkossa D on neljä eri solmua, joiden kaikkien aste on yksi. Olkoon seuraavaksi verkko G H mielivaltainen. Osoitetaan nyt, että jokin edellä nimetyistä neljästä verkosta on isomorfinen verkon G kanssa. Huomataan aluksi, että verkon G kaikkien solmujen aste on korkeintaan kolme ja että verkon G kaikkien solmujen asteiden summa on tasan kuusi. Tarkastellaan ensin tapausta, jossa jollakin a V(G) on deg G (a) = 3. Tällöin on olemassa kolme eri solmua x ja y sekä z siten, että niistä kaikista on särmä solmuun a. Jäljelle jäävä solmu r on eristetty solmu. Tällöin kaavan {(0,a),(1,x),(,y),(3,z),(4,r)} (1) määrittelemä kuvaus on isomorfismi verkolta A verkolle G. Oletetaan seuraavaksi verkon G kaikkien solmujen asteen olevan korkeintaan kaksi. Tällöin jollakin a V(G) on ehto deg G (a) = voimassa. Muutoin verkossa G olisi kolme särmää viiden yksiasteisen solmun välillä. Tarkastellaan edelleen alitapauksia sen mukaan, kuinka monta eristettyä solmua verkossa G on. C D
Jos verkossa G on kaksi eristettyä solmua r ja s, niin niiden solmujen x ja y, joista on särmä solmuun a, asteiden on oltava kaksi. Tällöin kaava 1 tuottaa isomorfismin verkkojen B ja G välille. Jos taas eristettyjä solmuja ei ole yhtään, niin solmun a naapurisolmujen x ja y aste on yksi ja jäljellä olevien solmujen r ja s välillä on särmä. Tässä tapauksessa kuvaus 1 on verkkojen D ja G isomorfismi. Viimeisessä tapauksessa verkossa G on tasan yksi eristetty piste s. Tällöin pisteellä a on oltava naapurisolmu x, josta on särmä sellaiseen solmuun r, joka ei ole s eikä solmun a naapurisolmu. Jäljelle jäävä solmu y on yksiasteinen solmun a naapurisolmu. Nyt kaava 1 antaa isomorfismin verkkojen C ja G välille. On siis osoitettu, että jokainen G H on isomorfinen jonkin neljän nimetyn verkon kanssa. Toisaalta kyseessä olevista neljästä verkosta kaikki ovat keskenään pareittain epäisomorfisia. Näin ollen joukossa H on isomorfiaa vaille tasan neljä erilaista verkkoa. Tehtävä 1 : Olkoon G = (V, E) äärellinen verkko, jossa on ainakin kaksi solmua. Todistetaan, että vähintään kahdella verkon G eri solmulla on keskenään sama aste. Tehdään tämä osoittamalla, että kuvaus deg G ei ole injektio. Kuvauksen deg G määritelmästä seuraa, että kuvajoukko deg G (V) on joukon {0,..., V 1} osajoukko. Jokaisesta solmusta voi nimittäin olla enintään yksi särmä verkon G kaikkiin muihin solmuihin. Näytetään seuraavaksi, että kuitenkin korkeintaan toinen luvuista 0 ja V 1 voi kuulua joukkoon deg G (V). Oletetaan vastaoletuksena, että molemmat luvuista 0 ja V 1 ovat mukana joukossa deg G (V). Tällöin jonkin solmun a V aste on 0 ja jonkin solmun b V aste on V 1. Solmuun a ei ole särmää mistään verkon G solmusta. Toisaalta solmuun b on särmä verkon jokaisesta muusta solmusta, sillä särmää solmuun itseensä ei määritelmän mukaan sallita. Saatu ristiriita osoittaa, että kuvajoukko deg G (V) on joukon {0,..., V 1} aito osajoukko. Kuvauksen deg G määrittelyjoukon koko on äärellinen luku V ja arvojoukon koko on edellisen päättelyn perusteella korkeintaan V 1. Laatikkoperiaatteen 3
nojalla kuvaus deg G ei ole injektio. Siten vähintään kahdella verkon G eri solmulla on keskenään sama aste. Tehtävä 1 : 3 Olkoon solmu n Z + mielivaltainen. Jokaisella luvulla m Z + pätee 1 m n n n m n m n. Huomataan lisäksi, että verkon G solmusta n ei ole särmää solmuun n itseensä, joten edellisen päättelyn ja havainnon n Z+ nojalla saadaan kysytty tulos { deg G (n) = m Z + : 1 m } { n 1 = n m Z + : m n} 1 ( ) n n n = n + 1 1 = n = n +. Tehtävä 1 : 4 Verkko G on yhtenäinen, joten sen kaikkien solmujen x ja y välillä on olemassa jokin polku ja siten myös lyhyin polku. Erityisesti jokaisen kahden solmun välinen etäisyys on jokin luonnollinen luku. Osoitetaan, että etäisyyskuvaus d toteuttaa metriikalta vaaditut ehdot. Olkoot aluksi solmut x V ja y V mielivaltaiset. Määritelmän mukaan luku d(x,y) on pienin luku n N, jolla on olemassa sellainen verkon G polku P, että solmut x ja y ovat sen päätepisteitä ja että sen pituus on n. Tällöin symmetriaehto d(x, y) = d(y, x) toteutuu suoraan. Jos toisaalta ehto d(x,y) = 0 pätee, niin solmujen x ja y välinen polku P on ({x, y}, ). Tämä on kuitenkin polun määritelmän nojalla mahdollista vain, jos ehto x = y toteutuu. Muutoin polussa P olisi nimittäin oltava mukana särmä {x,y}. Toisaalta polku ({x}, ) on verkon G lyhyin polku solmusta x itseensä. Siis myös ehto d(x,y) = 0 x = y on voimassa. 4
Käsitellään vielä viimeisenä kolmioepäyhtälön toteutuminen. Olkoot x ja y sekä z mielivaltaisia verkon G solmuja. Jos on x = y, niin pätee d(x,z) = d(y,z) = 0 + d(y,z) = d(x,y) + d(y,z). Jos pätee y = z, niin väite d(x,z) = d(x,y) + d(y,z) toteutuu vastaavasti. Jos taas ehto x = z pätee, niin saadaan d(x,z) = 0 d(x,y) + d(y,z). Voidaan siis selkeyden vuoksi olettaa, että kyseiset kolme solmua ovat kaikki eri alkioita ja että niiden etäisyydet pareittain ovat aidosti positiivisia. Olkoon joukko A := {u 0,...,u n } jollakin n Z + ilman toistoja lueteltuna sellainen, että pätee u 0 = x sekä u n = y ja että verkko (A, { {u 0,u 1 }...,{u n 1,u n } }) on solmujen x ja y välinen lyhyin polku verkossa G. Sen pituus on n. Olkoon vastaavasti joukko B := {w 0,...,w m } jollakin m Z + ilman toistoja lueteltuna sellainen, että ehdot w 0 = y sekä w m = z toteutuvat ja että (B, { {w 0,w 1 },...,{w m 1,w m } }) on lyhyin polku solmujen y ja z välillä. Polun pituus on m. Nyt pätee u n = y B, joten joukko {k {0,...,n} : u k B} on epätyhjä ja siten on olemassa sen pienin alkio i. Tällöin jollakin j {0,...,m} pätee u i = w j. Merkitään kirjaimella C joukkoa {u 0,...,u i,w j+1,...,w m }. Nyt verkko (C, { {u 0,u 1 },...,{u i 1,u i },{u i,w j+1 },...,{w m 1,w m } }) on verkon G polku solmujen x ja y välillä. Kyseessä on polku, sillä jokaisella k {0,...,m} pätee w k / {u 0,...,u i 1 } luvun i valinnan nojalla. Lisäksi tämän polun pituus on i + (m j). Saadaan siis tulos d(x,z) i + (m j) n + m d(x,y) + d(y,z). Näin ollen on osoitettu, että kuvaus d on metriikka verkon G solmujoukossa. 5
Tehtävä 1 : 5 a) Käsitellään aluksi eräs aputulos syklien lukumäärän huolellista käsittelyä varten. Kyseistä tulosta ei kuitenkaan tarvita tehtävän ratkaisemiseen. Lemma. Olkoon H verkko ja olkoon sen aliverkko C sykli. Jos aliverkko C ei ole verkon H indusoitu sykli, niin on olemassa verkon H aliverkot A ja B siten, että A ja B ovat syklejä ja että ehdot V (C) = V(A) V(B) sekä E(C) = E(A) E(B) toteutuvat. Operaatio tarkoittaa annettujen joukkojen symmetristä erotusta. Todistus. Olkoon {x 1,...,x n } syklin C solmujen joukko ilman toistoja lueteltuna niin, että {{x n,x 1 },{x 1,x },...,{x n 1,x n }} on syklin C särmäjoukko. Aliverkko C ei ole verkon H indusoitu sykli, joten on olemassa sellaiset joukon {1,...,n} luvut i ja j, että pätee i + 1 < j ja että särmäjoukon E(C) {{x i,x j }} virittämä verkon H aliverkko ei ole sykli. Kuitenkin ehto {x i,x j } E(H) toteutuu. Olkoon A särmäjoukon {{x j,x i },{x i,x i+1 },...,{x j 1,x j }} virittämä verkon H aliverkko ja olkoon B särmäjoukon E(C) E(A) virittämä verkon H aliverkko. Tällöin aliverkot A ja B ovat syklejä ja toteuttavat ehdon V (C) = V (A) V(B) sekä ehdon E(C) = E(A) E(B). Todistetaan nyt yksi havainto syklien ja indusoitujen syklien välisestä yhteydestä. Lemma. Olkoon H mielivaltainen verkko ja olkoon verkon H aliverkko C sykli. Tällöin on olemassa sellainen joukko {D 1,...,D m } verkon H indusoituja syklejä, että ehto E(C) = E(D 1 )... E(D m ) on voimassa. Todistus. Olkoon K niiden lukujen n N joukko, joilla on olemassa sellainen verkon H sykli C, että syklin C koko n ja että sykliä C ei voida esittää verkon H äärellisen monen indusoidun syklin symmetrisenä erotuksena. Osoitetaan joukko K tyhjäksi tekemällä vastaoletus, että K on epätyhjä. Tällöin on olemassa joukon K pienin alkio k ja sellainen verkon H sykli C, että syklin C koko on k ja että sykliä C ei voida esittää indusoitujen syklien äärellisenä symmetrisenä erotuksena. Vastaoletuksen perusteella sykli C ei ole verkon H indusoitu sykli. Edellisen aputuloksen nojalla on edelleen olemassa verkon H syklit A ja B niin, että ehdot 6
V (C) = V (A) V (B) sekä E(C) = E(A) E(B) toteutuvat. Jokaisessa syklissä on vähintään kolme solmua, joten sykleissä A ja B on kummassakin korkeintaan k 1 solmua. Tällöin vastaoletuksen nojalla syklit A ja B voidaan esittää verkon H äärellisen monen indusoidun syklin symmetrisenä erotuksena. Olkoot {A 1,...,A i } ja {B 1,...,B j } sellaisia joukkoja verkon H indusoituja syklejä, että ehdot E(A) = E(A 1 )... E(A i ) ja E(B) = E(B 1 )... E(B j ) ovat voimassa. Symmetrisen erotuksen ottaminen on liitännäinen operaatio, joten tiedosta E(C) = E(A) E(B) saadaan E(C) = E(A 1 )... E(A i ) E(B 1 )... E(B j ). Näin ollen sykli C on saatu esitettyä äärellisen monen verkon G indusoidun syklin symmetrisenä erotuksena. Tämä tulos on kuitenkin ristiriidassa syklin C ja luvun k valinnan kanssa. Täten joukko K on tyhjä, mistä haluttu väite seuraa. Jatketaan nyt varsinaisen tehtävän käsittelyä. Nimetään verkon G solmut joukon {1,..., 8} numeroilla edeten tehtävänannon kuvassa järjestyksessä vasemmalta oikealle ja ylhäältä alas. 1 3 4 5 6 7 8 Otetaan käyttöön merkinnät ( {1,,4,5 } { } ) A :=, {1,},{,5},{5,4},{4,1}, ( {,3,5,6 } { } ) B :=, {,3},{3,6},{6,5},{5,} sekä ( {4,5,6,7,8 } { } ) C :=, {4,5},{5,6},{6,8},{8,7},{7,4}. Nämä kolme verkkoa ovat verkon G indusoituja syklejä. Nimittäin verkossa G ei ole yhtään sellaista särmää, joka yhdistäisi kaksi eri solmua jossakin näistä 7
sykleistä ja joka samalla ei kuuluisi kyseiseen sykliin. Muita indusoituja syklejä verkolla G ei ole. Tämän tarkka todistus kuitenkin sivuutetaan kuvaan vetoamalla. Verkon G jokainen sykli määräytyy yksikäsitteisesti ja kääntäen suoraan oman särmäjoukkonsa virittämänä verkon G aliverkkona. Edellisen aputuloksen nojalla verkon G syklejä on siten korkeintaan yhtä monta kuin on indusoiduista sykleistä saatuja epätyhjiä kombinaatioita. Syklejä on toisin sanoen korkeintaan 3 1 = 7 kappaletta. Toisaalta havaitaan, että verkot ( {1,,3,4,5,6 } { } ) K :=, {1,},{,3},{3,6},{6,5},{5,4},{4,1}, ( {1,,4,5,6,7,8 } { } ) L :=, {1,},{,5},{5,6},{6,8},{8,7},{7,4},{4,1}, ( {,3,4,5,6,7,8 } { } ) M :=, {,3},{3,6},{6,8},{8,7},{7,4},{4,5},{5,} ja ( {1,,3,4,6,7,8 } { } ) N :=, {1,},{,3},{3,6},{6,8},{8,7},{7,4},{4,1} ovat verkon G syklejä, jotka eroavat kaikki toisistaan sekä verkon G kolmesta indusoidusta syklistä. Näin ollen verkosta G on löydetty seitsemän eri sykliä. Siten verkossa G on tasan seitsemän sykliä. b) Käytetään verkon G mielivaltaisten solmujen x ja y potentiaalierosta V(x, y) jatkossa lyhyesti merkintää (x, y). Nyt kaikki Kirchhoffin toisesta laista seuraavat yhtälöt sykleille annettujen nimien aakkosjärjestyksen mukaisesti esitettynä ovat 0 = (1,) + (,5) + (5,4) + (4,1) () 0 = (,3) + (3,6) + (6,5) + (5,) (3) 0 = (4,5) + (5,6) + (6,8) + (8,7) + (7,4) (4) 0 = (1,) + (,3) + (3,6) + (6,5) + (5,4) + (4,1) (5) 0 = (1,) + (,5) + (5,6) + (6,8) + (8,7) + (7,4) + (4,1) (6) 0 = (,3) + (3,6) + (6,8) + (8,7) + (7,4) + (4,5) + (5,) (7) 0 = (1,) + (,3) + (3,6) + (6,8) + (8,7) + (7,4) + (4,1) (8) 8
Tehtävä 1 : 6 Indusoituja syklejä ovat edellisen tehtävän ratkaisun perusteella sykli A ja B sekä C. Sykliä A vastaava yhtälö on edellisen tehtävän loppuosan yhtälö. Sykliä B vastaava yhtälö on vastaavasti 3. Edelleen yhtälö 4 vastaa sykliä C. Osoitetaan, että indusoiduista sykleistä voi johtaa muut yhtälöt. Huomataan aluksi, että verkon G kaikilla pisteillä x ja y pätee (x,y) = (y,x). Tällöin pätee (,5) + (5,) = 0, joten yhtälöiden ja 3 summana saadaan yhtälö 5. Lisäksi on (4,5) + (5,4) = 0 ja siten yhtälöiden ja 4 summana saadaan yhtälö 6. Vastaavasti pätee myös (6,5) + (5,6), joten yhtälöiden 3 ja 4 summa on yhtälö 7. Edelleen voidaan yhtälöistä ja 3 sekä 4 saada yhtälö 8. Näin ollen kaikki Kirchhoffin toisen lain mukaiset yhtälöt voidaan johtaa pelkistä indusoituja syklejä vastaavista yhtälöistä. 9