TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas
KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit
KVANTITATIIVISEN TUTKIMUKSEN VAIHEET 1. Tutkimusongelman määrittäminen Kirjallisuuteen perehtyminen 2. Suunnitteluvaihe Ongelman yksityiskohtaisempi määrittely Teorian valinta ja hypoteesien laadinta Konkretisointi / operationaalistaminen Mittareiden ja menetelmien valinta Aineiston keruun suunnittelu Analyysin suunnittelu Raportoinnin suunnittelu 3. Kenttätyövaihe eli aineiston keruu 4. Tietojen tallennus ja muokkaus analyysia varten 5. Tietojen analysointi ja johtopäätösten teko 6. Tutkimuksen raportointi
TUTKIMUSKYSYMYS JA-HYPOTEESI Tutkimus lähtee liikkeelle siitä, että halutaan tarkastella jotakin todellisuuden ilmiötä ja tarkastelu puetaan usein kysymyksen muotoon Tutkimuskysymys saattaa liittyä johonkin valmiiseen teoriaan tai malliin Tutkimuskysymyksestä muodostetaan edelleen tutkimushypoteesi, jossa otetaan kantaa siihen, mikä olisi mahdollinen vastaus tutkimuskysymykseen Tämän lisäksi usein määritetään tilastollisen testauksen hypoteesit (näistä myöhemmin), jos tarkoitus on tehdä yleistyksiä tai johtopäätöksiä aineistosta
ESIMERKKI 1 Malli: Asenne Oppiminen Interventio Tutkimuskysymys: Vaikuttaako interventio siihen, että oppilaiden asenteet muuttuvat myönteisemmäksi oppimisen suhteen? Tutkimusta varten puetaan malli muotoon Interventio Asenne Tutkimushypoteesi: Interventioryhmän motivaatio on keskimäärin korkeampi kuin kontrolliryhmän motivaatio.
ESIMERKKI 2 Malli: Patologia Fysiologiset vauriot Toiminnan rajoitus Toiminnan vajaus Interventio Tutkimuskysymys: Vaikuttaako interventio siihen, ettei lonkkamurtumaleikatuille tutkittaville kehity ongelmaa portaidennousussa (toiminnan vajaus)? Tutkimusta varten puetaan malli muotoon Interventio Toiminnan vajaus Tutkimushypoteesi: Liikuntainterventioon osallistuneilla portaidennousuun kykenevien osuus on suurempi kuin kontrolliryhmässä.
HYVÄ HYPOTEESI Esittää yksiselitteisen suhteen kahden tutkittavan asian välille On perusteltu (teoria tai muut syyt) On empiirisesti testattavissa On lyhyt ja selkeä Kvantitatiivisessa tutkimuksessa hypoteesilla on yleensä matemaattinen vastine / vastineita Hypoteesi: p 1 > p 0, missä pviittaa portaidennousuun kykenevien osuuteen koeryhmässä (1) ja kontrolliryhmässä (0) Miksi hypoteesi on tärkeä tutkimuksen kannalta? Mitä hyötyä siitä on tutkimuksen tekijälle / valmiin tutkimuksen lukijalle?
TEOREETTINEN MALLI JA MITTAAMINEN Kvantitatiiviseen tutkimusotteeseen kuuluu, että tarkasteltavasta ilmiöstä luodaan malli Malliin kuuluvat tutkimusobjektit Tutkimusobjektien ominaisuudetmääritellään teoreettisilla termeillä Termitkäännetään empiirisiksikvantitatiivista tutkimusta varten Jokaiseen termiin liitetään mittaoperaatio Ominaisuuttasaadaan näin kuvaamaan lukuarvo, mittaluku(mittaoperaatio) Mittaaminen on toimenpide, jolla tutkimusobjektiin liitetään jotain sen ominaisuutta kuvaava luku eli mittaluku
MITTAAMISEN KÄSITTEITÄ Mittaoperaation säännöt ja välineet = mittari Objekti, jolle mittaus suoritetaan on havaintoyksikkö, tapaus, tutkittava(case, observation) Ominaisuus, jota mitataan on muuttuja (variable) Ominaisuus voi saada erilaisia lukuarvoja, jotka ovat muuttujan havaintoarvojatai luokkia (value, observation, level, group, category, class)
MITTA-ASTEIKOISTA Mittaluvut voivat esittää erilaisia ominaisuuksia muuttujan luonteesta riippuen, ja muuttujien arvoihin liittyvää informaatiota voidaan käsitellä matemaattisesti eri tavoin Jatkoanalyysiä varten on tärkeätä selvittää muuttujan on mitta-asteikko, jonka perusteella voidaan määritellä sille sopivat analyysimenetelmät Karkea jaottelu: Muuttuja on jatkuva, jos se voi saada minkä tahansa reaalilukuarvon tietyllä välillä, esim. pituus Muuttuja on epäjatkuva(diskreetti), jos se voi saada vain äärellisen määrän arvoja tietyllä välillä, esim. (biologinen) sukupuoli
MITTA-ASTEIKKOJA(EPÄJATKUVAT) Luokittelu- eli nominaaliasteikko Yksinkertaisin mittaustapa, jossa havainnot luokitellaan ennalta määriteltyihin luokkiin. Luokkien välillä ei vallitse järjestystä. Mittaluvuilla korvataan luokkien nimet. Esim. sukupuoli, siviilisääty. Informaatiosisältö: samanlaisuus/erilaisuus Järjestys- eli ordinaaliasteikko Luokitteluasteikkoa monimuotoisempi, sillä luokat voidaan asettaa järjestykseen mitattavan ominaisuuden suhteen. Luokat eivät välttämättä sijaitse samalla etäisyydellä toisistaan. Esim. koulutusaste. Informaatiosisältö: samanlaisuus/erilaisuus + järjestys
MITTA-ASTEIKKOJA(JATKUVAT) Välimatka- eli intervalliasteikko Havaintoyksiköillä on yksikäsitteinen järjestys ja muuttujan arvojen lisäykset voidaan laskea, mutta nolla ei ole asteikon minimikohta. Esim. lämpötila Celsius-asteikolla. Informaatiosisältö: samanlaisuus/erilaisuus, järjestys, välimatka Suhdeasteikko Suhdeasteikolla on välimatka-asteikollisen muuttujan ominaisuudet, mutta lisäksi myös nolla kohta, joka on minimi (ts. ominaisuus häviää absoluuttisessa nollakohdassa). Esim. pituus. Informaatiosisältö: samanlaisuus/erilaisuus, järjestys, välimatka, absoluuttinen nollakohta
MITTA-ASTEIKKOJA(ERIKOISTAPAUKSIA) Kaksiluokkainen muuttuja Muuttujalla on vain kaksi arvoluokkaa. Esim. on kroonisia sairauksia vs. ei ole kroonisia sairauksia. Poikkeus: diskreetti suhdeasteikollinen muuttuja Lukumäärämuuttujat (mm. Poisson). Esim. kroonisten sairauksien lukumäärä.
ESIMERKKEJÄ Mitta-asteikon määrittäminen: Usein helppoa mittareille, jotka mittaavat ominaisuutta suoraan Pituus Paino Oletteko tupakoinut viimeisen vuoden aikana? Kyllä / ei Hankalampaa epäsuorilla mittareilla CES-D: masentuneisuuden oirekyselyn summapistemäärä
MUUTTUJAN INFORMAATIO Käytännössä pyritään siihen, että tarkasteltavaa ominaisuutta kuvaavat muuttujat pitäisivät sisällään mahdollisimman paljon informaatiota tutkimuskohteesta Objektiivisuus vs. tutkittavan oma arvio Jatkuvat muuttujat Enemmän informaatiota tarkemmat johtopäätökset Vrt. esim. pituuden mittaus Yli/alle 170 cm Mittaluokat n. 25 cm välein Mittaluokat täsmälleen 1 cm välein
CES-D Masentuneisuuden oirekysely 1. OLIN LEVOTON ASIOISTA, JOISTA EN YLEENSÄ HUOLESTU 2. MINUN EI TEHNYT MIELI SYÖDÄ; RUOKAHALUNI OLI HUONO HARVOIN TAI EI KOSKAAN JOSKUS MELKO USEIN LÄHES KOKO AJAN 3. TUNSIN ITSENI ALAKULOISEKSI PERHEENI JA YSTÄVIENI TUESTA HUOLIMATTA 4. MINUSTA TUNTUI, ETTÄ OLIN AIVAN YHTÄ HYVÄ IHMINEN KUIN MUUTKIN 5. MINULLA OLI VAIKEUKSIA KESKITTYÄ TEKEMISIINI 6. TUNSIN ITSENI MASENTUNEEKSI 7. KAIKKI MITÄ TEIN TUNTUI VAIVALLOISELTA 8. TULEVAISUUS TUNTUI TOIVEIKKAALTA : : : : : :
CES-D Masentuneisuuden oirekysely Vastaaja 1. OLIN LEVOTON ASIOISTA, JOISTA EN YLEENSÄ HUOLESTU 2. MINUN EI TEHNYT MIELI SYÖDÄ; RUOKAHALUNI OLI HUONO 3. TUNSIN ITSENI ALAKULOISEKSI PERHEENI JA YSTÄVIENI TUESTA HUOLIMATTA HARVOIN TAI EI KOSKAAN JOSKUS MELKO USEIN LÄHES KOKO AJAN 4. MINUSTA TUNTUI, ETTÄ OLIN AIVAN YHTÄ HYVÄ IHMINEN KUIN MUUTKIN 5. MINULLA OLI VAIKEUKSIA KESKITTYÄ TEKEMISIINI 6. TUNSIN ITSENI MASENTUNEEKSI 7. KAIKKI MITÄ TEIN TUNTUI VAIVALLOISELTA 8. TULEVAISUUS TUNTUI TOIVEIKKAALTA : : : : : :
CES-D Masentuneisuuden oirekysely Koodaaja 1. OLIN LEVOTON ASIOISTA, JOISTA EN YLEENSÄ HUOLESTU 2. MINUN EI TEHNYT MIELI SYÖDÄ; RUOKAHALUNI OLI HUONO 3. TUNSIN ITSENI ALAKULOISEKSI PERHEENI JA YSTÄVIENI TUESTA HUOLIMATTA HARVOIN TAI EI KOSKAAN JOSKUS MELKO USEIN LÄHES KOKO AJAN 0 2 1 Käänteinen 4. MINUSTA TUNTUI, ETTÄ OLIN AIVAN YHTÄ HYVÄ IHMINEN KUIN MUUTKIN 5. MINULLA OLI VAIKEUKSIA KESKITTYÄ TEKEMISIINI 0 1 Käänteinen 6. TUNSIN ITSENI MASENTUNEEKSI 7. KAIKKI MITÄ TEIN TUNTUI VAIVALLOISELTA 8. TULEVAISUUS TUNTUI TOIVEIKKAALTA 0 0 2 : : : : : :
MITTAVIRHE Mittausmenetelmien epätarkkuus Monia psyykkisiä ominaisuuksia mitataan asteikoilla, joissa kiinnostuksen kohteena olevaa ominaisuutta (esim. masentuneisuuden taso) ei voi tarkkaan erottaa muista vastaavanlaisista ominaisuuksista (mm. sulkeutuneisuus, yksinäisyys) Mittausvälineiden epätarkkuus Itse mittari saattaa olla sellainen, että se ei anna tarpeeksi tarkkoja lukuarvoja ominaisuudesta Mittaajan epätäsmällisyys Miten tarkasti mittaaja saa selville tutkittavan ominaisuuden lukuarvon Ympäristön häiriötekijät
AINEISTON KERÄÄMINEN Tärkein vaihe tutkimuksen tekemisessä, koska mitatessa tulleita virheitä ei välttämättä voi huomata eikä niitä usein voi korjata analyysivaiheessa. Mittaajan tulisi pyrkiä siihen, että mittaluvut saadaan selville ilman vääristymiä (käytännössä usein vaikeaa). Jos käytetään useampaa mittaajaa, pitäisi pyrkiä siihen, että mittaustulokset eivät riipu siitä, ketä käytetään mittaajana. Poikkeavat havainnot: pyritään jo mitattaessa selvittämään syitä sellaisille mittauksille, jossa mittaluku poikkeaa selkeästi muiden tutkittavien mittaluvuista
Ei ole perusjoukon määrittävää ominaisuutta On perusjoukon määrittävä ominaisuus Alkio Havaintoyksikkö Perusjoukko Otanta Otos Valikointi Näyte Kokonaistutkimus: tutkimus kattaa koko perusjoukon Otantatutkimus: tutkimus kattaa (edustavan) osan perusjoukkoa
OTANTA Kokonaistutkimus kuluttaa usein liikkaa resursseja (aikaa ja rahaa) ja on tehotonta, jos samoihin tuloksiin päästäisiin tutkimalla pienempi osa perusjoukkoa (otos). Tällöin voidaan harkita otantatutkimuksen tekemistä. Tavoitteena on, että otantatutkimuksella saadut tulokset olisivat samansuuntaiset kuin tulokset, jotka olisi saatu tutkimalla koko perusjoukko. Kun tutkittavat on poimittu otokseen otantamenetelmällä, tulokset ovat yleistettävissä perusjoukkoon. Satunnaistamisella pyritään siihen, että suhteellisen homogeenisen perusjoukon kaikilla alkioilla olisi yhtä suuri mahdollisuus päätyä otokseen kun satunnaisuus onnistuu, perusjoukon alkiot ovat oikeassa suhteessa edustettuina otoksessa Yleistettävyys pätee mm. toistetuille satunnaisotoksille (ns. frekvenssitulkinta).
OTANTA Käytännössä otantaa varten muodostetaan otantakehys (engl. samplingframe), josta otos poimitaan jotain otantamenetelmää käyttäen. Kehyksen voi muodostaa esim. jokin rekisteri tai luettelo. Otantamenetelmä valitaan perusjoukon homogeenisuuden mukaan Suhteellisen homogeeninen perusjoukko: yksinkertainen satunnaisotanta tai systemaattinen otanta Perusjoukossa on homogeenisia ryhmiä: ositettu otanta tai ryväsotanta Otantaa voidaan tehostaa lisäinformaation avulla Tässä käsittelemme aineistoja, joissa oletetaan käytetyn yksinkertaista satunnaisotantaa
OTOSKOKO Otoskoon määrittämiselle ei yksiselitteistä ohjetta, koska muuttujien informaatio, perusjoukot ja tutkimustilanteet ovat erilaisia. Vaaligallupit (Suomi): n = 1000 Yrityksen imagotutkimus (tietty alue): n= 150 300 Lääketieteellinen koe (koe-/kontrolliryhmä): n = 20 30 Jos tutkittavasta ilmiöstä on aikaisempaa tutkimustietoa, sopiva otoskoko voidaan määrittää matemaattisesti käyttämällä muuttujan arvojen arvioitua hajontaa ja tarkkuutta, jolla tutkimuskysymyksen tulos halutaan saada selville. Jotta tulokset olisivat luotettavia, pitää otoskoon olla sitä suurempi, mitä heterogeenisempi perusjoukko on.
YKSINKERTAINEN SATUNNAISOTANTA (YSO) 1. Määritetään otantakehys (N = 10) 1 2 3 4 5 6 7 8 9 10 2. Määritetään otoskoko n= 3 3. Valitaan otoskoon edellyttämä määrä satunnaislukuja 2 5 8 4. Poimitaan otokseen satunnaislukujen edustamat tutkittavat. 2 5 8