Matemaattinen optimointi I -kurssin johdantoluento 10.1.2017 Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos
Optimointi: Parhaan mahdollisen ratkaisun etsimistä sallituissa olosuhteissa kauppamatkustajaongelma, lyhimmän reitin ongelma lukujärjestys, aikataulut, pakkausongelma, selkäreppu tukiasemien sijoitteluongelma teiden linjaus, reititysongelmat paperikoneen perälaatikon muodonsuunnittelu tuotantolinjan optimisäätö minimikustannukset, maksimivoitto, jne.
Optimointitehtävä matemaattisesti: Minimoi/maksimoi f (x) siten että x S, missä x on (päätös, suunnittelu, kontrolli, säätö)muuttuja, f on kohde(objekti, kriteeri, kustannus, hyöty)funktio, S on sallittujen pisteiden joukko (sallittu joukko, rajoitejoukko, käypä joukko, sallittu alue, jne.). Lisäksi: parametrit, esim. f(x) = x T Ax indeksit, esim x ijk
Optimointialoja: Lineaarinen optimointi (LP) Matemaattinen optimointi I Epälineaarinen optimointi (NLP, mathematical programming Konveksi optimointi Kvadraattinen optimointi (QP) Konveksi analyysi ja optimointi (sl. 2019) Optimointialgoritmit (sl. 2019) Diskreetti (kokonaisluku) optimointi Kombinatorinen optimointi Matemaattinen optimointi II Scheduling Theory (kl. 2018) Heuristics (sl. 2017) Sekalukuoptimointi (MILP/MINLP) Stokastinen optimointi (vs. deterministinen) Stokastinen optimointi (kl. 2017) Sumea optimointi Robusti optimointi Dynaaminen optimointi Matemaattinen optimointi II
Optimointialoja (lisää): Globaali optimointi Heuristics (sl. 2017) Epäsileä optimointi Monitavoiteoptimointi Geometrinen optimointi Variaatiolaskenta Kontrolliteoria, (Optimi)säätöteoria Portfolio-optimointi Semi-ääretön optimointi (semi-infinite programming, SIP) Semidefiniitti optimointi (SDP) Fraktionaalinen optimointi (FP) Peliteoria Game Theory (kl. 2018)
Sovelluksia: - teräksen jatkuvavalu - paperikoneen perälaatikon muodonoptimointi - paperinvalmistuslinjan optimointi - kemian prosessiteollisuus - metsätyökoneiden muodonoptimointi - EMF-kalvoon perustuvan litteän kaiuttimen muodonoptimointi - ultraäänilähettimen muodonoptimointi - aktiivinen meluntorjunta - sädehoidon suunnittelu - tietoliikenneverkon kapasiteetin optimointi - piirilevyjen suunnittelu - sokeriteollisuuden erotteluongelmat - lentokentän toiminnan suunnittelu - saariston yhteysalusverkoston reititys ja aikataulutus - ensihoitotukikohtien optimaalinen sijoittelu - sahahakkeen laadun optimointi
Meneillään tai suunnitteilla: - sataman konttikentän mallinnus ja simulointi - kuljetusten hinnoittelun optimointi - kuormauslavan 3-d pakkausongelma - käytetyn ydinpolttoaineen loppusijoitus - dieselmoottorin taloudellisuuden optimointi - hotellihuoneiden hinnoittelun optimointi - koe-eläinten luokitteluongelma - kuljetusten reititys- ja ketjutusongelma - asfaltin kiviaineksen koostumuksen optimointi Mallinnusprojekti (sl. 2017) pro gradu
Yhteysalusten reitistöä Turun saaristossa
Yhteysalusliikenteen matemaattinen malli Optimointikriteerit: käyttökustannukset (min) palvelutasot (max) Päätösmuuttujat - vastaavat mm. seuraaviin kysymyksiin: Ajaako tietty alus tietyn reitin tiettyyn aikaan? (bin) Kuinka monta kysyntäyksikköä tietty alus kuljettaa? (kok.luku) Kuinka suuri palvelutaso tietyllä reitillä saavutetaan? (jatkuva) jne. Rajoitukset: alus vain yhdellä reitillä kerrallaan, kapasiteetit, työaikalainsäädäntö, jne. Parametrit: alusten nopeudet, reittien pituudet, aikarajat, polttoaineen hinnat, jne. Ongelma: tehtävän koko 300 miljoonaa päästösmuuttujaa, 'eksponentiaalisen kasvun kirous'
Ensihoidon optimaalinen järjestäminen Ambulanssien kiinteiden sijoituspaikkojen optimointi Tavoitteet: palveluvutasot, saavutettavuus (max) kustannukset (min) Malli: monitavoitteinen diskreetti optimointimalli
Kuormauslavan 3D-pakkausongelma Pakkauslinjan automatisointi (pakkausrobotti) Optimointikriteerit: Täyttöaste Stabiilisuus Evoluutioalgoritmi (EA) + pakkaaja (heuristiikka) 70 80 % täyttöaste
Sahahakkeen laadun optimointi Hyödynnetään biopolttoaineena Seulonta: 6 kokoluokkaa, loput purua Laatuluokat (asiakaskohtaiset) Tehtävä: optimoi hakkeen koostumus (laatu/määrä) Matemaattinen malli: LP-tehtävä Numeerinen malli: Simplex-menetelmä (Lingo) Ratkaisu: ylisuuri- ja hienojae seulotaan kokonaan pois, tikkujae kokonaan mukaan, ylipaksujakeesta pois 35 % Herkkyysanalyysi: pullonkaulana laatuarvon yläraja