säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21
säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1 2 3 5 2 / 21
säilyy Esimerkkirelaatio R ei ole funktio, sillä ( y B : (2, y) R). Edelleen A:n alkio 5 on relaatiossa R kahden eri joukon B alkion kanssa. c b a 1 2 3 5 3 / 21
säilyy Sen sijaan relaatio F = {(1, b), (2, a), (3, c), (5, c)} on funktio: F(1) = b, F(2) = a, F(3) = c, F(5) = c. c b a 1 2 3 5 4 / 21
säilyy Funktio f : A B on injektio, jos lähtöjoukon A eri alkioilla on eri kuvat: a 1 a 2 = f(a 1 ) f(a 2 ). Äskeinen F ei ole injektio, sillä F(3) = c = F(5), vaikka 3 5. Funktio f : A B on surjektio, jos maalijoukon B kaikki alkiot esiintyvät (yhden tai useamman lähtöjoukon alkion) kuvina: ( b B)( a A)(b = f(a)). Äskeinen F on surjektio, koska a = F(2), b = F(1) ja c = F(3) 5 / 21
säilyy Olkoon f : A B funktio. Jos B B, niin sen alkukuva f 1 (B ) = {a A f(a) B } A. Äskeiselle funktiolle F 1 ({c}) = {3, 5} ja F 1 ({a, b}) = {1, 2}. 6 / 21
säilyy Jos f : A B on funktio, ja A A, niin voimme muodostaa uuden funktion f A : A B asettamalla f A (a ) = f(a ) kaikille a A. Ohessa aiemman funktion F rajoittuma joukkoon A = {1, 2}. Näemme, että F {1,2} on injektio, mutta ei surjektio. c b a 1 2 3 5 7 / 21
säilyy Olkoon edelleen f : A B fuktio. Jos A A, niin sen kuvajoukko on f(a ) = {f(a ) a A } = {b B a A : b = f(a)}. Esimerkiksi aiemmalle funktiollemme saadaan ja F({1, 2}) = {F(1), F(2)} = {a, b} F({3, 5}) = {F(3), F(5)} = {c}. 8 / 21
säilyy Oheisessa kuvassa on funktio G : {1, 2, 3} {a, b, c}, jolle G(1) = c, G(2) = a ja G(3) = b. Tämä funktio on sekä surjektio että injektio, eli bijektio. c b a 1 2 3 9 / 21
säilyy f : A B bijektio = kutakin b B kohti on olemassa yksi ja vain yksi a A, jolle f(a) = b. Saadaan käänteisfunktio f 1 : B A f 1 (b) = a f(a) = b. Edellisen G:n käänteisfunktio on G 1 : a 2, b 3, c 1. 3 2 1 a b c 10 / 21
säilyy Olkoot f : A B ja g : B C funktioita. Voidaan muodostaa yhdistetty kuvaus (eli kuvaustulo eli kompositio) g f : A C säännöllä (g f)(a) = g(f(a)) kaikille alkioille a A. Tässä f(a) B, joten funktio g on määritelty alkiolle f(a) ja määritelmä on siis järkevä. Jos esimerkiksi A = B = C = R >0, f(x) = x + 1 ja g(x) = x, niin (g f)(x) = x + 1, (f g)(x) = x + 1. 11 / 21
säilyy Jos A on joukko, niin sääntö id A (x) = x määrittelee joukon A identiteettifunktion id A. Esimerkki: Jos f : A B on bijektio, ja f 1 : B A sen käänteisfunktio, niin tällöin f 1 f = id A, f f 1 = id B. Perustelu: f(a) = b f 1 (b) = a, joten ja (f 1 f)(a) = f 1 (f(a)) = f 1 (b)a, (f f 1 )(b) = f(f 1 (b)) = f(a) = b kaikilla a A (ja kaikilla b B). 12 / 21
säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko, ja funktion kuvaaja {(x, y) A B y = f(x)} voidaan piirtää. Tällä kurssilla joukot A ja B ovat välejä. Tavallisimpien funktioiden kuvaaja on tällöin jonkinlainen käyrä tasossa. 13 / 21
säilyy Kaava f(x) = 1 1 x 2 määrittelee funktion f : ( 1, 1) R. Alla sen kuvaaja. 5 4 3 2 1 y 1.0 0.5 0.0 0.5 1.0 x 14 / 21
säilyy f : A B on kasvava välillä A, jos x 1 x 2 = f(x 1 ) f(x 2 ) aina, kun x 1, x 2 A. Jos tässä korvataan merkillä < saadaan aidosti kasvava funktio. Jos taas x 1 x 2 = f(x 1 ) f(x 2 ) aina, kun x 1, x 2 A puhutaan välillä A stä tai ilman =-vaihtoehtoa aidosti stä funktiosta. 15 / 21
säilyy Tehtävä: Osoita, että funktio f(x) = x 3 on aidosti kasvava koko R:ssä. Todistus: Oletetaan, että x 1 < x 2. Väitetään, että tällöin x 3 1 < x3 2. Jos x 1 < 0 < x 2, niin myös x 3 1 < 0 < x3 2, joten riittää käsitellä tapaus, missä x 1 ja x 2 samanmerkkisiä. Jos molemmat > 0, niin x 3 1 < x 2 1x 2 < x 1 x 2 2 < x 3 2, sillä kukin vaihe saadaan kertomalla x 1 < x 2 puolittain positiivisella luvulla. Tapaus, jossa molemmat luvut ovat < 0 käsitellään samoin. 16 / 21
säilyy Tehtävä: Osoita, että funktio f(x) = x 2 ei ole eikä kasvava koko R:ssä. Ratkaisu: Koska 1 < 2 ja f(1) = 1 < 4 = f(2), niin f ei ole (muuttujan arvo suureni, mutta funktion arvo ei pienentynyt tai pysynyt ennallaan). Koska 2 < 1 ja f( 2) = 4 > 1 = f( 1), niin f ei ole kasvava (muuttuja arvo suureni, mutta funktion arvo ei suurentunut tai pysynyt ennallaan). 17 / 21
säilyy säilyy Tehtävä: Oletetaan, että f on kaikkialla aidosti kasvava. Selitä, miksi tällöin x 1 < x 2 f(x 1 ) < f(x 2 ). Todistus: Suunta " = "on aidon kasvavuuden määritelmä, joten riittää perustella suunta " ". Oletetaan siis, että f(x 1 ) < f(x 2 ). Tällöin on oltava joko x 1 = x 2, x 1 > x 2 tai x 1 < x 2. Jos x 1 = x 2, niin tällöin f(x 1 ) = f(x 2 ), joten se vaihtoehto on suljettu pois, koska se on ristiriidassa oletuksen kanssa. Jos x 1 > x 2, niin tällöin x 2 < x 1, ja funktion f aidon kasvavuuden nojalla edelleen f(x 2 ) < f(x 1 ). Tämäkin on ristiriidassa oletuksen kanssa, ja sekin vaihtoehto voidaan sulkea pois. Jäljelle jää vain toivottu vaihtoehto x 1 < x 2. 18 / 21
säilyy Samoin nähdään, että jos f on kaikkialla aidosti, niin x 1 < x 2 f(x 1 ) > f(x 2 ). Nämä havainnot voidaan kiteyttää muodossa. Soveltamalla epäyhtälön molempiin puoliin aidosti kasvavaa funktiota saadaan sen kanssa ekvivalentti epäyhtälö ( säilyy). Jos taas sovelletaan epäyhtälöön aidosti ä funktiota saadaan sen kanssa ekvivalentti epäyhtälö, kunhan samalla käännetään < tai >-merkin suunta ( ). Tätä voidaan joskus hyödyntää epäyhtälön käsittelyssä. 19 / 21
säilyy Ratkaise epäyhtälö x 3 < (x 2 2) 3. Ratkaisu: Tiedämme, että f(x) = x 3 on kaikkialla aidosti kasvava. Koska annettu e.y. voidaan kirjoittaa muodossa f(x) < f(x 2 2) se on siis ekvivalentti epäyhtälön x < x 2 2 kanssa, ja edelleen ekvivalentti epäyhtälön x 2 x 2 > 0 kanssa. Tässä x 2 x 2 = (x 2)(x + 1), joten merkkitarkastelun avulla näemme, että alkuperäinen epäyhtälö on voimassa silloin ja vain silloin, kun x < 1 tai x > 2. 20 / 21
säilyy Oletetaan, että f ja g ovat kaikkialla aidosti kasvavia. Todista, että tällöin myös yhdistetty kuvaus f g on kaikkialla aidosti kasvava. Todistus. Olkoot x 1 ja x 2 mielivaltaisia sellaisia lukuja, että x 1 < x 2. Koska g on aidosti kasvava, tästä seuraa, että g(x 1 ) < g(x 2 ). Koska f on aidosti kasvava, sen soveltaminen tähän epäyhtälöön antaa Siis f(g(x 1 )) < f(g(x 2 )). (f g)(x 1 ) < (f g)(x 2 ). Tämä piti paikkansa kaikille x 1, x 2, joten väite on todistettu. 21 / 21