Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet



Samankaltaiset tiedostot
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Tekijä Pitkä matematiikka

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

2 Pistejoukko koordinaatistossa

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

2 Yhtälöitä ja epäyhtälöitä

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

10 y 2 3 x D 100; D D a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on x a C 10

ClassPad 330 plus ylioppilaskirjoituksissa apuna

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Matematiikan tukikurssi, kurssikerta 3

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MAB3 - Harjoitustehtävien ratkaisut:

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

ClassPad 330 plus ylioppilaskirjoituksissa apuna

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

3 Yleinen toisen asteen yhtälö ja epäyhtälö

Derivaatan sovellukset (ääriarvotehtävät ym.)

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

Matematiikan perusteet taloustieteilij oille I

11 MATEMAATTINEN ANALYYSI

B. 2 E. en tiedä C ovat luonnollisia lukuja?

Ratkaisut vuosien tehtäviin

MAB3 - Harjoitustehtävien ratkaisut:

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Matematiikan peruskurssi 2

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MAA 2 - POLYNOMIFUNKTIOT

Preliminäärikoe Pitkä Matematiikka

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

SARJAT JA DIFFERENTIAALIYHTÄLÖT

PRELIMINÄÄRIKOE. Pitkä Matematiikka

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Ratkaisuja, Tehtävät

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

H5 Malliratkaisut - Tehtävä 1

Matemaattinen Analyysi

Matemaattisten menetelmien hallinnan tason testi.

Matematiikan tukikurssi

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

4 TOISEN ASTEEN YHTÄLÖ

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

yleisessä muodossa x y ax by c 0. 6p

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Ratkaisut vuosien tehtäviin

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Hyvä uusi opiskelija!

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

Pythagoraan polku

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

MAA preliminääri 2018

Differentiaali- ja integraalilaskenta

Ratkaisut. π π. Ratkaisu: a) Tapa I: Yhtälön diskriminantin D = a = 4 4a kyseisen funktion kuvaaja on ylöspäin aukeava paraabeli.

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

Transkriptio:

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b) (x + 1)(x ) 1, (c) sin(π x) 0, (d) x 7 < x x 1, (e) x + x + 1 (f) x < 1 x. (a) Yhtälöstä seuraa 5 6 x 5 1, mistä saadaan vastaus x 1. (b) Yhtälö sievennettynä on x x 3 0, josta ratkaisukaavalla x 1 (1 ± 13). (c) Yhtälö toteutuu, kun π x nπ (n ), mistä x n (n ). π (d) Vastaavan yhtälön juuret ovat ja 3. Epäyhtälö toteutuu, kun 3 < x <. (e) Kun x, epäyhtälö saa muodon x + x + 1; tämä toteutuu kaikilla x, koska 1. Kun x <, epäyhtälö saa muodon x x + 1 eli x 3; tämä toteutuu, kun x 3 eli kaikilla x <. Vastaus: Epäyhtälö toteutuu kaikilla x:n arvoilla. (f) Täytyy olla x, jotta epäyhtälön vasen puoli olisi määritelty. Tällöin vasen puoli on 0, ja oikea puoli 1 x 1 1 < 0; siis epäyhtälö ei toteudu millään x:n arvolla. Pisteytys. Kussakin kohdassa saa järkevästä välivaiheesta (esim. yllä esitetystä) tai perustelusta yhden pisteen, ja sen jälkeen oikeasta vastauksesta toisen pisteen. Pelkästä vastauksesta ei saa pisteitä, ei myöskään virheellisen alun jälkeen tehdyistä oikeista laskutoimituksista. Jos kohdassa (c) antaa ratkaisuksi vain x 0 tai x 1 tai jonkin muun yksittäisen π ratkaisun, ei saa yhtään pistettä. Kohdassa (e) ensimmäisen pisteen saa, jos esim. poistaa itseisarvot tutkimalla epäyhtälöä erikseen alueissa x ja x <. Kohdassa (f) ensimmäisen pisteen saa, jos esim. keksii lähteä tutkimaan lausekkeen 1 x merkkiä ehdolla x (tämähän tarvittaisiin neliöön korotuksessakin).

. Määritä yhtälön (a 1)x + ax + 1 0 reaalijuurten lukumäärä vakion a kaikilla eri arvoilla. Kun a 1, kysymyksessä on ensimmäisen asteen yhtälö x + 1 0, jolla on yksi reaalijuuri. ( pistettä) Olkoon sitten a 1. Kysymyksessä on toisen asteen yhtälö, jonka diskriminantti on D a 4a+4. (3 pistettä). Koska D (a ), on D 0, kun a, ja D > 0 muulloin. (3 pistettä). Kun a, on siis reaalijuuria yksi, ja muulloin kaksi. (3 pistettä). Vastaus: Kun a 1 tai a, reaalijuuria on yksi, muulloin kaksi. (1 piste) Lisää pisteytyksestä Jos ei ole huomattu tutkia tapausta a 1 erikseen, voi siis saada enintään 9 pistettä.

3. (a) Etsi sellaiset vakiot A ja B, että A x + B x + 1 x x + x x (b) Laske x + x dx. kaikilla x 1 ja x 0.. (a) Laventamalla yhtälön vasemman puolen termit samannimisiksi saadaan A x + B A(x + 1) x + 1 x(x + 1) + Bx Ax + A + Bx x(x + 1) x + x (A + B)x + A x x + x x + x. Vakioiden A ja B on siis toteutettava yhtälöpari A + B 1 A A B 3. (b) Käyttäen hyväksi kohdassa (a) laskettua osamurtohajotelmaa saadaan ( x x + x dx x + 3 ) dx x + 1 x dx + 3 x + 1 dx 1 x dx + 3 1 x + 1 dx ln x + 3 ln x + 1 + C. Pisteytys. Kummastakin kohdasta (a) ja (b) on jaossa 6 pistettä. Jos kohdassa (a) päätyy oikeaan ratkaisuun A ja B 3, niin yleensä saa 6 pistettä. Myös oikein arvaaminen on sallittua, + pistettä ilman perusteluja, lisäksi sijotus A ja B 3 lausekkeeseen ja lausekkeen toteutumisen toteaminen antaa +4 pistettä. Kohdassa (a) ratkaisu laskemalla kuten yllä esitetty: Alkuunpääsy oikein laventamalla (A + B)x + A +1 piste. Yhtälö x tuottaa + pistettä, jonka jälkeen yhtälöparin x + x x + x A + B 1 ja A esittämisestä saa +1 pisteen. Oikea ratkaisu A ja B 3 tuottaa + pistettä (+1 piste molemmista). Kohta (b): Kohdassa (a) lasketun hajotelman x + 3 sijoittaminen integroitavaksi x + 1 funktioksi +1 piste. Eteneminen vaiheeseen x dx + 3 1 dx tai x + 1 x dx + 1 3 dx antaa + pistettä. Vastaus ln x +3 ln x+1 +C tuottaa +3 pistettä ( +1 x + 1 piste jokaisesta termistä). Vakion C puuttuminen merkitsee siis 1 pisteen menetystä. Samoin 1 pisteen menettää, jos integraalifunktiosta puuttuu itseisarvomerkkejä. Jos kohdassa (a) luvut A ja B on ratkaistu väärin tai ei ollenkaan, mutta laskee kohdan (b) integraalin oikein saaden vastaukseksi muotoa A ln x + B ln x + 1 + C olevan lausekkeen, niin kohdasta (b) annetaan 3 pistettä.

4. Heitetään kolme kertaa epäsymmetristä kolikkoa, jolla klaavan todennäköisyys on 3/4. Laske todennäköisyydet, että saadaan täsmälleen k klaavaa, k 0, 1,, 3. Mikä on klaavojen lukumäärän odotusarvo? Anna vastaukset sievennettyinä murtolukuina.. Merkitään X kolmessa heitossa saadaan täsmälleen k klaavaa, k 0, 1,, 3, jolloin X on binomijakautunut satunnaismuuttuja X Bin(3, 3/4). Binomitodennäköisyyden kaavan mukaan ( ) ( ) k ( 3 3 p k P(X k) 1 3 3 k ( ) ( ) k ( ) 3 k 3 3 1, k 4 4) k 4 4 kun k 0, 1,, 3. Näin ollen p 0 P(X 0) P( kolmessa heitossa ei saada yhtään klaavaa ) ( ) ( ) 0 ( ) 3 3 3 1 1 1 1 0 4 4 64 1 p 1 P(X 1) P( kolmessa heitossa saadaan täsmälleen yksi klaava ) ( ) ( ) 1 ( ) 3 3 1 3 3 1 4 4 4 1 16 9 p P(X ) P( kolmessa heitossa saadaan täsmälleen kaksi klaavaa ) ( ) ( ) ( ) 1 3 3 1 9 3 4 4 16 1 4 7 p 3 P(X 3) P( kolmessa heitossa saadaan täsmälleen kolme klaavaa ) ( ) ( ) 3 ( ) 0 3 3 1 1 7 3 4 4 64 1 7 64. Edellä laskettujen todennäköisyyksien perusteella klaavojen lukumäärän odotusarvo on 3 1 EX k p k 0 64 + 1 9 64 + 7 64 + 3 7 64 k0 9 + 54 + 81 144 64 64 9 4. Vaihtoehtoisesti odotusarvon voi laskea kaavalla EX np 3 3 4 9 4. Pisteytys. Pistetodennäköisyydet p k P(X k), k 0, 1,, 3, jokaisesta + pistettä, yhteensä +8 pistettä. Pienestä laskuvirheestä menettää 1 pisteen, kun periaate on oikein. Vastauksena sieventämätön murtoluku, annetaan vain 1 piste/kohta. Odotusarvo laskettu oikein, +4 pistettä. Kun periaate on oikein, niin laskuvirheestä vähennetään yleensä pistettä, mutta tilanteesta ja virheen vakavuudesta riippuen myös 1 tai 3 pistettä ovat mahdollisia. Sieventämätön vastaus odotusarvona antaa pistettä. Jos kohdan (a) kaikki pistetodennäköisyydet eivät ole oikein, mutta odotusarvo on laskettu oikealla kaavalla, voi kohdasta (b) saada enintään pistettä.

5. Suorakulmaisen kolmion ABC kateettien pituudet ovat AB 3 ja AC 4. Suorakulmio DEFG sijaitsee kolmion ABC sisällä niin, että sivu DE on hypotenuusalla BC, kärki F on kateetilla AC ja kärki G on kateetilla AB. (a) Määritä kolmion ABC kärjestä A hypotenuusalle BC piirretyn korkeusjanan pituus. (3 pistettä) (b) Olkoon janan DE pituus x. Lausu janan DG pituus x:n avulla. (3 pistettä) (c) Määritä suorakulmion DEFG pinta-alan suurin mahdollinen arvo. (6 pistettä) (a) Olkoon kysytty korkeusjanan pituus h. Lausumalla kolmion ABC pinta-ala kahdella eri tavalla saadaan yhtälö 1 3 4 1 1 5 h. ( pistettä). Tästä h. (1 piste). 5 (b) Olkoon janan DG pituus y. Yhdenmuotoisista kolmioista AGF ja ABC saadaan (h y)/x h/5. ( pistettä). Tästä ratkaisemalla y 1(1 1 x). (1 piste). 5 5 (c) Suorakulmion DEFG pinta-ala on S (x) xy 1(x 1 5 5 x ). ( pistettä). Derivaatta S (x) 1(1 x) 0, kun x 5. (1+1 pistettä). Koska x on suljetulla välillä [0, 5], 5 5 riittää etsiä suurin arvoista S (0), S ( 5 ) ja S (5). (1 piste). Koska S (0) S (5) 0 ja S ( 5 ) 3, on DEFG:n pinta-alan suurin mahdollinen arvo 3. (1 piste). Lisää pisteytyksestä Kohdissa (a) ja (b) ensimmäiset pistettä annetaan, jos on osattu muodostaa mikä tahansa järkevä yhtälö h:n tai y:n ratkaisemiseksi. Jos (a):ssa on h:lle saatu väärä arvo, (b)-kohdasta voi silti saada enintään pistettä. Jos (c)-kohdassa pinta-alan lauseke on väärin, mutta ei poikkea merkittävästi oikeasta (jolloin lausekkeen täytyy ainakin olla toisen asteen polynomi), voi (c)-kohdasta vielä saada enimmillään 4 pistettä. Jos toisen asteen polynomin derivoi väärin, ei sen jälkeen kerry pisteitä. Missään kohdassa pelkistä vastauksista (arvauksista) ei anneta pisteitä.