Topologia Syksy 2010 Harjoitus 11

Samankaltaiset tiedostot
Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 9

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Algebra I, Harjoitus 6, , Ratkaisut

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Reaalifunktioista 1 / 17. Reaalifunktioista

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Kompaktisuus ja filtterit

Tenttiin valmentavia harjoituksia

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Topologisten avaruuksien metristyvyys. Toni Annala

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

Matematiikan tukikurssi

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

3 Lukujonon raja-arvo

Johdatus matemaattiseen päättelyyn

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.

U β T. (1) U β T. (2) {,X} T. (3)

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla

3 Lukujonon raja-arvo

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

Täydellisyysaksiooman kertaus

Matematiikan tukikurssi, kurssikerta 2

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

r > y x z x = z y + y x z y + y x = r y x + y x = r

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA

Matematiikan peruskurssi 2

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Metristyvät topologiset avaruudet

Determinoiruvuuden aksiooma

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Matematiikan tukikurssi, kurssikerta 1

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Topologia IA, kesä 2017 Harjoitus 1

Matemaatiikan tukikurssi

Äärellisten mallien teoria

Matematiikan tukikurssi, kurssikerta 3

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

8. Avoimen kuvauksen lause

Miten osoitetaan joukot samoiksi?

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

Johdanto Lassi Kurittu

Luku 2. Jatkuvien funktioiden ominaisuuksia.

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

7. Tasaisen rajoituksen periaate

FUNKTIONAALIANALYYSIN PERUSKURSSI Johdanto

3.3 Funktion raja-arvo

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1.

Derivaattaluvut ja Dini derivaatat

Luonnollisten lukujen induktio-ominaisuudesta

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

Analyysi I (mat & til) Demonstraatio IX

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

1.4 Funktion jatkuvuus

MATP153 Approbatur 1B Harjoitus 5 Maanantai

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi

Matemaattisen analyysin tukikurssi

Matematiikan peruskurssi 2

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Ratkaisuehdotus 2. kurssikokeeseen

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

1 Supremum ja infimum

Ratkaisut vuosien tehtäviin

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

Matematiikan tukikurssi

1 sup- ja inf-esimerkkejä

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Yleistettyjen jonojen käyttö topologiassa

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Transkriptio:

Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle T -aksioomalle joko todista se todeksi, tai keksi ja piirrä vastaesimerkki. Jos lukijan mielestä tehtävänannossa on jotain outoa, on hän täysin oikeassa; O. Toivasen kiireellä keksimän tehtävän topologia ei ole topologia! Jos kirjoitetaan A a,b = {(x, y) R 2 x > a ja y > b}, eli ilmaistaan yksi annetunlainen joukko lukujen a ja b eli pisteen (a, b) avulla, joka on kaikki mikä sen määräämiseksi tarvitaan, niin on selvää että esim. A 1,0 A 0,1 ei ole tätä muotoa oleva joukko. Kyseessä ei voi olla topologia koska se ei sisällä väitettyjen avointen joukkojensa yhdisteitä! Jos O. Toivanen olisi kelannut monistetta taaksepäin tulotopologioita käsittelevään lukuun, olisi hän huomannut esim. tällaisen huomion: tulotopologian X X kannan muodostavat joukot U U, missä U X on X:n topologiassa avoin. Annettu lukujoukko ei siis ole topologia, vaan vain sen kanta; topologia saadaan ottamalla joukkojen A a,b mielivaltaiset yhdisteet. Tehdään tämä. Jokainen joukko A a,b määräytyy täysin tuon pisteen (a, b) avulla, ja sisältää pisteet joiden kumpikin koordinaatti on suurempi kuin pisteen (a, b) vastaava koordinaatti. Näiden joukkojen mielivaltaiset yhdisteet tuottavat joukkoja jotka voidaan ilmoittaa esim. seuraavalla tavalla: A f = {(x, y) R 2 y > f(x)}, missä f on mv. vähenevä funktio joka on määritelty R:ssä tai jollakin välillä (x 0, ). (Arvolla x = x 0 joukolla A f on pystysuora reuna joka ei kuulu joukkoon. Yhdisteestä riippuen samanlaisia reunoja tulee kaikkiin funktion f epäjatkuvuuskohtiin.) Avoimet joukot siis koostuvat vähenevien funktioiden yläpuolisista osista.

2 Kaksi avoimien joukkojen erikoistyyppiä ovat avoimet puolitasot A x0 = {(x, y) R 2 x > x 0 } ja A y0 = {(x, y) R 2 y > y 0 } kaikille x 0, y 0 R; nämä saadaan kun toinen tulon avoin joukko on koko R. Nämä ovat siis avoimet joukot; suljetut joukot ovat niiden komplementit eli ne pisteet jotka ovat vähenevän funktion kuvaajalla tai sen alla. (Ja tarkemmin, vähenevän funktion f : R R tai f : (x 0, ) R kuvaajalla tai sen alla, plus ne kaikki pisteet (x, y) joille x x 0.) Surullista on että tällä oikealla topologialla tehtävän vastaus on sama kuin väitetyllä topologialla, ja vastaesimerkitkin ovat olennaisesti samanlaisia; työtä vain on hieman enemmän. Kerrataan T -aksioomat. T 0 : jos x, y X, x y, niin ainakin toisella pisteistä x ja y kuulu. T 1 : jos x, y X, x y, niin kummallakin pisteistä x ja y kuulu. T 2 : jos x, y X, x y, niin kummallakin pisteistä x ja y kuulu, siten että näiden ympäristöt ovat erillisiä (niiden leikkaus on tyhjä). T 3 : jos x X ja A X on suljettu, x / A, niin x:llä ja A:lla on erilliset ympäristöt. T 4 : jos A, B X ovat erillisiä suljettuja joukkoja, niin niillä on erilliset ympäristöt. Tason (a, )-topologia on T 0, ja ei ole T 1, T 2, T 3 tai T 4. T 0 : Olkoon (a, b), (c, d) R 2 siten, että (a, b) (c, d). Tällöin joko koordinaatit a ja c ovat erisuuria tai koordinaatit b ja d ovat erisuuria. Voidaan olettaa että a > c. Tällöin avoin joukko {(x, y) R 2 x > (a + c)/2 ja y > b 1} sisältää pisteen (a, b), mutta ei sisällä pistettä (c, d). Siispä topologia on T 0.

T 1 : Tarkastellaan pisteitä (0, 0) ja (0, 1). Jos (0, 0) kuuluu johonkin ympäristöön A a,b, A a,b = {(x, y) R 2 x > a ja y > b}, niin jokainen (0, x) jolle x > 0 kuuluu siihen koska x > 0 > b. Näin ollen ei ole ympäristöä joka sisältäisi pisteen (0, 0) mutta ei pistettä (0, 1). T 2 : Sama vastaesimerkki käy. T 3 : Suljettuja joukkoja ovat avointen joukkojen komplementit. Esimerkiksi koska on avoin, niin {(x, y) R 2 x > 0 ja y > 0} C = {(x, y) R 2 x 0 tai y 0} on suljettu. Mutta ainoa tämän joukon sisältävä avoin joukko eli ainoa sen ympäristö on R 2. Tällöin esimerkiksi pisteellä (1, 1) / C ei ole ympäristöä joka ei leikkaisi tätä ainoaa C:n ympäristöä. T 4 : Ominaisuus T 4 on, että erillisillä suljetuilla joukoilla on erilliset ympäristöt; mutta onko avaruudessa erillisiä suljettuja joukkoja? Ei montaa. Osoitetaan ensin, että jos C ja D ovat suljettuja, epätyhjiä joukkoja niin ne eivät voi olla erillisiä. Jos C ja D ovat suljettuja joukkoja niin jollekin riittävän suurelle n N pätee, että ( n, n) C D. Näin siksi, että C ja D ovat suljettuina joukkoina vähenevien funktioiden f : (x 0, ) R alapuolisia alueita, mutta sisältävät myös kaikki pisteet joiden x-koordinaatti on x 0 tai pienempi; valitsemalla n niin että n < x 0 kummallakin luvulla x 0 saadaan ( n, n) C D. Jos toinen funktio on f : R R, niin siltikin löytyy tällainen n, sillä f on vähenevä, ja pisteet ( n, n) ovat aidosti kasvava jono. Jos taas esim. C on jonkinlainen alempi puolitaso rajasuorana y = y 0, niin valitsemalla n siten, että n < y 0 saadaan ( n, n) C, ja ( n, n) D kuten yllä. Tarkoittaako tämä sitä, että erillisiä suljettuja joukkoja ei ole? Ei aivan. Olkoon C = ja D epätyhjä suljettu joukko. Tällöin C ja D ovat erillisiä, sillä C D =. Joukolla C on aina avoin ympäristö, ja joukolla D on aina avoin ympäristö 3

4 R 2. Koska R 2 =, ovat nämä erilliset ympäristöt; näin ollen, koska nämä ovat ainoat mahdolliset erilliset suljetut joukot, on tämä avaruus T 4. (2) Todista: Jos X on T 0 ja T 3, niin X on säännöllinen. Säänöllinen avaruus on T 3 ja T 1, joten pitää osoittaa että (T 0 ja T 3 ) T 1. Olkoon x, y X, x y. Olkoon x näistä se piste jolla on T 0 :n nojalla ympäristö A joka ei sisällä pistettä y. Tällöin A:n komplementti A on suljettu, ja sisältää y:n. Koska joukon suljeuma on pienin sen sisältävä suljettu joukko, niin {y} A. Koska x / A niin x / {y}. Koska avaruus X on T 3, niin pisteellä x ja suljetulla joukolla {y}, x / {y}, on erilliset ympäristöt, ja koska y {y}, niin näistä jälkimmäinen on myös pisteen y ympäristö. (3) Todista: Ominaisuus T 2 on perinnöllinen, eli jos avaruus (X, T ) on T 2 ja A X, niin (A, T A ) on T 2. Ominaisuus T 2 avaruudelle (X, T ) on se, että jos x, y X, x y, niin ovat olemassa B, C T siten, että x B, y C ja B C =. Jos nyt A X ja x, y A, x y, niin x, y X, ja ovat olemassa B, C kuten yllä. Koska B C =, niin (A B) (A C) = ; ja koska A B, A C T A niin väite on todistettu. (4) Olkoon f, g : X Y jatkuvia, Y Hausdorff, A X tiheä, ja f A = g. Osoita, että f = g. (Vihje. Oleta että on olemassa x s.e. f(x) g(x).) Avaruus Y on Hausdorff, eli se on T 2, eli jos f(x), g(x) Y, f(x) g(x), niin ovat olemassa avoimet joukot Y 1, Y 2 siten, että f(x) Y 1, g(x) Y 2, ja Y 1 Y 2 =. Oletetaan että on olemassa x X siten, että f(x) g(x). Tällöin yo. avoimet joukot Y 1, Y 2 ovat olemassa. Koska f, g ovat jatkuvia ovat näiden avoimien joukkojen alkukuvat avoimia, eli f 1 (Y 1 ) ja g 1 (Y 2 ) ovat avoimia. Erityisesti niiden leikkaus on avoin; merkitään D = f 1 (Y 1 ) g 1 (Y 2 ).

Koska A on tiheä X:ssä, se leikkaa jokaisen avoimen joukon, ja erityisesti joukon D. Tällöin on olemassa piste y A D, jolle f(y) = g(y) (koska se on joukossa A), ja jolle f(y) ja g(y) kuuluvat erillisiin joukkoihin Y 1 ja Y 2. Tämä on selvä ristiriita. 5