Luento 3: 3D katselu. Sisältö
|
|
- Aleksi Martti Ahola
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tietokonegrafiikan perusteet T op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran koordinaattijärjestelmästä Projektioista 3D katselu / 2
2 2 3D katselu / 3 Koordinaattimuunnokset Vektorin v siirto muunnosmatriisin M määrittelemään avaruuteen: v M v Perusmuunnoksista tärkeimmät Kierto Siirto Skaalaus Projektio Homogeenisia koordinaatteja käytettäessä M voi kuvata mitä tahansa näistä 3D katselu / 4 Homogeeniset Koordinaatit Koordinaatti [, y, ] voidaan ilmaista homogeenisia koordinaatteja käyttäen vektorina [h yh h h] h voi olla mikä vain > Yhtä kolmiulotteista koordinaattia vastaa ääretön määrä homogeenisia koordinaattivektoreita Siirron (t t y t ) ja kierron (R) kuvaaminen ilman homogeenisia koordinaatteja: Vastaava homogeenisissa koordinaateissa: + y t t t y R y y t t R t y y
3 Näkymän muodostaminen Prosessia jossa tietokone tuottaa 3-ulotteisesta mallista 2- ulotteisen esityksen kutsutaan renderöinniksi Renderöintiprosessi sisältää useita erilaisia vaiheita, jotka riippuvat käytettävästä menetelmästä Seuraavassa käydään läpi näkymän muodostamiseksi tehtävät koordinaattimuunnokset, sillä tavoin kuin ne toimivat esimerkiksi OpenGL ohjelmointirajapinnassa (näin asia esitetään myös kurssin kirjassa) 3D katselu / 5 Näkymän muodostaminen Mallin koordinaatisto Maailman koordinaatisto Kameran koordinaatisto Projisoidut koordinaatit Aluksi jokainen malli on kuvattu omassa koordinaatistossaan (model/object-space) -tyyppillisesti origo keskellä k.o. objektia Malliin on assosioitu jokin muunnosmatriisi joka pitää sisällään mallin paikan, asennon ja skaalan Normalisoidut koordinaatit Ikkunan koordinaatisto 3D katselu / 6 3
4 Näkymän muodostaminen Mallin koordinaatisto Maailman koordinaatisto Maailmakoordinaatistossa (World-space) kaikki mallit tuodaan yhteiseen koordinaattijärjestelmään Kameran koordinaatisto Projisoidut koordinaatit Normalisoidut koordinaatit Ikkunan koordinaatisto 3D katselu / 7 Näkymän muodostaminen Mallin koordinaatisto Maailman koordinaatisto Kameran koordinaatisto Projisoidut koordinaatit Normalisoidut koordinaatit Kameran koordinaatistossa origo on katselupisteessä ja - akseli tyypillisesti suuntaan johon kamera katsoo Grafiikkalaitteiston suorittamia operaatioita (tyypillisesti): - valaistuksen laskenta polygonien kulmapisteisiin (ohjelmoitavalla laitteistolla ei välttämättä näin) - nurinpäin olevien pintojen poisto Kamerasta lisää hetken päästä Ikkunan koordinaatisto 3D katselu / 8 4
5 Näkymän muodostaminen Mallin koordinaatisto Maailman koordinaatisto Kameran koordinaatisto Projisoitu versio kamerakoordinaateista Esim. Perspektiiviprojektiossa kaukana olevat esineet (suuri koordinaatti) ovat pienempiä Projektiosta lisää hetken kuluttua Projisoidut koordinaatit Normalisoidut koordinaatit Ikkunan koordinaatisto 3D katselu / 9 Näkymän muodostaminen Mallin koordinaatisto Maailman koordinaatisto Kameran koordinaatisto Projisoidut koordinaatit Normalisoiduissa koordinaateissa kaikki näkyvä geometria on yksikkökuution - < < Λ - < y < Λ - < < sisällä Tyypillisiä operaatioita tässä vaiheessa Polygonien leikkaus (clipping) Normalisoidut koordinaatit Ikkunan koordinaatisto 3D katselu / 5
6 Näkymän muodostaminen Mallin koordinaatisto Maailman koordinaatisto Kameran koordinaatisto Projisoidut koordinaatit Esim. origo on näkyvän alueen vasemmassa alalaidassa ja, oikeassa ylälaidassa Homogeenisista koordinaateista luovutaan yleensä vasta tässä vaiheessa, koska tämä välttää perspektiiviprojektiossa muuten helposti sattuvan nollalla jakamisen Normalisoidut koordinaatit Ikkunan koordinaatisto 3D katselu / Kamerasta 3D katselu / 2 6
7 Kameran koordinaattijärjestelmän rakentaminen Kun tunnetaan kameran paikka (e), haluttu katselukohde (t) ja globaalisti määritelty suunta ylös (upv) Kantavektorit voidaan määrittää seuraavasti: w t e v upv + d, missä d (upv w) w D u v w upv V maailma O Z P (,y,) T P (u,v,w) W E kamera U Y X 3D katselu / 3 Kameran koordinaattijärjestelmästä Edellä mainittu on yksi tapa rakentaa kantavektorit Muita tilanteita: Kamera halutaan sitoa johonkin olemassa olevaan objektiin (jonka asentoa voi kontrolloida esimerkiksi fysiikkasimulaatio) Kameran asentoa kontrolloidaan käyttöliittymästä käsin esim. Euler-kulmina Kameran asento interpoloidaan jostain etukäteen määritellystä liikeradasta 3D katselu / 4 7
8 8 3D katselu / 5 Muuntaminen kameran koordinaatteihin Kameran koordinaateissa ilmaistu piste p (u,v,w) saadaan maailmankoordinaatistoon kertomalla koordinaatit kantavektoreilla ja lisäämällä kameran origo: Käänteismuunnos: [ ] e Mp e w v u e w v u p w v u w v u [ ] e) (p w e) (p v e) (p u e p w v u e p M e p M p ( ) ( ) ( ) ( T 3D katselu / 6 Projektioista
9 Projektiokuvaus Mikä tahansa neliömatriisi P on projektio, jos pätee että P PP Voidaan esittää 44 muunnosmatriisina Projisointi homogeenisissa koordinaateissa tuttuun tapaan v Pv Tyypillisesti P kuvaa v:n johonkin aliavaruuteen siten, että käänteiskuvausta P - ei ole olemassa (poikkeuksena identiteettimatriisi) Grafiikassa projektiomatriisi kuvaa 3D maailman kaksiulotteiseksi 3D katselu / 7 Projektiotyyppejä Yhdensuuntais Perspektiivi Ortograafinen Ylä-, etu-, sivukuvat Vino, 2 tai 3 katoamispistettä Aksonometrinen 3D katselu / 8 9
10 Yhdensuuntaisprojektioista Saadaan tiputtamalla haluttu koordinaatti pois (esim. ). Projektiomatriisi on muuten yksikkömatriisi, mutta lävistäjällä on pois jätettävää koordinaattia vastaavalla paikalla nolla (vrt. skaalausmatriisi, jossa S S y S w, mutta S ). (Aksonometrisessa yhdensuuntaisprojektiossa tehdään ensin mielivaltainen rotaatio ja/tai translaatio) 3D katselu / 9 Perspektiiviprojektio Perspektiivi periaate: skaalataan koordinaatteja jakamalla ne katselusuuntaisella etäisyydellä projektiokeskuksesta Esim. jos katsellaan -akselin suuntaan ja projektiokeskuksena on origo, niin / ja y y / (ja / ). 3D katselu / 2
11 Perspektiiviprojektio Jos kuvataso on origossa (y-taso) ja projektiokeskus etäisyydellä d negatiivisella -akselilla: d* / (+d) /((/d)+), y d*y / (+d) y/((/d)+), ja d d Huomaa: kun [ y ] T kerrotaan yllä olevalla matriisilla ->, w /d+ 3D katselu / 2 Perspektiiviprojektio Perspektiiviprojektio voidaan määritellään usein Halutun näkökentän laajuuden avulla kulmina (field of view) Kuvatason ja projektiokeskipisteen koordinaatteina (myös epäsymmetrinen projektio mahdollinen) Projektiomatriisin rakentaminen em. Tapauksissa kuvattu kirjan kappaleessa 7 3D katselu / 22
12 Normalisoidut koordinaatit Esim. OpenGL:ssä perspektiiviprojektiota seuraa normalisointimuunnos eli skaalaus jossa kaikki näkyvä geometria viedään (-,-,-) (,,) kuution sisälle Normalisoidussa avaruudessa voidaan tehdä esimerkiksi polygonien leikkaus näkyvän alueen reunoihin (näin esim. OpenGL:ssä) Näkyvän alueen määrittelyyn kuuluu myös kuvatason suuntaiset leikkaustasot lähellä ja kaukana (near plane ja far plane) Normalisointimatriisi yhdistetään usein projektiomatriisiin 3D katselu / 23 2
Luento 7: 3D katselu. Sisältö
Tietokonegrafiikka / perusteet Tik-.3/3 4 ov / 2 ov Luento 7: 3D katselu Lauri Savioja /4 3D katselu / Sisältö Koorinaattimuunnokset Kameran ja maailmankoorinaatiston yhteys Perspektiivi 3D katselu / 2
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf
Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1
Luento 2 Stereokuvan laskeminen 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Aiheet Stereokuvan laskeminen stereokuvan piirto synteettisen stereokuvaparin tuottaminen laskemalla stereoelokuva kollineaarisuusyhtälöt
T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011
T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee
Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2
8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason
Tilanhallintatekniikat
Tilanhallintatekniikat 3D grafiikkamoottoreissa Moottori on projektin osa joka vastaa tiettyjen toiminnallisuuksien hallinnasta hallitsee kaikki vastuualueen datat suorittaa kaikki tehtäväalueen toiminnot
Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi.
Tehtävä 1 Kirjoita neljä eri funktiota (1/2 pistettä/funktio): 1. Funktio T tra saa herätteenä 3x1-kokoisen paikkavektorin p. Se palauttaa 4x4 muunnosmatriisin, johon sijoitettu p:n koordinaattien mukainen
Luento 7: Fotogrammetrinen mittausprosessi
7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi
5. Grafiikkaliukuhihna: (1) geometriset operaatiot
5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin
Radiotekniikan sovelluksia
Poutanen: GPS-paikanmääritys sivut 72 90 Kai Hahtokari 11.2.2002 Konventionaalinen inertiaalijärjestelmä (CIS) Järjestelmä, jossa z - akseli osoittaa maapallon impulssimomenttivektorin suuntaan standardiepookkina
3.4.1 Perspektiiviprojektio
40 LUKU 3. KOLMAS ULOTTUVUUS män suorat janat kuvatasolle suoriksi janoiksi tai pisteiksi, eli projektiokuvauksen projektorikäyrät ovat tulevissa sovelluksissa avaruuden R 3 suoria. 3.4. Perspektiiviprojektio
Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014
Tietokonegrafiikka Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 1. Sovellusalueita 2. Rasterigrafiikkaa 3. Vektorigrafiikkaa 4. 3D-grafiikkaa 1. Säteenheitto
Teoreettisia perusteita II
Teoreettisia perusteita II Origon siirto projektiokeskukseen:? Origon siirto projektiokeskukseen: [ X X 0 Y Y 0 Z Z 0 ] [ Maa-57.260 Kiertyminen kameran koordinaatistoon:? X X 0 ] Y Y 0 Z Z 0 Kiertyminen
3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =
3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )
Luento 4: Kiertomatriisi
Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)
Symmetrioiden tutkiminen GeoGebran avulla
Symmetrioiden tutkiminen GeoGebran avulla Tutustutaan esimerkkien kautta siihen, miten geometrista symmetriaa voidaan tutkia ja havainnollistaa GeoGebran avulla: peilisymmetria: peilaus pisteen ja suoran
Viikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Luento 4 Georeferointi
Luento 4 Georeferointi 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)
Sisällys. T-111.4300 Tietokonegrafiikan perusteet. OpenGL-ohjelmointi 11/2007. Mikä on OpenGL?
T-111.4300 Tietokonegrafiikan perusteet OpenGL-ohjelmointi 11/2007 Sisällys Mikä on OpenGL? historia nykytilanne OpenGL:n toiminta Piirtäminen ja matriisit Muuta hyödyllistä kameran sijoittaminen valaistus
Konformigeometriaa. 5. maaliskuuta 2006
Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
JAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Luento 6: Piilopinnat ja Näkyvyys
Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella
Riemannin pintojen visualisoinnista
Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)
Tik-111.5450 Tietokoneanimaatio
Tik-111.5450 Tietokoneanimaatio 3. Asennon (pyörähdysliikkeen) esittäminen ja interpolointi 3.10.05 - Tassu Animaatio 2005 - luento 3 1 Sisältö matriisiesitys, matriisin komponenttivektorien merkitys perusakselien
3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan
(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:
7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan
z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
MS-A0002 Matriisilaskenta Luento 1:Vektorit ja lineaariyhdistelyt
MS-A0002 Matriisilaskenta Luento 1:Vektorit ja lineaariyhdistelyt Antti Rasila 2016 Vektorit Pysty- eli sarakevektori v = ( v1 v 2 missä v 1, v 2 ovat v:n komponentit. ), Matriisilaskenta 2/6 Vektorit
3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä
3D animaatio: liikekäyrät ja interpolointi Tommi Tykkälä Läpivienti Keyframe-animaatio Lineaarisesta interpoloinnista TCB-splineihin Bezier-käyrät Rotaatioiden interpolointi Kameran animointi Skenegraafit
TOMI LAMMINSAARI 3D-MAAILMAN KAMERAN OHJAAMINEN KASVOJEN PAIKANNUKSEN AVULLA. Diplomityö
TOMI LAMMINSAARI 3D-MAAILMAN KAMERAN OHJAAMINEN KASVOJEN PAIKANNUKSEN AVULLA Diplomityö Tarkastaja: Tommi Mikkonen Aihe, tarkastaja ja kieli hyväksytty Tieto- ja sähkötekniikan tiedekunnan tiedekuntaneuvoston
Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1
Luento 4 Georeferointi 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu)
Sisältö ietokonegrafiikka / perusteet Ako/-.3/3 4 ov / 2 ov Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia Luento : ransformaatiot (2D) Marko Mllmaa 6/4 2D
Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus
Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 27.9.2005) Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Mitä pitäsi oppia? Nyt pitäisi viimeistään ymmärtää, miten kollineaarisuusyhtälöillä
Luento 4: 3D Transformaatiot
ietokonegrafiikan perusteet -.43 3 op Luento 4: 3D ransformaatiot Lauri aioja /5 3D transformaatiot / isältö Lineaarialgebran kertausta Geometriset objektit 3D-maailmassa Perustransformaatiot 3D:ssä 3D
T Tietokonegrafiikan perusteet. OpenGL-ohjelmointi
T-111.4300 Tietokonegrafiikan perusteet OpenGL-ohjelmointi Id Softwaren huhtikuussa 2004 julkaisema Doom 3 -peli käyttää OpenGL-kirjastoa. Sisällys Mikä on OpenGL? historia nykytilanne OpenGL:n toiminta
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Luento 6: 3-D koordinaatit
Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Luento 10: Näkyvyystarkastelut ja varjot. Sisältö
Tietokonegrafiikka / perusteet T-111.300/301 4 ov / 2 ov Luento 10: Näkyvyystarkastelut ja varjot Marko Myllymaa / Lauri Savioja 10/04 Näkyvyystarkastelut ja varjot / 1 Näkyvyystarkastelu Solurenderöinti
Kertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt
6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran
Luento 7: Kuvan ulkoinen orientointi
Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 6.10.2004) Luento 7: Kuvan ulkoinen orientointi AIHEITA Ulkoinen orientointi Suora ratkaisu Epäsuora
Matriisialgebra harjoitukset, syksy 2016
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
3D-Maailman tuottaminen
hyväksymispäivä arvosana arvostelija 3D-Maailman tuottaminen Eero Sääksvuori Helsinki 11.12.2017 Seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Luento 2: Transformaatiot (2D)
ietokonegrafiikan perusteet -.43 3 op Luento 2: ransformaatiot (2D) Lauri Savioja /7 2D transformaatiot / Sisältö Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
1. Matemaattiset perusteet
.. Kolmiulotteisten rakenteiden käsittel. Matemaattiset perusteet ietokonegrafiikka perustuu paljolti matemaattiseen laskentaan, jossa kätetään vektoreita ja matriiseja sekä näille lineaarialgebran peruskäsitteitä.
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.
3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
Luento 7: Lokaalit valaistusmallit
Tietokonegrafiikan perusteet T-111.4300 3 op Luento 7: Lokaalit valaistusmallit Lauri Savioja 11/07 Lokaalit valaistusmallit / 1 Sävytys Interpolointi Sisältö Lokaalit valaistusmallit / 2 1 Varjostustekniikat
Insinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
Luento 6: Stereo- ja jonomallin muodostaminen
Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 5.10.2004) Luento 6: Stereo- ja jonomallin muodostaminen AIHEITA Keskinäinen orientointi Esimerkki
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka
Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Timo Tossavainen Mediatekniikan laitos, Aalto-yliopiston perustieteiden korkeakoulu Timo.Tossavainen@tkk.fi 25.3.2011 Sisältö Historiaa
Vipumekanismit. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista)
1 Vipumekanismit Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) Sisältö Nivelnelikulmio Nivelsuunnikas Sovelluksia Liikkuvuusaste avaruudessa Ratakäyräanalyysi Pääryhmät Läpilyöntimekanismit Nivelneljäkäs
Vektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
Teoreettisia perusteita I
Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran
Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8
Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät
11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit
Luento 6: Geometrinen mallinnus
Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Geometrinen mallinnus Lauri Savioja, Janne Kontkanen 11/2007 Geometrinen mallinnus / 1 Sisältö Mitä on geometrinen mallinnus tietokonegrafiikassa
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.
Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
Luku 6: Grafiikka. 2D-grafiikka 3D-liukuhihna Epäsuora valaistus Laskostuminen Mobiililaitteet Sisätilat Ulkotilat
2D-grafiikka 3D-liukuhihna Epäsuora valaistus Laskostuminen Mobiililaitteet Sisätilat Ulkotilat 2D-piirto 2-ulotteisen grafiikan piirto perustuu yleensä valmiiden kuvien kopioimiseen näyttömuistiin (blitting)
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
Controlling the Camera of 3D World by Using Real Time Face Tracking
Controlling the Camera of 3D World by Using Real Time Face Tracking Tomi Lamminsaari Department of Software Systems Tampere University of Technology Abstract Gestures have become very common elements of
Ellipsit, hyperbelit ja paraabelit vinossa
Ellipsit, hyperbelit ja paraabelit vinossa Matti Lehtinen 1 Ellipsi, hyperbeli ja paraabeli suorassa Opimme lukion analyyttisen geometrian kurssilla ainakin, jos kävimme lukiota vielä muutama vuosi sitten
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
Piste ja jana koordinaatistossa
607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan
kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ
58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin
9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n