1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on



Samankaltaiset tiedostot
1 Johdanto Mitä digitaalinen kuvankäsittely on Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Kuvankäsittelyn vaiheet 3

Digitaalinen signaalinkäsittely Kuvankäsittely

1. Johdanto. Johdanto 1. Johdanto 2. Johdanto 3. Johdanto 4

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen

Luku 3. Kuvien ehostus tilatasossa. 3.1 Taustaa

1. Johdanto. Johdanto 1

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Matematiikan tukikurssi

SGN-3010: Digitaalinen kuvankäsittely I. Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007

6.6. Tasoitus ja terävöinti

1 Määrittelyjä ja aputuloksia

Luento 8: Epälineaarinen optimointi

isomeerejä yhteensä yhdeksän kappaletta.

Moniulotteisia todennäköisyysjakaumia

4 Yleinen potenssifunktio ja polynomifunktio

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Johdatus tekoälyn taustalla olevaan matematiikkaan

1.4 Funktion jatkuvuus

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

2 Osittaisderivaattojen sovelluksia

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Numeeriset menetelmät

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Infrapunaspektroskopia

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

3 Yleinen toisen asteen yhtälö ja epäyhtälö

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Luento 8: Epälineaarinen optimointi

Matematiikan tukikurssi

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

Matematiikan tukikurssi

9. Tila-avaruusmallit

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Derivaatan sovellukset (ääriarvotehtävät ym.)

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Mustan kappaleen säteily

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Successive approximation AD-muunnin

Matematiikan tukikurssi

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Numeeriset menetelmät

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

6. Värikuvanprosessointi 6.1. Värien periaatteet

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

MS-C1340 Lineaarialgebra ja

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu


JOHDATUS TEKOÄLYYN TEEMU ROOS

Kvanttifysiikan perusteet 2017

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Cantorin joukon suoristuvuus tasossa

Luento 3: 3D katselu. Sisältö

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Tuntematon järjestelmä. Adaptiivinen suodatin

1 Ensimmäisen asteen polynomifunktio

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Virheen kasautumislaki

Digitaalinen kuvankäsittely T (5 op) L. Syksy 2005

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

JOHDATUS TEKOÄLYYN TEEMU ROOS

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

JOHDATUS TEKOÄLYYN TEEMU ROOS

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

3.6 Su-estimaattorien asymptotiikka

Projektisuunnitelma ja johdanto AS Automaatio- ja systeemitekniikan projektityöt Paula Sirén

811120P Diskreetit rakenteet

Matematiikan tukikurssi, kurssikerta 1

Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Puheenkoodaus. Olivatpa kerran iloiset serkukset. PCM, DPCM ja ADPCM

Spektri- ja signaalianalysaattorit

Fysiikka 8. Aine ja säteily

Funktion derivoituvuus pisteessä

Transkriptio:

1467S Digitaalinen kuvankäsittely 1 Johdanto 1.1 Mitä digitaalinen kuvankäsittely on Kuva voidaan ajatella kaksiulotteiseksi funktioksi f(x, y), jossa x ja y ovat koordinaatit ja f:n arvo pisteessä (x, y) on kuvan intensiteetti tai harmaasävy tuossa pisteessä. Kun f:n, x:n ja y:n arvot ovat äärellisiä ja diskreettejä, puhutaan digitaalisesta kuvasta, ja digitaalisella kuvankäsittelyllä tarkoitetaan näiden kuvien käsittelemistä tietokoneella. Ihmisen näköaisti rajoittuu pieneen osaan sähkömagneettisen säteilyn spektristä. Tätä aluetta kutsutaan näkyväksi valoksi. Erilaiset kuvantamisjärjestelmät mahdollistavat kuitenkin sähkömagneettisen säteilyn kuvantamisen hyvin erilaisilta aallonpituuksilta gamma-aalloista radioaaltoihin. Digitaalinen kuva ei välttämättä perustu ollenkaan sähkömagneettiseen säteilyyn, mistä esimerkkejä ovat mm. ultraäänikuvat ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 1

1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on tai tietokonegrafiikka. Digitaaliseen kuvankäsittelyyn liittyvät olennaisesti mm. digitaalisen signaalinkäsittelyn ja konenäön alat. Digitaalisen kuvankäsittelyn ja konenäön rajaa ei ole helppo määritellä täsmällisesti, vaan hyödyllisempää on jakaa digitaalisten kuvien käsittely matalan, keski- ja korkean tason prosesseihin. Matalan tason prosesseissa sekä prosessin syöte että tulos ovat kuvia. Esimerkkejä matalan tason prosesseista ovat kohinan poisto kuvasta, kuvan terävöittäminen tai värikuvan muuttaminen väriavaruudesta toiseen. Keskitason prosesseja ovat mm. kuvan segmentointi (eli kuvan jakaminen mielekkäisiin pienempiin osiin) ja näiden osien kuvaaminen (description) eli esittäminen tunnistukseen sopivassa muodossa. Kuvan osien tunnistaminen tai luokittelu luetaan eri lähteissä joko keski- tai korkean tason prosessiksi. Kurssikirjassa näiden katsotaan olevan ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 2

1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä keskitason prosesseja. Korkean tason prosessien tavoite on kuvan tai sen tunnistettujen osien ymmärtäminen, ja mahdollisesti jonkinlainen päätöksenteko kuvan perusteella. Esimerkki korkean tason prosessoinnista voisi olla robotin ohjaaminen kamerasta tulevan kuvan perusteella. Yleensä kuten jatkossa tässäkin kurssissa digitaalisella kuvankäsittelyllä tarkoitetaan matalan tason sekä yksinkertaisimpia keskitason prosesseja. 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Gamma-säteiden kuvantamista käytetään hyväksi mm. lääketieteessä ja tähtitieteessä. Röntgensäteitä on hyödynnetty erityisesti lääketieteen kuvantamisessa jo ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 3

1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä pitkään. Perinteisten röntgenkuvien lisäksi röntgensäteiden avulla otetaan angiografia- eli verisuonikuvia sekä tietokonetomografiakuvia. Lääketieteen lisäksi röntgenkuvia käytetään tähtitieteessä sekä teollisuudessa mm. laaduntarkastukseen. Ultraviolettisäteilyn kuvantamista hyödynnetään mm. mikroskopiassa. Näkyvän valon ja infrapunasäteilyn kuvantaminen on arkielämästä kaikkein tutuinta: esimerkiksi digikamerat tai tavalliset skannerit perustuvat tähän. Arkisten sovellusten lisäksi näkyvän valon tai infrapunasäteilyn kuvantamista käytetään esim. kaukokartoitukseen (remote sensing) satelliiteista tai lentokoneista, visuaaliseen laaduntarkastukseen teollisuudessa tai erilaisiin automaattisiin tunnistustehtäviin kuten sormenjälkien tai rekisterikilpien tunnistukseen. Mikroaaltojen kuvantamisen selkeästi tärkein sovellus on tutka. Tutka perustuu mikroaaltojen lähettämiseen ja kohteesta heijastuvien aaltojen ilmaisuun antennin ja (digitaaalisen) signaalinkäsittelyjärjestelmän avulla. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 4

1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Radioaaltoja samoin kuin spektrin toisessa päässä olevia gammasäteitä käytetään lähinnä tähtitieteen ja lääketieteen kuvantamisessa. Lääketieteessä radioaaltoja käytetään magneettiresonanssikuvien (MRI) ottamiseen ja tähtitieteessä taivaankappaleita voidaan kuvata radiotaajuuksilla siinä missä muillakin sähkömagneettisen säteilyn spektrin alueilla. Kuvassa 1 on kuvia Crab-nimisestä pulsarista, jotka on otettu sähkömagneettisen spektrin eri alueilla. Kuten kuvasta näkyy, pulsari näyttää aivan erilaiselta eri aallonpituusalueilla. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 5

1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Kuva 1: Kuva Crab-pulsarista eri sähkömagneettisen spektrin alueilla kuvattuna. Vasemmalta oikealle: gamma-, röntgen-, näkyvän valon-, infrapuna- ja radiotaajuuksien alue Välttämättä kuvantamismenetelmä ei perustu lainkaan sähkömagneettiseen säteilyyn. Muita mahdollisia menetelmiä ovat mm. ääni (alle 100 Hz:n äänet geologiassa ja ultraäänikuvaus useissa sovelluksissa), elektronisuihku (elektronimikroskoopit) tai kuvien luominen tietokoneella (esim. fraktaalit). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 6

1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet 1.3 Kuvankäsittelyn vaiheet Erityisesti konenäkösovelluksissa kuvankäsittelyprosessi voidaan jakaa useaan vaiheeseen: 1. Kuvantaminen. Edellä käsiteltiin muutamia eri vaihtoehtoja digitaaliseen kuvanmuodostukseen. Menetelmästä riippumatta oletuksena yleensä on, että kuvantamisen tuloksena saadaan yksi- tai värikuvien tapauksessa useampikanavainen digitaalinen kuva. 2. Kuvan korostus tai entistäminen. Kuvan korostuksen tarkoituksena on saada kuva näyttämään paremmalta tai käyttötarkoitukseensa sopivammalta. Esimerkkejä kuvan korostusmenetelmistä ovat kuvan kontrastin lisääminen ja kuvan terävöittäminen. Kuvan entistämisessä lähtökohtana on, että kuvaan on kuvantamisessa tai jossain muussa vaiheessa tullut häiriö, jota pystytään jollain tavoin mallintamaan, ja tätä mallia käyttäen häiriön vaikutus pyritään poistamaan tai sitä ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 7

1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet pyritään vähentämään. 3. Segmentointi lähtee oletuksesta, että kuva koostuu useista mielekkäistä itsenäisistä osista (kuten varsinaisesta kuvattavasta kohteesta ja taustasta). Segmentoinnin tarkoituksena on erottaa nämä osat toisistaan. Automaattinen segmentointi on useissa sovelluksissa erittäin vaikeaa, mutta toisaalta segmentointi on kriittinen osa kuvankäsittelyprosessia, sillä epäonnistunut segmentointi johtaa pääsääntöisesti koko järjestelmän suorituskyvyn romahtamiseen. 4. Representaatio. Kuvan segmentoinnin jälkeen tuloksena on kutakin kuvan osaa esittävä pikselijoukko. Representaatio tarkoittaa näiden osien esittämistä erilaisten piirteiden avulla, toisin sanoen muodossa, joka sopii jatkokäsittelyyn ja tunnistukseen parhaiten. 5. Luokittelu ja tunnistus. Kuvan osat pyritään luokittelemaan edellisessä vaiheessa laskettujen piirteiden perusteella. Esimerkiksi videokuvaan ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 8

1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet perustuvassa liikennelaskentasovelluksessa pyritään tunnistamaan kuvasta ajoneuvot tai satelliittikuvasta etsitään automaattisesti peltoalueita. Kaikkia edellämainittuja vaiheita tarkastellaan tällä kurssilla. Muita digitaalisen kuvankäsittelyn alueita, joihin kurssilla perehdytään, ovat 1. Värikuvien käsittely. Suurimmassa osassa kurssia oletuksena on, että käsiteltävät kuvat ovat yksikanavaisia eli harmaasävykuvia. Monikanavaisten eli värikuvien käsittely on muuttunut jatkuvasti yhä tärkeämmäksi osaksi digitaalista kuvankäsittelyä, ja joiltain osin se eroaa harmaasävykuvien käsittelystä. 2. Aallokkeet. Aallokkeita käytetään moniin tarkoituksiin digitaalisessa kuvankäsittelyssä. 3. Kuvan kompressointi. Kompressoinnin eli pakkauksen tarkoituksena on vähentää kuvan esittämiseen tarvittavaa bittimäärää tallennus- tai ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 9

1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet tiedonsiirtokapasiteetin säästämiseksi. Kompressoinnissa käytetään hyväksi kuvassa esiintyvää toistoa eli redundanssia. 4. Morfologiset operaattorit perustuvat matemaattiseen morfologiaan. Niitä hyödynnetään mm. binäärikuvien käsittelyssä sekä kuvan segmentoinnissa ja representaatiossa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 10

1467S Digitaalinen kuvankäsittely 2 Digitaalisen kuvan perusteet 2.1 Havaitseminen Digitaalinen kuvankäsittely perustuu suurelta osin formaaliin matemaattiseen käsittelyyn, mutta toisaalta intuitio ja käytännönläheinen analyysi ovat tärkeitä käytettyjen menetelmien valinnassa. Tästä syystä ihmisen näköjärjestelmän tunteminen on oleellista kuvankäsittelyssä. Seuraavassa käsitellään ihmissilmän rakennetta, kuvanmuodostusta silmässä sekä silmän sopeutumista valaistusolosuhteisiin. Ihmissilmän rakenne on esitetty kuvassa 2. Silmän kuori muodostuu kolmesta kerroksesta: Sarveiskalvo ja kovakalvo muodostavat uloimman kerroksen. Näistä sarveiskalvo muodostaa suurimman osan silmän taittovoimasta. Silmän osat saavat ravinteensa suonikalvon verisuonista. Sisimpänä olevan verkkokalvon ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 11

1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen valoherkät solut tuottavat varsinaisen näköaistimuksen. Iiriksen keskellä oleva aukko, pupilli, säätelee silmään tulevan valon määrää. Pupillin halkaisija vaihtelee noin kahdesta kahdeksaan millimetriin. Sädekehän lihakset säätelevät mykiön paksuutta. Mykiö toimii silmässä linssinä. Verkkokalvolla on kahdenlaisia soluja: Tappi- ja sauvasoluja. Tappisolut ovat keskittyneet pääasiassa verkkokalvon keskellä olevalle tarkan näön alueelle, ja ne ovat herkkiä värille. Tappisoluihin perustuvaa näköä kutsutaan fotooppiseksi tai päivänäkemiseksi. Sauvasolut sen sijaan ovat levittäytyneet melko tasaisesti verkkokalvolle. Ne eivät ole herkkiä valon eri aallonpituuksille eli väreille, ja ne vaativat toimiakseen huomattavasti vähemmän valoa kuin tappisolut. Sauvasoluihin perustuvaa näköä kutsutaan skotooppiseksi tai hämäränäöksi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 12

1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen Kuva 2: Yksinkertaistettu kuva ihmissilmän rakenteesta ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 13

1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen Terävän kuvan muodostuminen silmässä perustuu siihen, että linssinä toimiva silmän mykiö muuttaa muotoaan sädekehän lihasten ohjaamana. Linssin polttoväli vaihtelee noin 14:n ja 17:n mm:n välillä. Kun ihminen katsoo kohdetta joka on yli 3 metrin päässä, mykiö on litteimmillään ja sen polttoväli pisimmillään. Kun kohde on lähempänä silmää, linssi muuttuu paksummaksi ja samalla polttoväli lyhenee. Ihmissilmä kykenee havaitsemaan valtavan suuren skaalan eri kirkausasteita: häikäisyrajalla valon intensiteetti on noin 10 10 -kertainen skotooppisen näön alarajaan verrattuna. Silmä ei kuitenkaan kykene havaitsemaan kaikkia näitä kirkkauksia kerralla vaan se adaptoituu tietylle kapeammalle sävyalueelle iiriksen koon muuttumisen ja verkkokalvon solujen adaptaation seurauksena. Kun silmä on adaptoitunut tietylle intensiteettialueelle, tätä aluetta tummemmat kohteet näkyvät mustina ja toisaalta sitä kirkkaamman valon tuleminen silmään aiheuttaa silmän adaptoitumisen yhä kirkkaammille intensiteeteille. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 14

1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen Koska digitaalisen kuvan arvot ovat diskreettejä, on olennainen ja mielenkiintoinen kysymys, kuinka monta eri harmaasävyä ihminen voi havaita eli kuinka paljon kahden harmaan kohteen intensiteetin tulee poiketa, jotta ihminen kokee ne erisävyisiksi. Tätä voidaan mitata esimerkiksi kuvan 3 järjestelyllä. Tässä taustan intensiteetti on I ja keskellä vilautetaan I:n verran kirkkaampaa aluetta. Pienintä muutosta, jolla koehenkilö havaitsee muutoksen 50 %:ssa kokeista, merkitään I c :llä. Nyt arvoa I c /I kutsutaan Weberin suhteeksi. Pieni Weberin suhde tarkoittaa, että pienet muutokset havaitaan ja suuri suhde, että vain suuret muutokset havaitaan. On huomattu, että Weberin suhteen arvo riippuu I:stä. Weberin suhde pienenee kun taustan intensiteetti kasvaa. Kerrallaan, yhdessä kohdassa ihmissilmä voi havaita korkeintaan parikymmentä eri harmaasävyä. Näin vähäinen määrä harmaasävyjä ei kuitenkaan riitä korkealaatuisen harmaasävykuvan esittämiseen, sillä katse kiertelee kuvassa ja eri kohdissa silmä adaptoituu erilaisten ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 15

1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen harmaasävyalueiden havaitsemiseen. Korkealaatuisen kuvan esittämiseen vaaditaankin yleensä yli 100 intensiteettitasoa. Ι Ι+ Ι Kuva 3: Koejärjestely, jolla mitataan harmaasävyjen erottelukykyä Havaittu, subjektiivinen intensiteetti ei usein riipu suoraan todellisesta, mitatusta valon intensiteetistä. Ensinnäkin on havaittu, että subjektiivinen intensiteetti on likimain absoluuttisen intensiteetin logaritmi. Lisäksi erilaiset optiset illuusiot kuten Machin nauhat ja kuvassa 4 esitetty ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 16

1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen suhteellisesta kontrastista johtuva harha haittaavat harmaasävyjen havaitsemista. Kuva 4: Absoluuttisten harmaasävyjen havaitsemiseen liittyvä harha: kuvan ruudut A ja B ovat absoluuttiselta harmaasävyltään samat. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 17

1467S Digitaalinen kuvankäsittely 2.2 Valo ja sähkömagneettinen spektri 2.2 Valo ja sähkömagneettinen spektri Sähkömagneettista spektriä käsiteltiin edellisessä luvussa. Spektri jaetaan lyhyemmästä aallonpituudesta pidempään päin lueteltuna gamma-, röntgen-, ultravioletti-, näkyvän valon, infrapuna-, mikroaalto- ja radioaaltoalueisiin. Säteilyn taajuus ν ja aallonpituus λ liittyvät toisiinsa yhtälöllä λ = c ν, (2.2-1) jossa c on valon nopeus. Yhden fotonin energia riippuu myös taajuudesta: jossa h on Planckin vakio. E = hν, (2.2-2) Näkyvän valon aallonpituus on välillä 0, 43µm 0, 79µm. Värispektri voidaan jakaa kuuteen alueeseen (lyhyimmästä aallonpituudesta alkaen): violetti, sininen, vihreä, keltainen, oranssi ja punainen. Siirtymät näiden ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 18

1467S Digitaalinen kuvankäsittely 2.2 Valo ja sähkömagneettinen spektri välillä eivät luonnollisesti ole teräviä vaan väri muuttuu toiseksi vähitellen aallonpituuden muuttuessa. Väriä tarkastellaan tarkemmin luvussa 6. Se, minkä värisenä jokin kohde havaitaan, riippuu sekä kohteen valaisuun käytetyn valon väristä että kohteen heijastusominaisuuksista. Valkoinen valo sisältää käytännössä kaikkia näkyvän valon aallonpituuksia, ja esimerkiksi vihreinä havaittavat kohteet heijastavat valoa, jonka aallonpituus on välillä 500-570 nm, ja absorboivat muilla aallonpituusalueilla olevan valon. Siitä heijastuu siis pääasiassa vihreää väriä vastaavia aallonpituuksia. Säteilyn aallonpituuden lisäksi sen määrällä on merkitystä. Eritysesti näkyvä valon ollessa kyseessä valon määrää kuvataan termeillä radianssi, luminanssi ja kirkkaus. Radianssi mittaa, kuinka paljon energiaa säteilylähteestä virtaa. Radianssin mittayksikkö on watti. Luminanssi mittaa havaitsijan havainnoimaa intensiteettiä. Esimerkiksi infrapunasäteilyn ollessa kyseessä säteilylähteen radianssi voi olla huomattavan suuri, mutta ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 19

1467S Digitaalinen kuvankäsittely 2.2 Valo ja sähkömagneettinen spektri lähde on hädin tuskin havaittavissa ihmissilmällä eli sen luminanssi on lähes nolla. Kirkkaus taas tarkoittaa havaitsijan kokemaa harmaasävyä. Kuten edellä todettiin, kirkkaus on subjektiivinen käsite ja siihen vaikuttavat monenlaiset tekijät eikä se ole helposti mitattavissa. Periaatteessa, mikäli voidaan kehittää sensori, joka mittaa energiaa tietyllä sähkömagneettisen spektrin alueella, voidaan tällä alueella säteileviä tai säteilyä heijastavia kohteita kuvantaa. Erityisesti mikroskopian alueella on kuitenkin huomattava, että nähdäkseen tietyn kohteen säteilyn aallonpituuden tulee olla samaa luokkaa tai pienempi kuin kohteen koko. Esimerkiksi vesimolekyylin läpimitta on luokkaa 10 10 m, joten vesimolekyylien tutkimiseen tarvitaan sähkömagneettista säteilyä, jonka aallonpituus on tuota luokkaa tai pienempi, eli esimerkiksi röntgensäteitä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 20

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen 2.3 Kuvantaminen Kuvantamisessa sensori mittaa kuvattavasta kohteesta tietyllä spektrin alueella tulevaa säteilyä. Sensorin vaste riippuu jollain tavalla (ei välttämättä lineaarisesti) sensoriin tulevan säteilyn määrästä. Sensorin vaste muutetaan digitaaliseen muotoon ja yleensä sille suoritetaan joitain signaalinkäsittelyoperaatioita halutunlaisen kuvan saamiseksi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 21

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Kuva 5: 2-ulotteinen kuva voidaan muodostaa käyttämällä yksittäissensoria jota voidaan liikuttaa suhteessa kuvattavaan kohteeseen. Kuvassa 5 on esimerkki yksittäissensorista. Yksittäissensori voi olla esimerkiksi valodiodi. Kaksiulotteisen kuvan saamiseksi yksittäissensoria on liikutettava sekä x- että y-suunnassa. Tämän järjestelyn hyvä puoli on, että mekaanista liikettä voidaan kontrolloida sopivalla laitteistolla erittäin tarkasti, joten erittäin korkean tarkkuuden kuvien ottaminen on mahdollista (joskin hitaasti). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 22

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Yksittäissensoreita käyteteään myös lasereiden kanssa. Laserista tuleva säde ohjataan liikuteltavien peilien avulla kohteeseen ja sieltä heijastuva valo edelleen sensoriin. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 23

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Kuva 6: Esimerkkejä viivasensoreista ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 24

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Viivasensoreista on esimerkkejä kuvassa 6. Viivasensoreita käytettäessä sensoria tarvitsee liikuttaa enää yhdessä suunnassa kaksiulotteisen kuvan saamiseksi. Lääketieteen kuvantamisessa (tietokonetomografiassa, sekä MRI- ja PET-kuvauksessa) käytetään kuvassa oikealla puolella olevaa järjestelyä: Säteilylähde pyörii kuvattavan kohteen ympärillä ja vastapuolella on ko. säteilylle herkkä sensori. Kun mittauksia otetaan useissa eri suunnissa, sensorien vasteesta voidaan laskea kohteen poikkileikkauskuva nk. käänteisellä Radon-muunnoksella. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 25

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Kuva 7: Kuvantaminen matriisisensorilla ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 26

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Tavallisissa digitaalikameroissa ym. vastaavissa laitteissa käytetään sensorimatriisia, jossa on valoherkkiä sensoreita m n elementin matriisissa. Sensoritekniikasta riippuen värikuvia otettaessa tarvitaan yleensä useita sensoreita kuvapistettä kohti eri värikomponenttien mittaamiseksi. Kuvassa 7 on tyypillinen kuvausjärjestely sensorimatriisia käytettäessä: Valonlähteestä tuleva valo (tai muu sähkömagneettinen säteily) heijastuu kuvattavasta kohteesta, kulkee linssi- tai muun kuvantamisjärjestelmän läpi kuvatasolle, jossa on säteilylle herkkiä sensoreita. Sensorit integroivat niihin tulevaa säteilyenergiaa tietyn ajan (valotusajan) yli, jonka jälkeen kuvasignaali on luettavissa matriisista analogisessa muodossa. Lopuksi analoginen signaali muuutetaan digtaaliseksi A/D-muunnoksessa, jota tarkastellaan seuraavassa kappaleessa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 27

1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen 2.3.1 Kuvanmuodostus Harmaasävykuva voidaan ymmärtää kaksiulotteiseksi funktioksi f(x, y), 0 < f(x, y) < (2.3-1) joka kuvaa kuvattavasta kohteesta kuvantamisjärjestelmään tulevan säteilyn määrää. Useimmissa tapauksissa f voidaan jakaa kahteen komponenttiin: valaistuskomponenttiin i(x, y) joka kuvaa säteilylähteestä kuvattavaan kohteeseen tulevan säteilyn määrää ja heijastuskomponenttiin r(x, y) joka kuvaa kuinka hyvin kuvattava kohde heijastaa säteilyä. Kuva f voidaan siis esittää tulona f(x, y) = i(x, y)r(x, y), (2.3-2) jossa 0 < i(x, y) < (2.3-3) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 28

1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi ja 0 < r(x, y) < 1. (2.3-4) 2.4 Kuvan näytteenotto ja kvantisointi Kuvantamisjärjestelmään tuleva signaali on jatkuva sekä paikan että intensiteetin suhteen. Digitaalisessa kuvassa sekä koordinaattien että kuvafunktion arvot ovat diskreettejä. Kuvan diskretoimista paikan suhteen kutsutaan näytteistämiseksi ja intensiteetin (amplitudin, kuvafunktion arvon) diskretoimista kvantisoinniksi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 29

1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi 0 1 2 3 4 5 N 1 1 2 3 4 5 y M 1 x Kuva 8: Tässä kurssissa kuvatason koordinaatisto valitaan seuraavasti: x- akselin positiivinen suunta on vasemmasta yläkulmasta alaspäin ja y-akselin positiivinen suunta vasemmasta yläkulmasta oikealle. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 30

1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi Olkoon aluperäinen jatkuva kuvafunktio f(x, y). Siitä otettuja näytteitä f(x 0 + x x, y 0 + y y), 0 x M 1, 0 y N 1 kutsutaan näytteistetyksi funktioksi. Huomaa, että kurssikirjan mukaisesti tässä kurssissa käytetään koordinaatteja x ja y välillä kuvaamaan jatkuvan funktion koordinaatteja ja välillä näytteistetyn funktion indeksejä. Kuvankäsittelyssä yleisesti käytetty koordinaattien merkitsemistapa poikkeaa matematiikan käytännöstä. Tässä kurssissa käytetty koordinaatisto on esitelty kuvassa 8. Näytteistettyä kuvaa käsitellään usein myös ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 31

1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi M N-matriisina: f(0, 0) f(0, 1)... f(0, N 1) f(1, 0) f(1, 1)... f(1, N 1) f(x, y) =......... f(m 1, 0) f(m 1, 1)... f(m 1, N 1) (2.4-1) Huomaa, että kurssissa käytetty kuvatason koordinaatiston valinta vastaa matriisilaskennassa perinteisesti käytettyjä indeksejä. Analogia-digitaalimuunnoksessa alkuperäisen kuvafunktion arvot kvantisoidaan tietylle määrälle harmaasävytasoja. Alkuperäisen funktion intensiteettiarvot [L min, L max ] kvantisoidaan välille 0,...,L 1. Rajaa L min pienemmät ja rajaa L max suuremmat intensiteetit leikkautuvat eli saavat arvon 0 tai L 1 kvantisoidussa funktiossa. Kuvassa 9 on esimerkki tasavälisestä kvantisoinnista: alkuperäinen funktion arvot kuvautuvat ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 32

1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi arvoiksi 0, 1....,7. Digitaaliset kuvat esitetään yleensä binäärimuodossa, joten käytännön syistä kvantisointitasojen määrä L valitaan usein siten, että se on 2:n potenssi: L = 2 k. (2.4-3) Nyt ilman kompressiota digitaalisen kuvan esittämiseen tarvitaan b = M N k (2.4-4) bittiä. Esimerkiksi 256:m harmaasävyn 512 512 pikselin kuvan esittäminen vaatii 2097152 bittiä = 256 kilotavua. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 33

1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi kvantisoitu arvo alkuperäinen arvo Kuva 9: Esimerkki kvantisointifunktiosta, joka kvantisoi alkuperäisen funktion arvot tasavälisesti 8 kvantisointitasolle. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 34

1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä 2.5 Pikseleiden välisiä yhteyksiä Pikselin p = (x, y) 4-naapurit ovat ja sen diagonaalinaapurit ovat (x + 1, y), (x 1, y), (x, y + 1), (x, y 1) (x + 1, y + 1), (x + 1, y 1), (x 1, y + 1), (x 1, y 1). Pisteen 4-naapureita merkitään N 4 (p):llä ja diagonaalinaapureita N D (p):llä. Diagonaali- ja 4-naapurit yhdessä muodostavat pisteen 8-naapurit, N 8 (p):n, ks. kuva 10. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 35

1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä N 4(p) N (p) D N (p) 8 Kuva 10: Pisteen p 4-, diagonaali- ja 8-naapurit. Jotta kaksi pistettä olisivat vierekkäisiä (adjacent), niiden täytyy olla naapureita ja lisäksi niiden harmaasävyjen täytyy täyttää määrätty samanlaisuuskriteeri. Jos V :llä merkitään sitä harmaasävyjen joukkoa, jotka täyttävät samanlaisuuskriteerin (esim. voidaan määrätä, että V :hen kuuluvat harmaasävyt 0 30), 4-, 8- ja m-vierekkäisyys määritellään seuraavasti: 4-vierekkäisyys. Pisteet p ja q ovat 4-vierekkäisiä, jos niiden harmaasävyarvot kuuluvat V :hen ja q kuuluu N 4 (p):hen. 8-vierekkäisyys. Pisteet p ja q ovat 8-vierekkäisiä, jos niiden ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 36

1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä harmaasävyarvot kuuluvat V :hen ja q kuuluu N 8 (p):hen. m-vierekkäisyys. Pisteet p ja q ovat m-vierekkäisiä, jos niiden harmaasävyarvot kuuluvat V :hen ja 1. q kuuluu N 4 (p):hen tai 2. q kuuluu N D (p):hen ja joukkoon N 4 (p) N 4 (q) ei kuulu pikseleitä joiden harmaasävyarvo on V :ssä. 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 (a) (b) (c) Kuva 11: Esimerkki pisteiden välisestä vierekkäisyydestä kun V = {1} ja käytetään (a) 4-vierekkäisyyttä, (b) 8-vierekkäisyyttä, (c) m-vierekkäisyyttä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 37

1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä Polku pisteestä p = (x, y) pisteeseen q = (s, t) on jono erillisiä pisteitä (x 0, y 0 ), (x 1, y 1 ),...,(x n, y n ) siten että p = (x, y) = (x 0, y 0 ) sekä q = (s, t) = (x n, y n ), ja pisteet (x i 1, y i 1 ) ja (x i, y i ) ovat vierekkäisiä kun 1 i n. Olkoon S joukko pikseleitä kuvassa. Nyt p ja q ovat liittyneitä (connected) S:ssä jos on olemassa polku p:stä q:hun siten että kaikki polun pisteet ovat S:ssä. Olkoon p piste S:ssä. Tällöin niiden pisteiden joukkoa, jotka ovat liittyneitä p:hen S:ssä kutsutaan S:n liittyneeksi komponentiksi. Jos S koostuu tasan yhdestä liittyneestä komponentista, S:ää kutsutaan liittyneeksi joukoksi. Liittynyttä joukkoa kutsutaan kuvan alueeksi (region). Alueen R rajan (boundary, border, contour) muodostavat ne pisteet, joilla on vähintään yksi naapuri, joka ei ole R:ssä sekä ne R:n pisteet jotka ovat samalla koko kuvan reunapisteitä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 38

1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä Kuvan alueisiin liittyy oleellisesti myös reunan (edge) käsite. Rajan ja reunan oleellinen ero on, että raja on alueeseen liittyvä globaali käsite, ja se muodostaa suljetun polun kuvassa. Reuna sen sijaan on paikallinen käsite, ja sillä tarkoitetaan paikallista epäjatkuvuutta kuvan harmaasävyarvoissa. Reunojen ilmaisua käsitellään kappaleessa 10. 2.5.1 Etäisyysmittoja Olkoot p, q ja z kuvapisteitä, koordinaatteina (x, y), (s, t) ja (u, v). D on etäisyysfunktio eli metriikka, jos 1. D(p, q) 0 (D(p, q) = 0, jos ja vain jos p = q), 2. D(p, q) = D(q, p) ja 3. D(p, z) D(p, q) + D(q, z) (kolmioepäyhtälö). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 39

1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä p:n ja q:n välinen Euklidinen etäisyys: D e (p, q) = (x s) 2 + (y t) 2. (2.5-1) D 4 -etäisyys (city block, Manhattan distance): D 8 -etäisyys (chessboard): D 4 (p, q) = x s + y t. (2.5-2) D 8 (p, q) = max( x s, y t ). (2.5-3) On syytä huomata, että edellä esitettyjen etäisyysmittojen arvo ei riipu lainkaan kuvapisteiden harmaasävyistä; etäisyys lasketaan pelkästään koordinaattien avulla. Lisäksi voidaan määritellä kuvapisteiden arvoista riippuva etäisyys, D m -etäisyys, joka tarkoittaa lyhyimmän mahdollisen p:stä q:hun kulkevan m-polun pituutta. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 40

1467S Digitaalinen kuvankäsittely 2.6 Lineaariset ja epälineaariset operaatiot 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 (a) (b) (c) Kuva 12: Esimerkkejä etäisyysmitoista. Ympyröityjen pisteiden välinen etäisyys (a), (b)- ja (c)-kohdassa on D e -mitalla 2 2, D 4 -mitalla 4 ja D 8 -mitalla 2. D m -mitalla etäisyys on (a)-kohdassa 2, (b)-kohdassa 3 ja (c)-kohdassa 4. 2.6 Lineaariset ja epälineaariset operaatiot Olkoon H operaattori, jonka syöte ja tulos ovat kuvia. H on lineaarinen operaattori, jos mille tahansa kuville f ja g sekä mille tahansa skalaareille a ja b pätee H {af + bg} = ah {f} + bh {g}. (2.6-1) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 41

1467S Digitaalinen kuvankäsittely 2.6 Lineaariset ja epälineaariset operaatiot Mikäli em. yhtälö ei päde, operaattorin sanotaan olevan epälineaarinen. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 42

1467S Digitaalinen kuvankäsittely 3 Kuvan korostus paikkatasossa Kuvan korostuksen tavoitteena on prosessoida kuvaa siten, että tuloskuva on valittuun sovellutukseen käyttökelpoisempi kuin alkuperäinen kuva. Kuvan korostusmenetelmät voidaan jakaa paikka- ja taajuustason menetelmiin. Tässä luvussa käsitellään paikkatason menetelmiä. 3.1 Taustaa Paikkatasolla tarkoitetaan sitä pikseleiden joukkoa, joka muodostaa varsinaisen kuvan. Paikkatason menetelmät käyttävät suoraan näiden pikseleiden arvoja kuvan prosessointiin. Paikkatason operaattori voidaan määritellä yhtälöllä g(x, y) = T [f(x, y)], (3.1-1) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 43

1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia missä f(x, y) on syötekuva, g(x, y) on tuloskuva ja T on paikkatason operaattori, joka on määritelty jossain (x, y)-tason naapurustossa. T voi käyttää syötteenään yhden kuvan sijaan myös useampaa kuvaa, esimerkiksi jos T -operaatio määritellään usean syötekuvan keskiarvoistamiseksi. Paikkatason menetelmien perusajatus on, että prosessointi aloitetaan esim. kuvan vasemmasta yläkulmasta ja kunkin pikselin prosessoinnissa käytetään hyväksi syötekuvasta ko. pikselin ympärillä määritellyn suorakaiteen tai neliön muotoisen naapuruston harmaasävyjä. Tämän jälkeen naapurustoa siirretään pikselin verran oikealle ja käsitellään seuraava piste, jne. 3.2 Harmaasävymuunnoksia Yksinkertaisimmassa tapauksessa edellä mainitun naapuruston koko on 1 1, jolloin tuloskuvan pikselin arvo riippuu ainoastaan kyseisen pikselin arvosta lähtökuvassa. Tämä operaatio voidaan määritellä harmaasävyjen ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 44

1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia muunnosfunktiona s = T(r), (3.1-2) missä r on syötekuvan f(x, y) harmaasävy ja s on harmaasävy tuloskuvassa g(x, y). Seuraavassa esitellään eräitä keskeisimpiä harmaasävymuunnoksia. Negatiivikuva Olkoon syötekuvassa harmaasävyjä välillä [0, L 1]. Tällöin kuvan negatiivikuva saadaan harmaasävymuunnoksella s = L 1 r. (3.2-1) Tällä muunnoksella voidaan korostaa erityisesti pieniä vaaleita harmaasävyalueita, jotka ovat tummien alueiden ympäröimiä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 45

1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia Logaritmi Logaritmimuunnos määritellään yhtälöllä s = c log(1 + r), (3.2-2) missä c on vakio. Tämä muunnos kuvaa kapean alueen pieniä harmaasävyjä lähtökuvassa laajemmalle alueelle harmaasävyjä tuloskuvassa ja päin vastoin. Toisin sanoen, muunnos on käyttökelpoinen kun mielenkiintoinen informaatio kuvassa on keskittynyt harmaasävyalueen alapäähän. Eksponentiaalinen muunnos Eksponentiaalinen harmaasävymuunnos määritellään yhtälöllä s = cr γ, (3.2-3) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 46

1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia missä c ja γ ovat positiivisia vakioita. Useiden kameroiden, näyttöjen, jne vaste on edellämainitun yhtälön mukainen, joten vastaavanmuotoinen gamma-korjaus tehdään harmaasävyarvoille lineaarisen vasteen saavuttamiseksi. Paloittain lineaariset muunnokset Paloittain määriteltyjä lineaarisia muunnoksia voidaan käyttää halutun harmaasävyalueen korostamiseen. Esimerkkejä paloittain määritellyistä lineaarisista muunnoksista on kuvassa 13. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 47

1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia (r 2, s 2 ) s s s (r, s ) 1 1 r (a) r (b) r (c) Kuva 13: Esimerkkejä paloittain määritellyistä lineaarisista harmaasävymuunnoksista: (a) kontrastin venytys, (b) ja (c) erilaisia vaihtoehtoja intensiteetin viipalointiin. Kontrastin venytyksellä voidaan lisätä kuvan harmaasävydynamiikkaa. Pisteet (r 1, s 1 ) ja (r 2, s 2 ) määrittävät kuvauksen. Kun r 1 = s 1 ja r 2 = s 2, kyseessä on lineaarinen kuvaus, joka ei muuta kuvan harmaasävyjä. Jos taas ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 48

1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia r 1 = r 2, s 1 = 0 ja s 2 = L 1, saadaan kynnystysfunktio joka kuvaa r 1 :tä pienemmät harmaasävyt mustaksi ja sitä suuremmat valkoiseksi. Valitsemalla näiden kahden ääritapauksen väliltä saadaan erilaisia kuvan kontrastia lisääviä funktioita. Intensiteetin viipalointi korostaa kuvan tiettyä harmaasävyaluetta. Kuvan 13 (b) mukainen kuvaus korostaa määrättyä aluetta ja säilyttää muut harmaasävyt ennallaan, ja kuvan 13 (c) mukainen kuvaus esittää halutun harmaasävyalueen kirkkaana ja kaikki muut harmaasävyt tummana. Bittitasojen viipaloinnissa esitetään harmaasävykuvan määrätyn bitin arvot mustavalkokuvana. Tätä voidaan hyödyntää esimerkiksi arvioitaessa, kuinka monen bitin tarkkuudella kuva pitää esittää jotta riittävä määrä yksityiskohtia saadaan säilytettyä. Esimerkki bittitason viipaloinnista on kuvassa 14. Kuten esimerkistä huomaa, tärkein informaatio on muutamaa eniten merkitsevää bittiä vastaavilla bittitasoilla, ja matalammilla tasoilla on pääasiassa pienempiä yksityiskohtia ja kohinaa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 49

1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 50

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi 3.3 Histogrammin prosessointi Olkoon kuvassa harmaasävyjä [0, L 1]. Tällöin kuvan histogrammi on diskreetti funktio h(r k ) = n k, jossa r k on harmaasävy välillä [0, L 1] ja n k on niiden kuvapisteiden lukumäärä, joiden harmaasävyarvo on r k. Normalisoidussa histogrammissa arvot on jaettu kuvapisteiden kokonaismäärällä n, eli p(r k ) = n k /n. Vapaasti tulkittuna normalisoitu histogrammi antaa estimaatin kunkin sävyn esiintymistodennäköisyydestä kuvassa. Histogrammin muoto antaa hyödyllistä infomaatiota kuvasta esim. kontrastin korostustarpeita silmälläpitäen. Esimerkkejä erilaisista harmaasävykuvista ja niiden histogrammeista on kuvassa 15. Histogrammin laskenta on yksinkertaista, joten histogrammeihin perustuvia kuvankäsittelymenetelmiä käytetään paljon reaaliaikaisissa kuvankäsittelysovelluksissa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 51

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi 0 100 200 0 100 200 ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 52

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi 3.3.1 Histogrammin tasoitus Oletetaan seuraavassa, että kuvan harmaasävyt on normalisoitu välille [0, 1] ja että normalisoitu harmaasävyjakauma p r (r) on määritelty ja positiivinen välillä [0, 1] ja se on jatkuva. Koska nyt jakauma on jatkuva eikä diskreetti, puhutaan todennäköisyystiheysfunktiosta histogrammin sijaan. Tarkastellaan harmaasävymuunnosta s = T(r), joka on 1. yksikäsitteinen ja monotonisesti kasvava kun 0 r 1 ja 2. 0 T(r) 1 kun 0 r 1. Tällöin käänteismuunnos s = T 1 (r) on olemassa, ja sillä on samat ominaisuudet. Nyt todennäköisyystiheysfunktioille p s (s) ja p r (r) on voimassa p s (s) = p r (r) dr ds. (3.3-3) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 53

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Kuvankäsittelyssä yleisesti käytetty harmaasävymuunnos on muotoa s = T(r) = r 0 p r (w)dw, (3.3-4) jossa w on integrointivakio. Huomaa, että T(r) on samalla satunnaismuuttujan r kertymäfunkio. Koska p r (r):n oletettiin olevan positiviinen välillä [0, 1], T(r) on yksikäsitteinen ja monotonisesti kasvava tällä välillä. Satunnaismuuttujan kertymäfunktion ominaisuuksista seuraa, että T(r) täyttää myös em. ehdon 2. Muunnoksen T(r) derivaatta on ds dr = dt(r) dr = d dr r 0 p r (w)dw = p r (r). (3.3-5) Nyt kaavasta 3.3-3 saadaan s:n jakauma seuraavasti: p s (s) = p r (r) dr ds = p r(r) 1 p r (r) = 1, 0 s 1. (3.3-6) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 54

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Muunnoksella T(r) saadaan siis kuvan harmaasävyjakauma muutettua tasaiseksi. Käytännön tilanteissa digitaalisilla kuvilla jakauma p r (r) ei ole jatkuva vaan diskreetti. Normalisoidulle histogrammille p r (r k ) = n k n muunnos T(r k ) määritellään seuraavasti: (3.3-7) s k = T(r k ) = k p r (r j ) = j=0 k j=0 n j n (3.3-8) Tätä operaatiota kutsutaan histogrammin tasoittamiseksi tai ekvalisoinniksi. Kaavan 3.3-8 mukainen muunnos täyttää edellämainitut ehdot 1. ja 2., mutta toisin kuin jatkuvassa tapauksessa, tuloksena saatavan kuvan histogrammi ei yleensä ole täysin tasainen. Tämä johtuu muunnoksen diskreetistä luonteesta. Kuvassa 16 on esimerkki harmaasävykuvasta, jolle ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 55

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi on suoritettu histogrammin tasoitus. 0 50 100 150 200 250 Kuva 16: Esimerkki harmaasävykuvasta, jolle on suoritettu histogrammin tasoitus. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 56

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi 3.3.2 Histogrammin määrääminen Histogrammin tasoitus muuttaa kuvan histogrammin lähes tasaiseksi, mutta kaikissa tilanteissa tämä lähestymistapa ei ole paras mahdollinen vaan voi olla hyödyllisempää tavoitella jotain muuta kuin tasaista histogrammia. Käsitellään jälleen jatkuvia jakaumia. Olkoon p z (z) haluttu harmaasävyjakauma. Nyt muunnos G(z) = z 0 p z(w)dw muuttaa jakauman p z (z) tasajakaumaksi. Jos käänteismuunnos G 1 (s) on olemassa (ks. ehdot 1. ja 2. edeltä), se muuttaa tasajakauman jakaumaksi p z (z). Edellisessä kappaleessa kuvatulla muunnoksella s = T(r) voidaan annetun kuvan harmaasävyjakauma tasoittaa, joten jakauman määrittäminen tapahtuu yhdistetyllä muunnoksella z = G 1 (s) = G 1 (T(r)). (3.3-12) Tällä muunnos muuntaa jakauman p r (r) halutuksi jakaumaksi p z (z). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 57

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Käytännössä käänteismuunnoksen G 1 (s) määrittäminen voi olla vaikeaa jatkuvassa tapauksessa. Diskreetissä tapauksessa sen sijaan voidaan muunnokset toteuttaa yksinkertaisesti taulukoilla. Diskreetissä tapauksessa tosin pätee sama kuin histogrammin tasoittamisessa eli saavutettu jakauma ei usein ole täsmälleen halutun kaltainen. Esimerkki histogrammin määräämisellä saadusta kuvasta on kuvassa 17. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 58

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi (a) (b) (c) Kuva 17: Esimerkki histogrammin määräämisestä. (a) tavoiteltu histogrammi, (b) histogrammin määräämisellä saatu kuva, (c) tuloskuvan histogrammi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 59

1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi 3.3.3 Paikallinen käsittely Edellä esitetyt menetelmät ovat globaaleja, koska muunnosfunktio perustuu koko kuvan harmaasävyjakaumaan. Usein tarvitaan paikallista korostusta, koska globaali muunnos ei anna välttämättä hyvää tulosta. Paikallinen histogrammin käsittely toimii seuraavasti: 1. Määritellään n m suuruinen ympäristö (ikkuna), jota liikutetaan piste pisteeltä kuvan yli. 2. Kussakin pisteessä lasketaan n m ympäristön histogrammi, jota käytetään joko histogrammin tasoituksessa tai spesifioinnissa antamaan uusi arvo n m ympäristön keskipisteelle. 3. Ympäristö siirretään seuraavaan pisteeseen ja lasketaan uusi histogrammi. Laskenta-ajan pienentämiseksi voidaan käyttää myös ei-päällekkäisiä ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 60

1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla ympäristöjä, mikä saattaa kuitenkin aiheuttaa "shakkiruutuefektin". 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla Tässä osassa tarkastellaan kuvan korostusta aritmeettisilla ja loogisilla operaattoreilla. Loogista NOT-operaatiota lukuunottamatta kaikissa käsiteltävissä operaatioissa syötteenä on vähintään kaksi kuvaa. Perusajatus on, että syötekuvat ovat samankokoisia, ja jokaiselle pikselille lasketaan ko. pikselin summa, erotus, jne. lähtökuvissa. Mahdollisia operaatioita ovat mm NOT-operaattori. Syötteenä on vain yksi kuva ja tuloksena saadaan negatiivikuva (kaava 3.2-1). AND-operaattori ja OR-operaattori. Käytetään lähinnä binäärimaskien kanssa erotettaessa kuvasta tiettyä osaa käsittelyä varten. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 61

1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla AND-operattoria käytettäessä maskin ykkösiä vastaavat pikselit lähtökuvassa pysyvät ennallaan ja nollia vastaavat pikselit muuttuvat mustiksi. OR-operaattoria käytettäessä maskin ykkösiä vastaavat pikselit muuttuvat valkoisiksi ja nollia vastaavat pikselit pysyvät ennallaan. Kertolasku. Kertolaskun avulla voidaan toteuttaa monimutkaisempia maskioperaatioita: binäärimaskin sijasta voidaan käyttää harmaasävymaskia. Yhteen- ja vähennyslasku. Yhteenlaskua (keskiarvoistamista) voidaan käyttää kohinan vähentämiseen ja vähennyslaskua kuvien välisten erojen osoittamiseen. Näitä käsitellään tarkemmin seuraavassa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 62

1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla 3.4.1 Kuvien vähentäminen Kuvien vähentämisellä saadaan esille kahden kuvan välinen ero. Tätä voidaan hyödyntää mm. Tutkittaessa kuvankäsittelyoperaation (esim. kuvan bittimäärän vähennyksen) vaikutusta kuvaan: vähennetään käsitelty kuva alkuperäisestä Lääketieteellisessä kuvantamisessa: esimerkiksi käytettäessä varjoainetta röntgenkuvassa vähennetään ilman varjoainetta otettu kuva varjoaineen kanssa otetusta kuvasta jolloin saadaan verisuonet selvästi näkyviin. Liikkuvien kohteiden ilmaisussa ja seuraamisessa: vähennetään paikallaan olevalla kameralla otetun kuvasekvenssin kaksi kuvaa toisistaan. Erotuskuvassa on (kohinan lisäksi) kuvien ottamisen välillä liikkuneet kohteet. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 63

1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla Jos alkuperäisissä kuvissa on harmaasävyja [0,..., L 1], voi erotuskuvassa olla arvoja [ (L 1),...,0,...,L 1]. Yleensä digitaalisissa kuvissa ei sallita negatiivisia arvoja. Ongelman voi ratkaista esim. seuraavilla kahdella tavalla: joko lisätään erotuskuvaan vakio L 1 ja jaetaan tulos kahdella, tai lisätään erotuskuvaan sen pienimmän arvon vastaluku ja kerrotaan tulos luvulla (L 1)/(Max), missä Max on muunnetun kuvan suurin arvo. Ensimmäinen ratkaisu on yksinkertainen toteuttaa, mutta sen seurauksena koko käytettävissä oleva harmaasävyalue ei välttämättä ole käytössä. Jälkimmäinen menetelmä taas on toteutukseltaan hieman monimutkaisempi, mutta se takaa, että lopullisessa tuloskuvassa koko harmaasävyalue on käytössä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 64

1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla 3.4.2 Kuvien keskiarvoistaminen Oletetaan, että alkuperäiseenkuvaan f(x, y) summaututuu kohinaa η(x, y), eli g(x, y) = f(x, y) + η(x, y). (3.4-2) Oletetaan lisäksi, että eri pikseleiden kohinanäytteet ja saman pikselin ajallisesti peräkkäiset kohinanäytteet ovat korreloimattomia, ja että kohina on nollakeskiarvoista. Tavoitteena on vähentää kohinaa ottamalla laskemalla keskiarvokuva ḡ(x, y) joukosta kohinaisia kuvia {g i (x, y)}: ḡ(x, y) = 1 K K g i (x, y). (3.4-3) i=1 Jos edellämainitut kohinaa koskevat oletukset pitävät paikkansa, voidaan ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 65

1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla osoittaa että keskiarvokuvan odotusarvo ja varianssi saadaan kaavoista ja E{ḡ(x, y)} = f(x, y) (3.4-4) σ 2 ḡ(x,y) = 1 K σ2 η(x,y). (3.4-5) Keskiarvokuvan varianssi siis laskee kun K kasvaa eli käytännössä kuvassa oleva kohina vähenee kun lasketaan keskiarvo useasta kuvasta. Tämä kuitenkin vaatii, että kuvattavasta kohteesta voidaan ottaa identtisiä peräkkäisiä otoksia, jotka pystytään kohdistamaan tarkasti päällekkäin. Useissa sovelluksissa tämä ei ole mahdollista, mutta keskiarvoistamista käytetään mm. mikroskopiassa ja astronomiassa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 66

1467S Digitaalinen kuvankäsittely 3.5 Spatiaalisen suodatuksen perusteita 3.5 Spatiaalisen suodatuksen perusteita Spatiaaliset suodatusmenetelmät perustuvat artimeettisten tai loogisten operaatioiden suorittamiseen kunkin pikselin määrätyssä naapurustossa. Yleensä suodatuksessa käytetään myös maskia (ks. kuva 18), joka on naapuruston kokoinen matriisi, joka sisältää suodattimen kertoimet, jotka määräävät ko. suodattimen ominaisuudet. f(x 1,y 1) f(x 1,y) f(x 1,y+1) w( 1, 1) w( 1,0) w( 1,1) f(x,y 1) f(x,y) f(x,y+1) w(0, 1) w(0,0) w(0,1) f(x+1,y 1) f(x+1,y) f(x+1,y+1) w(1, 1) w(1,0) w(1,1) Kuva 18: 3 3-naapurusto kuvassa f(x, y) sekä 3 3-maski w. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 67

1467S Digitaalinen kuvankäsittely 3.5 Spatiaalisen suodatuksen perusteita Lineaarisessa spatiaalisessa suodatuksessa tuloskuvan pikselin arvo saadaan laskemalla summa naapuruston pikseleiden arvoista kerrottuna vastaavilla maskin kertoimilla eli a b g(x, y) = w(s, t)f(x + s, y + t), (3.5-1) s= a t= b jossa w on (2a + 1) (2b + 1)-kokoinen maski, f on lähtökuva ja g tuloskuva. Voidaan osoittaa, että tämä operaatio on lineaarinen eli täyttää ehdon 2.6-1. Epälineaarisessa spatiaalisessa suodatuksessa käytetään myös naapuruston arvoja, mutta painotetun summan sijaan käytetään jotain muuta aritmeettista tai loogista operaatiota, jonka seurauksena ehto 2.6-1 ei täyty. Naapuruston arvoista voidaan laskea esim. mediaani tai varianssi. Kuvan reunoilla ei kaikilla pikseleillä ole vaadittavia naapureita, jotta kyseinen pikseli voitaisiin käsitellä normaalisti. Tällöin on olemassa mm. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 68

1467S Digitaalinen kuvankäsittely 3.5 Spatiaalisen suodatuksen perusteita seuraavia vaihtoehtoja: 1. Käsitellään vain ne pikselit, joilla on kaikki tarvittavat naapurit. Tämän käsittelytavan seurauksena tuloskuva on pienempi kuin lähtökuva. 2. Käytetään reunoilla erilaista maskia tai alkuperäisestä maskista vain ne kertoimet jotka osuvat kuvan todellisten pikseleiden päälle. 3. Käsitetään kuva syklisesti suljetuksi. Käytetään harvoin, ja tälle käsittelytavalle tulisi olla joku perustelu. Ks. kuva 19 (a). 4. Heijastetaan reunapikseleiden arvot niiden ympärille. Ks. kuva 19 (b). 5. Oletetaan kuvan ulkopuoliset pisteet nolliksi. Ks. kuva 19 (c). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 69

1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet 9 7 8 9 7 1 1 2 3 3 0 0 0 0 0 3 1 2 3 1 1 1 2 3 3 0 1 2 3 0 6 4 5 6 4 4 4 5 6 6 0 4 5 6 0 9 7 8 9 7 7 7 8 9 9 0 7 8 9 0 3 1 2 3 1 7 7 8 9 9 0 0 0 0 0 (a) (b) (c) Kuva 19: Vaihtoehtoja reunojen käsittelyyn spatiaalisessa suodatuksessa. (a) Kuvan käsittäminen sykliseksi, (b) Heijastaminen, (c) Ulkopuolisten pisteiden olettaminen nolliksi. 3.6 Tasoittavat spatiaaliset suodattimet Kuvan tasoittamisen (smoothing) tai sumentamisen (blurring) tavoitteena on vähentää kuvasta kohinaa sekä tarpeettomia yksityiskohtia ennen ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 70

1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet jatkokäsittelyä. Tasoittaminen myös yhdistää pienet katkeamat reunoissa tai käyrissä. Kuvassa 20 on esimerkki tasoituksen käytöstä. Eräitä tasoittavia suodattimia kutsutaan myös alipäästösuodattimiksi. Tämän nimityksen perusteluja käsitellään luvussa 4. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 71

1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet (a) (b) (c) (d) Kuva 20: Esimerkki tasoituksen käytöstä kuvankäsittelyssä. Alkuperäisessä kuvassa (a) on paljon kohinaa ja kuvan renkaassa on pieni katkos. Jos tavoitteena on mustavalkoinen kuva, jossa on yhtenäinen rengas, tästä kuvasta ei saada hyvää tulosta millään kynnysarvolla (b). Jos sen sijaan kuvaa tasoitetaan ensin (c) ja tasoitettu kuva kynnystetään (d), tulos on merkittävästi parempi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 72

1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet 3.6.1 Tasoittavat lineaariset suodattimet Tasoittavissa lineaarisissa suodattimissa perusajatus on, että kunkin pikselin naapurustosta lasketaan painotettu tai painottamaton keskiarvo. Yleisesti tämä voidaan laskea kaavalla g(x, y) = a b s= a t= b w(s, t)f(x + s, y + t) a s= a b t= b w(s, t), (3.6-1) missä esim. 3 3-naapurustoa ja painottamatonta keskiarvoa käytettäessa w on 1 1 1 w = 1 1 1 1 1 1 ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 73

1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet ja painotettua keskiarvoa käytettäessä w voi olla esim. 1 2 1 w = 2 4 2. 1 2 1 3.6.2 Järjestysstatistiikkaan perustuvat suodattimet Usein käytetyt epälineaariset tasoittavat suodattimet perustuvat järjestysstatistiikkaan. Näistä yleisin on mediaanisuodatin, jossa k k-naapuruston keskipisteen uudeksi arvoksi tulee naapuruston harmaasävyjen mediaani eli keskimmäinen arvo kun naapuruston harmaasävyt on laitettu suuruusjärjestykseen. Yleensä mediaanisuodatus hämärtää kuvassa olevia reunoja vähemmän kuin lineaariset tasoittavat suodattimet. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 74