MAOL-Pisteitysohjeet Fysiikka syksy 2010

Samankaltaiset tiedostot
MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka syksy 2008

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe , malliratkaisut

RATKAISUT: 18. Sähkökenttä

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

Liikkeet. Haarto & Karhunen.

RATKAISUT: Kertaustehtäviä

MAOL-Pisteitysohjeet Fysiikka kevät 2007

Fysiikan perusteet. Liikkeet. Antti Haarto

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Mitataan yleismittarilla langan resistanssi, metrimitalla pituus, mikrometrillä langan halkaisija. 1p

MAOL-Pisteitysohjeet Fysiikka syksy 2006

Liikemäärä ja törmäykset

Sähköstatiikka ja magnetismi

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.

KAIKUMITTAUKSET. Kari Toivokoski

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

RATKAISUT: 15. Aaltojen interferenssi

Fysiikka, syksy 2010 Mallivastaukset,

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Magneettikentät. Haarto & Karhunen.

a) Huippukiihtyvyys luetaan kuvaajalta, n. 0,3 sekunnin kohdalla kiihtyvyys on a = 22,1 m/s 2 joka m 22,1

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

b) Piirrä ripustimen voimakuvio (vapaakappalekuva) ja perustele lyhyesti miksi ripustin asettuu piirtämääsi kohtaan. [3p]

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe , malliratkaisut

PERUSSARJA. nopeus (km/h) aika (s) 2,0 4,0 6,0 7,0 10,0 12,0 13,0 16,0 22,0

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

η = = = 1, S , Fysiikka III (Sf) 2. välikoe

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

S , Fysiikka III (S) I välikoe Malliratkaisut

FYSIIKAN VALINTAKOE HELSINGIN YLIOPISTOSSA KESÄLLÄ 1976

KJR-C2002 Kontinuumimekaniikan perusteet, tentti (esimerkki)

Lämpöoppia. Haarto & Karhunen.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.

Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa.

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

Tekijä Pitkä matematiikka

Kokeellisen tiedonhankinnan menetelmät

= 2 1,2 m/s 55 m 11 m/s. 18 m 72 m v v0

5-2. Omakotitalolla on suuri lämpökapasiteetti sen suuren koon vuoksi. Lämpöä siirtyy talon rakenteisiin paljon, mutta lämpötila ei kohoa nopeasti.

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Kertaustehtävien ratkaisut

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Diskreetin matematiikan perusteet Laskuharjoitus 4 / vko 40

MAOL-Pisteitysohjeet Fysiikka kevät 2002

7. Resistanssi ja Ohmin laki

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Laskun vaiheet ja matemaattiset mallit

2.5 Liikeyhtälö F 3 F 1 F 2

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

2 Pistejoukko koordinaatistossa

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

Luku 13. Kertausta Hydrostaattinen paine Noste

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

5. Sähkövirta, jännite

Luku 13. Kertausta Hydrostaattinen paine Noste

ν = S Fysiikka III (ES) Tentti Ratkaisut

0. perusmääritelmiä 1/21/13

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

ENE-C3001 Energiasysteemit

RATKAISUT: Kertaustehtävät

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä

Energia bittiä kohden

Magneettinen energia

Luvun 8 laskuesimerkit

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

RATKAISUT: 16. Peilit ja linssit

Kertaustehtäviä ) 2. E = on suoraan verrannollinen nopeuden toiseen potenssiin. 9,6 m/s. 1. c 2. b 3. b 4. c 5. b 6. c 7. d 8. a 9. b 10.

Laskun vaiheet ja matemaattiset mallit

Ohjeita fysiikan ylioppilaskirjoituksiin

Asennus, kiertopumppu TBPA GOLD/COMPACT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

5.9 Voiman momentti (moment of force, torque)

3. ENERGIA. E o =mv 2 = 4, J (3.1)

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Y56 laskuharjoitukset 5 - mallivastaukset

Coulombin laki. Sähkökentän E voimakkuus E = F q

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

1 Tieteellinen esitystapa, yksiköt ja dimensiot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen

BL20A0700 Sähköverkkotekniikan peruskurssi

Transkriptio:

MAOL-Pisteitysohjeet Fysiikka syksy 00 Tyypillisten irheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuirhe -/3 p - laskuirhe, epäielekäs tulos, ähintään - - astauksessa yksi erkitseä nuero liikaa -0 p - karkeapi pyöristysirhe - - laskuissa käytetty pyöristettyjä älituloksia -/3 p - kaaassa irhe, joka ei uuta yksikköä - - kaaairhe, joka johtaa äärään yksikköä, ähintään - p - lukuarosijoitukset puuttuat - - yksiköt puuttuat lukuarosijoituksissa - - yksikköirhe lopputuloksessa, ähintään - - täysin kaaaton esitys, yleensä -3 p "Solerin" käyttö ei hyäksyttäää Suureyhtälö on ratkaistaa kysytyn suureen suhteen, lukuarot yksikköineen sijoitetaan asta saatuun lausekkeeseen. Graafiset esitykset - puutteet koordinaatistossa (akselit, sybolit, yksiköt, jaotus), ähennys 0,5 - p - graafinen tasoitus puuttuu - - suoran kulakertoien ääritys yksittäisistä haaintopisteistä (eiät suoralla) - - koko, tarkkuus, yleinen huoliattouus, ähennys 0,5 - MAOL ry /9 Fysiikan pisteitysohjeet syksy 00

. a) Kun Kuu kiertäessään Maata asettuu Auringon ja Maan äliin, Kuun arjo osuu Maahan. p b) Koska Kuun rata on elliptinen, Kuun ja Maan älinen etäisyys ei ole koko ajan saa. Kun etäisyys on suuriillaan, Kuu näyttää pieneältä eikä se peitä Aurinkoa kokonaan. Katsoja, Kuu ja Aurinko likiain linjassa täydellinen auringonpiennys c) rengasainen auringonpiennys Kuat I: puolet Kuun Maahan päin oleasta puolesta alottuu II: täysikuu, Kuun Maahan päin olea puoli alottuu kokonaan Aikaäli on noin ¾ koko kuukaudesta eli noin 3 iikkoa Vastaus Perustelut Vastaus iikko perusteluineen Vastauksessa sekä iikko että 3 iikkoa perusteluineen,5 p. Liike on tasaista Liike on kiihtyää tai hidastuaa Kappale on pisteessä x = 0, kun t = 0. a) x 0 0 b) 0 x x c) 0 x? d) 0 x? 0,5 p / kohta MAOL ry /9 Fysiikan pisteitysohjeet syksy 00

3. Puun luouttaa läpöenergia Qpuu = Hpuu Veden astaanottaa läpöenergia Qesi = cesiδ t= cρvδ t Qpuu = Qesi 3 p Hpuu = cρv Δt cv ρ Δt puu = H 3 o 3 3 3 4,9 0 J kg C,0 0 kg 3 ( 3 C -8 C) puu = 6 8 0 J kg = 08, 4 kg 0 kg 3 p puu Jos tehtää laskettu käyttäen läpöaroa 9 MJ, astaus on puu = 0,5 kg 03 kg. Hyäksytään astaukset 00 kg 0 kg 4. a) Aaltoliikkeen perusyhtälön = λ f ukaan λ= l f= = λ l λ = l f = = = f λ l λ = l f = = 3 = 3f 3 3 3 λ l Kua tai sanallinen selitys (kieli kiinnitetty päistä, älille oi syntyä soluja tasaälein) fiärähtelytaajuudet fn = n f = n 55,0 Hz, issä n=,, 3, 4, b) λ = l = l 3 3 f = = λ 4l josta saadaan a) kohdan perusteella 3 f l 3 f = = f 4l 3 = 55,0 Hz = 8,5 Hz MAOL ry 3/9 Fysiikan pisteitysohjeet syksy 00

c) aaltoliikkeen nopeus = λf= l f= 0,87 55,0 s = 95, 7 96 s s p jos alittu alussa λ = l, ax 5 p 5. a) Kuio Työperiaate periaate Δ E = F Δ s k μ Fμ = μn = μg 0 = μ Δ : Δ s = μg g s 65 3, 6 s Δ s = 0,60 9,8 s 7,69 Laskut V: olepien autojen jarrutusatka 8 b) Kuio 0,5 p Työperiaate periaate Δ E = F Δ s+ W Wi Wi Δ s = = μg μg μg assan kasaessa jarrutusatka pitenee Johtopäätös 0,5 p k μ i 6. Kuat + = 7,3kg 0 = 9 s r =, 9 Newton II: F = a an = r Fg 0 T = an = r 3, kn Käsiin kohdistua oia on yhtä suuri kuin T F = 3, kn p MAOL ry 4/9 Fysiikan pisteitysohjeet syksy 00

7. a) Paristot on kytketty sarjaan. Ylin paristo on toisin päin kuin uut. Jänniteittarin lukea on U = U + U U 3 =, 5 V +,5 V,5 V =,5 V. b) Sarjaan kytkettyjen paristojen yhteinen napajännite U N = U + U =, 5 V +,5 V = 3,0 V. Vastuslangan jännitehäiö on 3,0 V. Vastuslanka toiii jännitteen jakajana. Mittari näyttää astuslangan jännitehäiön 0 c:n osuudelta koko 30 c:n pituisesta langasta. 0 c Jänniteittarin lukea on U = 3,0 V =,0 V. 30 c c) Ideaalisen jänniteittarin läpi ei kulje sähköirta. Sen kanssa sarjaan kytketyt astukset eiät uuta ittarin toiintaa. Mittarin lukea on paristojen napajännitteiden sua U = U + U + U 3 =, 5 V +,5 V +,5 V = 4,5 V. oikea astaus / kohta ja perustelu / kohta 8. a) Kääien akseleiden pitää olla saansuuntaisia, jotta testikääin läpi kulkisi ahdollisian suuri agneettiuo. Mitä suurepi agneettiuo testikääin läpi kulkee, sitä suurepi on agneettiuon uutos ja itä suurepi on uutos, sitä suurepi on indusoitunut jännite. b) Induktiolaista (Faradayn ja Henryn laki) ΔΦ ΔB e= N = NA Δt Δt, 0 s Kuaajasta saadaan Δ t =. Hyäksytään Δ t älillä 0,55 s 0,75 s 6 ja 3 3 3 3 3 Δ B =, 0 T,0 0 T =,05 0 T. Hyäksytään,0 0 T..., 0 T Jännitteen aksiiaro ΔΦ ΔB e= N = NA Δt Δt 3 4,05 0 T e = 000 7,0 0 s 6 e = 0,07 V 7 V. Hyäksytään 6 V - 9 V Kuio p peilikua -0,5 p MAOL ry 5/9 Fysiikan pisteitysohjeet syksy 00

8 4 9. a) Hajoaisyhtälö 86Rn 84Po + He b) - radon on uraanin hajoaissarjan tuote ja se on kaasu, jota pääsee rakenteiden läpi huoneilaan - radonin hajoaistuotteet Po-, Pb- ja Bi- isotoopit oat yös radioaktiiisia. Ne kiinnittyät helposti pölyhiukkasiin ja oiat joutua hengitysilan ukana keuhkoihin, jolloin ne aiheuttaat syöpää. - Pari asiaa ainittu : radon haittaa torjutaan rakennusten perustusten ja alapohjan tuulettaisella, ja pohjarakenteiden tiiistäisellä rakennusaiheessa. c) Aktiiisuus yhdessä kuutioetrissä ilaa A = 00 Bq Aktiiisuus A= λn = ln T M AT M = ln 7 00 3,85 4 60 60 s, 0757, 6605655 0 kg = s ln 7 7 = 3,555 0 kg 3,5 0 kg 4 3,5 0 g 0. a) Haroninen oia F = k x Kuio 0,5 p N F = 0 ( 0,040 ) = 8,8N Molepiin aunuihin kohdistuu yhtä suuri oia N II F = a 0,5 p F 8,8 N a= a= 35 0,50 kg s F 8,8 N a = a = 0,750 kg s b) Liikeäärä säilyy p+ p = 0 = 0 = Herkkäliikkeiset aunut, ekaaninen energia säilyy MAOL ry 6/9 Fysiikan pisteitysohjeet syksy 00

Δ Ep = + kx = + kx = + = kx + N 0 ( 0,04 ) = ( 0,50 kg) 0,50 kg + 0,750 kg, 0 s = 0,50 kg,07 s = 0,34 0,750 kg s V: Vaunut lähteät astakkaisiin suuntiin nopeudella,0 ja 0,34 s s.. - Maapallon ytien uloiassa nesteäisessä osassa on. aapallon pyöriisen aikutuksesta irtauksia, jotka saaat aikaan agneettikentän. - Maapallon agneettikentän perusuoto on dipolikenttä (sauaagneetin agneettikenttä). - KUVA Maan dipolikentästä, agneettikentän eteläkohtio on Pohjois-Kanadassa ja pohjoiskohtio Eteläantereella, deklinaatio, inklinaatio. - Auringon puolella Aurinkotuuli litistää Maan agneettikenttää ja synnyttää pitkän pyrstön yöpuolelle. - Kosinen säteily on nopeita arattuja hiukkasia (pääasiassa protoneja) ja ne uoroaikuttaat Maan agneettikentän kanssa - Liikkuan aratun hiukkasen ja agneettikentän uoroaikutuksen selittäinen. +. a) Linssin ylepi puolisko taittaa aloa noraalisti fi Kua hienee, utta ei häiä. Kuan paikka ei uutu b) Koska Kuu on hyin kaukana, siitä uodostuu kuperan linssin aulla todellinen kua linssin polttopisteeseen. Voidaan päätellä, että kun a >> b, niin f = b = 0,0 c. p Kuio esittää kuan uodostuista aljakosta kuperan linssin aulla filille. MAOL ry 7/9 Fysiikan pisteitysohjeet syksy 00

Kun aljakko asetetaan linssin eteen, oidaan kuan (filin) paikka laskea kuausyhtälön = + aulla. f a b 4,667 0,4. b = f a = 0,, = b = Fili on asetettaa 4,0 c:n etäisyydelle linssistä. c) Kupera linssi on taallisesti kokoaa, koska sen aineen (uoi, lasi) taitekerroin on suurepi kuin ilan. Vedessä olea kupera ilalinssi hajottaa aloa, koska ilan taitekerroin on pienepi kuin eden. p Kua p Kolikosta syntyy - pienennetty - oikeinpäin olea - alekua + 3. a) Aurinkoläpöoialassa Auringon säteilyenergia uuntuu eden läpöenergiaksi. Höyryn läpöenergia uuntuu turbiinin liike-energiaksi, ikä uuntuu generaattorissa sähköenergiaksi (induktioiliö). Aurinkopaneeli: Auringon säteilyenergia uuttuu alosähköisessä iliössä sähköksi. b) Eanto η = E otto 300 TWh η = 5 k 5 k, TWh k η 0,093 p p MAOL ry 8/9 Fysiikan pisteitysohjeet syksy 00

Tuulioiala: tuulen liike-energia uuntuu turbiinin liike-energiaksi, joka uuntuu generaattorissa sähköenergiaksi (induktioiliö). Vesioia: eden potentiaalienergia uuntuu turbiinin liike-energiaksi, joka uuntuu generaattorissa sähköenergiaksi (induktioiliö). Ydinoia: fissiossa apautuu ytien sidosenergiaa hiukkasten liike-energiaksi, joka uuntuu eden läpöenergiaksi ja edelleen generaattorin liike-energiaksi, joka uuntuu generaattorissa sähköenergiaksi (induktioiliö). Geoterinen energia: Maan läpöenergia uuntuu eden läpöenergiaksi, eden läpöenergia uuntuu turbiinin liike-energiaksi, ikä generaattorissa uuntuu sähköenergiaksi (induktioiliö). Lisäansioita: aaltooiala, uoroesioiala 5 p MAOL ry 9/9 Fysiikan pisteitysohjeet syksy 00