Tehtävä 4 : 2. b a+1 (mod 3)

Samankaltaiset tiedostot
Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.

isomeerejä yhteensä yhdeksän kappaletta.

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

Tehtävä 5 : 1. Tehtävä 5 : 2

Tehtävä 10 : 1. Tehtävä 10 : 2

Tehtävä 8 : 1. Tehtävä 8 : 2

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

5.6 Yhdistetty kuvaus

Algebra I, Harjoitus 6, , Ratkaisut

Miten osoitetaan joukot samoiksi?

Algebra I, harjoitus 5,

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Ensimmäinen induktioperiaate

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Ensimmäinen induktioperiaate

Kuvaus. Määritelmä. LM2, Kesä /160

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Todistusmenetelmiä Miksi pitää todistaa?

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Määritelmä, alkuluku/yhdistetty luku: Esimerkki . c) Huomautus Määritelmä, alkutekijä: Esimerkki

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset

Diofantoksen yhtälön ratkaisut

Johdatus matematiikkaan

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

1 Lineaariavaruus eli Vektoriavaruus

14. Juurikunnat Määritelmä ja olemassaolo.

4. Ryhmien sisäinen rakenne

Äärellisten mallien teoria

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

2017 = = = = = = 26 1

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Luonnollisen päättelyn luotettavuus

1 sup- ja inf-esimerkkejä

HN = {hn h H, n N} on G:n aliryhmä.

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

802320A LINEAARIALGEBRA OSA I

1 sup- ja inf-esimerkkejä

Johdatus matemaattiseen päättelyyn

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Johdatus matemaattiseen päättelyyn

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät sivua Heikki Koivupalo ja Rami Luisto

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

6. Tekijäryhmät ja aliryhmät

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

1 Supremum ja infimum

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

Esko Turunen MAT Algebra1(s)

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

Algoritmi on periaatteellisella tasolla seuraava:

Hieman joukko-oppia. A X(A a A b A a b).

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Reaalifunktioista 1 / 17. Reaalifunktioista

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Vastaoletuksen muodostaminen

Ratkaisu: (b) A = x 0 (R(x 0 ) x 1 ( Q(x 1 ) (S(x 0, x 1 ) S(x 1, x 1 )))).

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

1 Määrittelyjä ja aputuloksia

Approbatur 3, demo 5, ratkaisut

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

Esko Turunen Luku 3. Ryhmät

(2n 1) = n 2

Johdatus matematiikkaan

1. Esitä rekursiivinen määritelmä lukujonolle

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

Derivaattaluvut ja Dini derivaatat

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jenna Laine. Ramseyn teoria

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

4 Matemaattinen induktio

Tenttiin valmentavia harjoituksia

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

Transkriptio:

Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa, jolloin A, ) on tunnetusti ryhmä. Osoitetaan ehdon A =3olevan voimassa. 4 7 9 1 5 6 3 8 Sykliesityksiä käyttämällä huomataan, että ainakin identiteettikuvaus id VG) ja kuvaukset13)456)789) sekä13)465)798) ovat verkon G automorfismeja, sillä ne säilyttävät verkon G särmäjoukon. Olkoon H näiden kuvausten joukko. Tällöin pätee H A. Osoitetaan inkluusion pätevän myös toiseen suuntaan. Olkoon verkon G automorfismi f mielivaltainen. Näytetään, että on olemassa sellainen kuvaus g H, että ehto g f)1) = 1 on voimassa. Joukon {1,,3} solmut ovat verkon G ainoat solmut, joilla on tasan kolme naapuria, joten kyseinen joukko säilyy automorfismeissa. Ehto f1) {1,, 3} on siis voimassa. Jos on f1) = 1, niin väite id VG) f)1) = 1 pätee. Tapauksessa f1) = alkio13)465)798) voidaan valita kuvaukseksi g. Jäljellä olevassa tapauksessa on f1) = 3 ja kuvaukseksi g voidaan valita kuvaus 13)456)789). Halutun ehdon toteuttava g on siis olemassa. Olkoon tällainen g jatkossa kiinnittetty. Kuvaus g f on verkon G automorfismi, joten väite g f)) {,3} on tosi. Osoitetaan seuraavaksi, että ehto g f)) = on välttämättä voimassa. Oletetaan vastaoletuksena väitteen g f)) = 3 pätevän. Solmujen 1 ja 3 ainoa yhteinen naapuri, jolla itsellään on tasan kolme naapuria, on solmu 6. Siten ehto 1

g f)6)=4 on voimassa. Toisaalta solmu 8 on solmun 3 ainoa naapuri, jolla on kaksi naapuria, joten myös ehdon g f)8) = 7 on oltava voimassa. Kuitenkin pätee {4,7} EG) sekä {6,8} / EG), mikä on ristiriidassa sen tiedon kanssa, että kuvaus g f on verkon G automorfismi. Näin ollen ehdon g f))= on oltava voimassa. Edelleen myös väittämä g f)3)=3 pätee. Lisäksi ehto g f = id VG) toteutuu. Olkoon nimittäin kaksio {a, b} {1,, 3} sellainen, että ehto b a+1 mod 3) on voimassa. Tällöin solmu a+3 on solmujen a ja b ainoa yhteinen naapuri, jolla itsellään on kolme naapuria. Solmu a+6 on lisäksi solmun b ainoa naapuri, jolla on kaksi naapuria. Täten myös ehdotg f)a+3)=a+3 jag f)a+6)=a+6 toteutuvat. Väite g f = id VG) saadaan näiden havaintojen seurauksena. Kaiken kaikkiaan on siis osoitettu, että jokaisella alkiolla f A on sellainen g H, jolla ehto g f = id VG) toteutuu. Kuvaus id VG) on toisaalta ryhmäna, ) neutraalialkio. Ryhmän A, ) jokaisella alkiolla on täsmälleen yksi käänteisalkio ja lisäksi ryhmän A, ) jokainen alkio on jonkin alkion käänteisalkio. Näin ollen väite H A on voimassa. Tämän seurauksena saadaan tulos A = 3, joten verkolla G on tasan kolme automorfismia. Tehtävä 4 : Olkoon T sellainen verkko, jonka solmujoukkona on N ja jonka särmäjoukkona on { {n,n+1} : n N }. Verkko T on yhtenäinen ja syklitön, joten kyseessä on numeroituvasti ääretön puu. Olkoon T kaikkien niiden verkkojen T m kokoelma, joilla on m N ja jotka ovat joukon{n N:n m} virittämiä puun T aliverkkoja. Jokainen kokoelman T jäsen on syklittömänä ja yhtenäisenä aliverkkona puun T alipuu. Kaikilla luonnollisilla luvuilla k ja l on jokainen ehdon n max{k,l} toteuttava alkio n N puiden T k ja T l yhteinen solmu. JoukonT jäsenet leikkaavat siis pareittain toisiaan jopa äärettömän monessa kohdassa. Kuitenkin jokaisella n Npätee T n+1 T ja n / VT n+1 ). Jokaisella solmulla

n VT) on täten ehto n / H T VH) voimassa. Näin ollen kokoelmant puilla ei ole yhtään yhteistä solmua. Tehtävä 4 : 3 Merkitään jatkossa joukkoa{0} N {0} ) kirjaimella A sekä joukkoan {1} kirjaimella B. Joukoilla A ja B ei ole yhtään yhteistä alkiota ja niiden yhdiste on numeroituvasti ääretön. Olkoon G sellainen verkko, jonka solmujoukkona on A B ja jonka särmäjoukkona on { {n,0),n,1) } } { {0,n,1) } } : n N : n N. Tällöin verkko G on kaksijakoinen ja joukot A ja B ovat sen jako-osat. Olkoon osajoukko S A mielivaltainen. Jos ehto 0 / S toteutuu, niin joukon S naapuruston N G S) koko on sama kuin joukon S koko. Vuorostaan tapauksessa 0 S pätee N G S) = B, jolloin väite N G S) = B S on tosi. Verkko G siis toteuttaa Hallin ehdon. Verkossa G ei kuitenkaan ole joukon A pariutusta. Tehdään vastaoletus, että joukko M EG) on joukon A pariutus. Tällöin jokaisella joukon A alkiolla x on x e jollakin särmällä e M. Erityisesti jokaisella luvulla n N on väitteen { n,0),n,1) } M on oltava tosi. Edelleen jollakin m N on { 0,m,1) } M. Erityisesti pätee { m,0),m,1) } M sekä { 0,m,1) } M, mikä on ristiriidassa sen kanssa, että joukko M on verkon G pariutus. Näin ollen joukolla A ei ole pariutusta verkossa G. Tehtävä 4 : 4 Olkoot äärellinen joukko X ja luku r N sellaisia, että ehto r < toteutuu. Tällöin pätee 0 r 1 ja siis on r+ 1 X. Erityisesti joukot [X] r ja[x] r+1 ovat epätyhjiä. Muodostetaan aluksi äärellinen verkko G asettamalla joukko[x] r [X] r+1 sen 3

solmujoukoksi ja joukko { A,B ) : A [X] r B [X] r+1 A B} sen särmäjoukoksi. Verkko G on kaksijakoinen ja joukot[x] r sekä[x] r+1 ovat sen jako-osat. Osoitetaan Hallin ehdon olevan voimassa joukon[x] r suhteen. Olkoon osajoukko S [X] r mielivaltainen. Jos pätee S=, niin haluttu ehto N G S) 0= S toteutuu suoraan. Voidaan siis olettaa joukon S olevan epätyhjä. Jokaisella A S joukon N G A) koko on tasan r, sillä näin monella tavalla voidaan valita jokin alkio joukosta X\ A. Toisaalta jokaisella joukolla B N G S) on korkeintaan r+1 ehdon A B toteuttavaa joukon S jäsentä A, sillä on enintään r+ 1 tapaa jättää pois jokin joukon B alkio tuottaen tuloksena joukon S jonkin jäsenen. Tarkastellaan seuraavaksi joukkoa A,B ) } K :={ : A S B NG S) A B. Valitsemalla ensin joukon K kaikkien parien ensimmäinen jäsen sekä vastaavasti ensimmäisenä kaikkien parien toinen jäsen saadaan tuloksena S r ) = K r+ 1) N G S). Tästä havainnosta saadan tiedon 0 r 1 nojalla edelleen tulos S r ) ) ) + 1 + 1 N G S) S = S S. r+ 1 Näin ollen verkossa G on Hallin ehto voimassa joukon[x] r suhteen. Hallin lauseen nojalla verkossa G on olemassa jokin joukon [X] r pariutus M. Nyt joukon [X] r pariutuksen määritelmän nojalla jokaisella A [X] r on olemassa täsmälleen yksi B A [X] r+1 siten, että ehto A,B A ) M toteutuu. Voidaan siis määritellä injektio f : [X] r [X] r+1 asettamalla fa)=b A jokaisella A [X] r. Tehtävä 4 : 5 Käsitellään aluksi erikoistapaus, jossa ehto X 1 on voimassa. Tällöin pätee A 1. Toisaalta on 0 0) = 1 sekä 1 0) = 1, joten haluttu väite toteutuu. Voidaan 4

siis jatkossa olettaa ehdon olevan voimassa. Merkitään selkeyden vuoksi lukua kirjaimella m. Edellisen oletuksen nojalla väite 1 m 1 on tällöin tosi. Mekitään jatkossa kirjaimella V joukkoa { [X] r : r {0,..., m 1} } sekä vastaavasti kirjaimella W joukkoa { [X] r : r {m+1,...,} }. Tällöin joukko PX) on epätyhjien joukkojen V ja W sekä[x] m erillinen yhdiste. Jokaisella ehdon r < m toteuttavalla luvulla r N kuvaus f r : [X] r [X] r+1 olkoon sellainen, että jokaisella A [X] r on ehto A f r A) voimassa. Tällaisten kuvausten olemassaolo seuraa edellisen tehtävän ratkaisusta. Määritellään kuvaus f : V [X] m [X] m siten, että jokaisella A [X] m pätee fa)=aja että jokaisella A V pätee fa)= f f A A) ). Tällöin joukon V [X] m jokaisella jäsenellä A on kuvauksen f määrittelyssä vaadittu ehto fa) [X] m voimassa. Näytetään induktiolla luvun k N suhteen, että jos on k m ja jos joukon [X] m k jäsenet A ja B toteuttavat ehdon fa) = fb), niin myös ehto A = B on tosi. Alkuaskel onnistuu, sillä kuvaus f [X] m on injektio. Olkoon seuraavaksi luku k {0,..., m 1} sellainen, että jokaisella joukon[x] m k jäsenellä A ja B seuraa ehdosta fa)= fb) myös väitteen A=B olevan voimassa. Tällöin väite seuraa siitä, että kuvaus f m k+1) on injektio. Siten myös induktioaskel onnistuu. Osoitetaan seuraavaksi induktiolla, että jokaisella luvulla k N pätee, että jos on k m ja jos jollakin luvulla r {0,..., m k} on A [X] r ja B [X] r+k sekä fa) = fb), niin väite A B toteutuu. Nyt induktion alkuaskel seuraa suoraan edellisessä kappaleessa esitetystä todistuksesta. Oletetaan induktio-oletuksena luvun k {0,..., m 1} olevan sellainen, että jokaisella luvulla r {0,..., m k} sekä kaikilla A [X] r ja B [X] r+k seuraa ehdosta fa) = fb) väitteen A B olevan voimassa. Olkoot seuraavaksi luku r {0,..., m k+ 1)} ja joukot A [X] r sekä B [X] r+k+1) mielivaltaisia. Olkoon ehto fa)= fb) voimassa. Tällöin on r+1 {1,..., m k)} ja pätee fa)= f f r A) ) sekä f r A) [X] r+1 ja B [X] r+1)+k, jolloin induktio-oletuksen nojalla pätee f r A) B. Kuvauksesta f r tehdyn oletuksen nojalla saadaan edelleen tulos A f r A) B. Näin ollen induktio onnistuu. Kuvaus f A voidaan nyt osoittaa injektioksi. Olkoot joukon A V [X] m) 5

jäsenet A ja B sellaisia, että ehto fa)= fb) on voimassa. Edellisen todistuksen perusteella on A B tai B A. Kokoelman A jäsenet eivät sisällä toisiaan, joten väitteen A=B on oltava tosi. Siis kuvaus f A on injektio. Muodostetaan seuraavaksi kuvaus g m joukolle [X] m luvun parillisuuden mukaisesti. Jos luku on parillinen, niin kuvaus id [X] m valitaan kuvaukseksi g m. Muussa tapauksessa olkoon g m : [X] m+1 [X] m siten, että jokaisella A [X] m+1 pätee g m A) A. Tällainen kuvaus on olemassa tehtävän 4 nojalla, sillä jokaisella joukolla A [X] m+1 on voimassa ehto X\ A = A =m+1) m+1)=m<m+ 1 =. Luvun parillisuudesta riippumatta kuvaus g m on injektio sekä toteuttaa ehdon g m A) A jokaisella määrittelyjoukkonsa jäsenellä A. Lisäksi erityisesti kuvaus g m on määritelty jokaisella sellaisella joukolla X\ A, jolla on A [X] m. Määritellään nyt kuvaus g: W [X] m siten, että jokaisella jäsenellä A W on ehto ga) = g m X \ fx \ A) ) voimassa. Perustellaan kuvauksen määrittelyn olevan mielekäs. Olkoon joukko A W mielivaltainen. Tällöin on X\ A = A m+1) m, joten arvo fx\ A) on määritelty. Lisäksi tiedon fx\ A) =m perusteella arvo g m X \ fx \ A) ) on määritelty ja kuuluu joukkoon [X] m. Toisaalta myös väite X\ A fx\ A) pätee, jolloin saadaan lisäksi tulos ga)=g m X\ fx\ A) ) X\ fx\ A) A. Olkoot joukon A W jäsenet A ja B sellaisia, että ehto ga) = gb) toteutuu. Kuvaus g m on injektio, joten pätee X \ fx\ A)=X\ fx\ B). Tällöin edelleen väite fx\ A)= fx\ B) toteutuu. Kuvauksen f A injektiivisyyden nojalla väite A=B on tosi. Näin ollen myös kuvaus g on injektio. Määritellään vielä kuvaus h: A [X] m niin, että jokaisella A A V [X] m ) pätee ha)= fa) ja että jokaisella A A W pätee ha)=ga). Tällöin kuvaus h on injektio. Olkoot nimittäin kokoelman A jäsenet A ja B sellaisia, että ehto ha)=hb) toteutuu. Jos on{a,b} V [X] m tai{a,b} W, niin pätee A=B, sillä kuvaukset f A ja g A ovat injektioita. 6

Muita vaihtoehtoja ei kuitenkaan ole. Oletetaan vastaoletuksena, että ehdot A V [X] m ja B W ovat voimassa. Tapaus, jossa on B V [X] m ja A W, käsitellään vastaavasti. Nyt pätee A fa) sekä gb) B, jolloin oletuksesta ha) = hb) seuraa A B. Kokoelmasta A tehdyn oletuksen nojalla on A = B, mikä toisaalta johtaa ristiriitaan joukkojen V [X] m ja W erillisyyden kanssa. Kuvaus h on täten osoitettu injektioksi. Näin ollen väittämä A = fa) on voimassa. Edelleen pätee fa) [X] m, joten saadaan tulos A [X] m ) ) = =. m / Tehtävässä esitetty väite on näin ollen osoitettu todeksi. Tehtävä 4 : 6 Joukon P voidaan suoraan olettaa olevan äärellinen. Muussa tapauksessa valitaan tarkasteluun jokin sellainen joukon P osajoukko, jossa on rs + 1 alkiota. Oletetaan varsinaisen väitteen todistamiseksi vastaoletuksena, että parin P, ) jokaisessa ketjussa on korkeintaan r alkiota ja jokaisessa antiketjussa korkeintaan s alkiota. Nimittäin huomataan, että antiketjujen osajoukot ovat antiketjuja ja että ketjujen osajoukot ovat vastaavasti ketjuja. Dilworthin lauseen nojalla on olemassa sellaiset A P jak PP), että A on parin P, ) antiketju jak on joukon P ositus sen ketjuiksi ja että ehto A = K on voimassa. Vastaoletuksen nojalla saadaan ristiriitaisesti tulos rs+1 P = K = K A r=rs. K K K K Näin ollen parin P, ) jossakin ketjussa on vähintään r+ 1 alkiota tai jossakin antiketjussa vähintään s+1 alkiota. 7