TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
|
|
- Ahti Manninen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas
2 AINEISTON TARKASTELU JA MUOKKAUS AINA ennen varsinaista analyysia suoritetaan aineiston tarkastelu ja muokkaus, data-analyysi Tavoitteena: Aineiston laadun toteaminen ja valvonta Aineiston rakenteen tarkastelu ja muokkaus Muuttujien jakauman muoto Apua mallin ja hypoteesien määrittämiseen Tarkastuksia: Puuttuvien tietojen tarkistus (paikkaus) Loogisuuskorjaukset Virheellisten arvojen korjaus
3 TARKASTUKSIA Tarkastelua voidaan suorittaa ajamalla muuttujien jakaumat jakauman muoto poikkeavat tapaukset virheelliset arvot Voi käyttää myös tunnuslukuja Pienimmät ja suurimmat arvot (ovatko järkeviä) Keskiarvo (onko oikean tuntuinen) Korrelaatiokerroin (onko yhteys oikeansuuntainen) Jakaumaa kuvaavat graafit ovat hyödyllisiä: jatkuvat muuttujat: esim. histogrammi, diskreetit muuttujat: esim. pylväskuvio Kuviosta näkee suoraa mm. poikkeavat havainnot sekä myös havaintojen keskittymisen jonkun arvon ympärille
4 MUOKKAUKSIA Esim. diskreetti muuttuja, jossa on viisi luokkaa voidaan joutua teoreettisista tai käytännön syistä uudelleen luokittelemaan kolmeen luokkaan Lasketaan erilaisia summia Asteikot Esim. kroonisten sairauksien lukumäärä Lasketaan erilaisia ajan pituuksia Muokataan muuttujan / muuttujien arvoja jonkun laskennallisen kaavan mukaan, esim. kehon painoindeksi (BMI)
5 VIRHELÄHTEITÄ TUTKIMUKSEN KULUESSA Suunnittelu -Valittiinko tutkimuksen kannalta oikeat mittarit? Koodaus - Koodattiinko vastaukset oikein? Aineiston muokkaus - Olivatko käytetyt muunnokset perusteltuja? Data-analyysi - Havaittiinko tärkeimmät ongelmat aineistossa? Analyysi - Valittiinko asianmukainen menetelmä?
6 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit
7 YKSIULOTTEINEN EMPIIRINEN JAKAUMA Kun havaintojen lukumäärä on liian suuri, että havaintomatriisista on vaikea nähdä aineiston yleispiirteitä, informaatiota voidaan tiivistää, että johtopäätösten teko helpottuisi Yhtä muuttujaa tarkasteltaessa aineiston informaatiota voidaan tiivistää havaintomatriisin muuttujan arvojen (jakauma) sijasta ilmoitetaan kuinka monta kertaa kukin arvo esiintyi kyseisellä muuttujalla Yksiulotteinen frekvenssijakauma tai suora jakauma
8 Havaintomatriisi Aineistonäkymä (Data View, ks. välilehti, vasen alareuna) Satunnaisotanta (n. 25 %) NORA-aineiston jyväskyläläisistä 75-vuotiaista miehistä (mittausvuosi: 1989).
9 Havaintomatriisi Muuttujanäkymä (Variable View, ks. välilehti, vasen alareuna)
10 ESIMERKKI DIGIT SYMBOL TESTIN PISTEMÄÄRÄ Digit symbol (pistemäärä) f i p i F i P i Yhteensä
11 ESIMERKKI DIGIT SYMBOL TESTIN PISTEMÄÄRÄ Digit symbol (pistemäärä) f i p i F i P i Yhteensä Frekvenssi (f i ) ilmaisee havaintoarvojen esiintymiskertojen lukumäärän (frequency, count) Esim. f 20 = 2
12 ESIMERKKI DIGIT SYMBOL TESTIN PISTEMÄÄRÄ Digit symbol (pistemäärä) f i p i F i P i Yhteensä Suhteellinen frekvenssi (p i ) ilmaisee havaintoarvojen esiintymiskertojen lukumäärän prosenttiosuutena kaikista havainnoista (percent) Esim. p 20 = 100 2/23 = 200 / 23 = 8.7
13 ESIMERKKI DIGIT SYMBOL TESTIN PISTEMÄÄRÄ Digit symbol (pistemäärä) f i p i F i P i Yhteensä Summafrekvenssi (F i ) eli kumulatiivinen frekvenssi ilmaisee kuinka moni järjestykseen asetetuista havaintoarvoista oli korkeintaan yhtä suuri kuin kyseinen muuttujan arvo (cumulative frequency) Esim. F 20 = = 6
14 ESIMERKKI DIGIT SYMBOL TESTIN PISTEMÄÄRÄ Digit symbol (pistemäärä) f i p i F i P i Yhteensä Suhteellinen summafrekvenssi (P i ) ilmoittaa summafrekvenssin prosenttimuodossa (cumulative percent) Esim. P 20 = 100 ( ) / 23 = 26.1
15 ESIMERKKI DIGIT SYMBOL TESTIN PISTEMÄÄRÄ (SPSS-TULOSTE)
16 Marko: Aineisto: Kaksi ryhmää (koe ja kontrolli), liikuntainterventio Perusjoukko: Uransa lopettaneet pohjoismaiset kilpaurheilijat Kolme muuttujaa: Kävelynopeus (metri/sekunti) Polven ojennusvoima (Newton) Bergin tasapainotesti (summapistemäärä) Tutkimuskysymys: 1)Onko ryhmien keskiarvoissa eroa perusjoukossa? Auttaako liikuntainterventio toimintakyvyn ylläpitämistä? 2)Onko keskiarvoeroja itse arvioidun terveyden suhteen (hyvä / keskinkertainen / huono). Auttaako liikuntainterventio samalla tavalla eri terveydentilan tasolla olevia? Miten Markon voi hyödyntää jakaumatiedosta (esim. polven ojennusvoima koe- ja kontrolliryhmät)?
17 Markon aineiston jakaumatietoja pov Polvenojennusvoima a pov Polvenojennusvoima a Valid 298 Frequency Percent Valid Percent 1 3,7 3,7 3, ,7 3,7 7,4 Frequency Percent Valid Percent ,7 3,7 11,1 Valid ,0 4,0 4, ,7 3,7 14, ,0 4,0 8, ,7 3,7 18, ,0 4,0 12, ,7 3,7 22, ,0 4,0 16, ,7 3,7 25, ,0 4,0 20, ,7 3,7 29, ,0 4,0 24, ,7 3,7 33, ,0 4,0 28, ,7 3,7 37, ,0 4,0 32, ,7 3,7 40, ,0 8,0 40, ,7 3,7 44, ,0 4,0 44, ,7 3,7 48, ,0 4,0 48, ,7 3,7 51, ,0 4,0 52, ,7 3,7 55, ,0 4,0 56, ,7 3,7 59, ,0 4,0 60, ,7 3,7 63, ,0 4,0 64, ,7 3,7 66, ,0 4,0 68, ,7 3,7 70, ,0 4,0 72, ,7 3,7 74, ,0 4,0 76, ,7 3,7 77, ,0 4,0 80, ,7 3,7 81, ,0 4,0 84, ,7 3,7 85, ,0 4,0 88, ,7 3,7 88, ,0 4,0 92, ,7 3,7 92, ,0 4,0 96, ,7 3,7 96, ,0 4,0 100, ,7 3,7 100,0 Total ,0 100,0 Total ,0 100,0 a. a.
18 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit
19 LUOKITTELU Luokitteluasteikollisia muuttujia ei yleensä tarvitse luokitella, koska luokkia on usein vähän Joskus luokkia voi olla niin paljon, että tarvitsee käyttää jonkin tasoista luokkien uudelleen ryhmittelyä perustuen esim. yläkäsitteisiin Esim. tilastokeskuksen ammattiluokitus (2010) luokitus on käyttökelpoinen, koska luokitukset on tarkasti rajattu ja usein on mainittu myös mitkä ammatit eivät kuulu ko. luokan alle
20 AMMATTILUOKITUS 2010 (TILASTOKESKUS) 1 Johtajat 2 Erityisasiantuntijat 3 Asiantuntijat 4 Toimisto- ja asiakaspalvelutyöntekijät 5 Palvelu- ja myyntityöntekijät 6 Maanviljelijät, metsätyöntekijät ym. 7 Rakennus-, korjaus- ja valmistustyöntekijät 8 Prosessi- ja kuljetustyöntekijät 9 Muut työntekijät 0 Sotilaat X Tuntematon kirvesmies, (7111 talonrakentaja), pääluokka: 7 huoltomies (lvi), (7126 putkiasentajat), pääluokka: 7 peruskoulun opettaja, (2341 peruskoulun alaluokkien opettajat), pääluokka: 2 jne.
21 1 2 3 Huom. Informaatiota häviää, kun ääripään luokkiin kuuluvat on liitetty muihin luokkiin.
22 LUOKITTELU Jatkuvilla muuttujilla (välimatka- ja suhdeasteikolliset) havaitaan yleensä paljon erilaisia arvoja, ja tällöin luokittelu helpottaa usein aineiston käsittelyä ja esittämistä Edellytyksenä taulukoiden ja kuvaajien (mm. histogrammi) käytölle jatkuvilla muuttujilla Luokittelussa informaatiota häviää, mutta aineistosta tulee havainnollisempi ja käytännöllisempi Yleisin luokittelumuoto on tasavälinen luokitus, jossa kaikki luokat ovat yhtä leveitä (0..9, ,20..29, ) Jos muuttujan jakauma on vino (painottunut alkutai loppupäähän) tai siinä on poikkeavia havaintoarvoja, voidaan käyttää epätasavälistä luokittelua (0..2,3..10,10..50)
23 JATKUVAN MUUTTUJAN LUOKITTELU Luokittelussa käytettävä luokkien määrä on harkinnanvarainen Suurella luokkien määrällä saadaan enemmän informaatiota muuttujasta, kun taas pienemmällä luokkien määrällä saavutetaan parempi havainnollisuus Luokittelussa määritetään: Mittaustarkkuus: a = kahden mahdollisen peräkkäisen arvon erotus Luokkien lukumäärä: k Vaihteluvälin pituus: R = muuttujan suurimman ja pienimmän arvon erotus Luokan pituus: c = R / k
24 JATKUVAN MUUTTUJAN LUOKITTELU Pyöristetyt luokkarajat: mittaustarkkuuden mukaiset luvut Todelliset luokkarajat: alaraja a / 2 yläraja + a / 2 Luokkakeskus: (alaraja + yläraja) / 2
25 POLVENOJENNUSVOIMA (N) Jyväskyläläiset 75-vuotiaita miehet vuonna 1989 (n = 119). NORA -tutkimus. Frekvenssijakauma: 86 riviä (puuttuva tieto mukana) Puuttuva tieto =.
26 POLVENOJENNUSVOIMA (NEWTON) Järjestetty aineisto, puuttuvat tapaukset poistettu (n= 100) Jos aineistoa ei luokitella, jakaumataulukkoon tulee 85 riviä. Mittaustarkkuus: a = = 1 Valitaan luokkien lukumäärä (noin): k = 20 Vaihteluvälin pituus: R = = 521 Luokan pituus: c = 521 / 20 = Koska luokan pituus pyöristettiin, voidaan vastaavasti aloittaa esim. arvosta 101.
27 POLVENOJENNUSVOIMA (NEWTON) Todelliset luokkarajat f i
28 ( ) = ( ) / 2 = 113 Todelliset luokkarajat Pyöristetyt luokkarajat f i Luokkakeskus f i Esitystapa 1 Esitystapa 2
29
30 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit
31 YKSIULOTTEISEN JAKAUMAN GRAAFINEN KUVAUS Tilastoaineistojen havainnollistamiskeino Nopea yleiskatsaus muuttujan jakaumasta Helppoja tehdä tietokoneella (SPSS, R, Powerpoint) Etuja Havainnollinen ja suppea esitystapa Voidaan korostaa erityisseikkoja Useita erilaisia esitystapoja Huonoja puolia Epätarkkuus Tahallisen tai tahattoman harhauttamisen mahdollisuus Vaatii usein lukijalta arvaamattoman paljon asiantuntemusta ja kriittisyyttä Kuvion tulisi olla selkeä; kikkailua tulisi välttää
32 PYLVÄSDIAGRAMMI Erityisesti diskreetit muuttujat Havainnollistetaan frekvenssijakaumaa Pylväät alkavat aina nollasta Voidaan piirtää myös vaakasuoraan Kuvio 1. Itsearvioitu terveydentila 75-vuotiailla jyväskyläläisillä naisilla (n = 208) vuonna 1989 (Jyväskylän yliopisto, Gerontologian Tutkimuskeskus, NORA-projekti, 1989).
33 HISTOGRAMMI Jatkuvat muuttujat Luokiteltu muuttuja Pylväät Kuvaavat intervallin frekvenssiä kiinni toisissaan alkavat aina nollasta todelliset luokkaraja Voidaan piirtää myös vaakasuoraan Kuvio 3. Polven ojennusvoima (N) 75-vuotiailla jyväskyläläisillä miehillä (n = 100) vuonna 1989 (Jyväskylän yliopisto, Gerontologian Tutkimuskeskus, NORA-projekti, 1989).
34 ESIMERKKEJÄ HISTOGRAMMIN KÄYTÖSTÄ - vino jakauma - asteikkomuuttuja: sensuroitunut jakauman alkupäästä Kuvio 4. Masennusoireiden summapistemäärä (CES-D) 75-vuotiailla göteborgilaisilla naisilla (n = 158) vuonna 1989 (Jyväskylän yliopisto, Gerontologian Tutkimuskeskus, NORA-projekti, 1989).
35 ESIMERKKEJÄ HISTOGRAMMIN KÄYTÖSTÄ - poikkeava havainto jakauman ylälaidalla Kuvio 5. Kehon painoindeksi (BMI) 75-vuotiailla jyväskyläläisillä naisilla (n = 191) vuonna 1989 (Jyväskylän yliopisto, Gerontologian Tutkimuskeskus, NORA-projekti, 1989).
36 ESIMERKKEJÄ HISTOGRAMMIN KÄYTÖSTÄ Alaryhmien vertailu Miehet Koko aineisto Naiset Kuvio 5. Polvenojennusvoima (N) 75-vuotiailla göteborgilaisilla miehillä (n = 95) naisilla (n = 110) vuonna 1989 (Jyväskylän yliopisto, Gerontologian Tutkimuskeskus, NORA-projekti, 1989).
37 Marko: Aineisto: Kaksi ryhmää (koe ja kontrolli), liikuntainterventio Perusjoukko: Uransa lopettaneet pohjoismaiset kilpaurheilijat Kolme muuttujaa: Kävelynopeus (metri/sekunti) Polven ojennusvoima (Newton) Bergin tasapainotesti (summapistemäärä) Tutkimuskysymys: 1)Onko ryhmien keskiarvoissa eroa perusjoukossa? Auttaako liikuntainterventio toimintakyvyn ylläpitämistä? 2)Onko keskiarvoeroja itse arvioidun terveyden suhteen (hyvä / keskinkertainen / huono). Auttaako liikuntainterventio samalla tavalla eri terveydentilan tasolla olevia? Frequency Frequency Histogrammit Markon tutkimuksessa (pylvään leveys: 50 N) Mitä havaitset?
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KATO (MISSING DATA, ATTRITION) Kun otostetuista havaintoyksiköistä saavutetaan (mitataan) vain osa, tarkoittaa kato sitä osaa tutkittavista tai mittauksista,
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Marko: Aineisto: Kolme muuttujaa: Tutkimuskysymys: Kaksi ryhmää (koe ja kontrolli), liikuntainterventio Kävelynopeus (metri/sekunti) Polven ojennusvoima
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas 1 VIRHELÄHTEITÄ TUTKIMUKSEN KULUESSA Suunnittelu -Valittiinko tutkimuksen kannalta oikeat mittarit? Koodaus - Koodattiinko vastaukset
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas OTOSTAMISEEN LIITTYVIÄ ONGELMIA Otostamisen ongelmat liittyvä satunnaistamisen epäonnistumiseen Ongelmat otantakehyksen määrittämisessä Väärän otantamenetelmän
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas MUITA HAJONNAN TUNNUSLUKUJA Varianssi, variance (s 2, σ 2 ) Keskihajonnan neliö Käyttöä enemmän osana erilaisia menetelmiä (mm. varianssianalyysi),
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas AINEISTON KERÄÄMINEN Tärkein vaihe tutkimuksen tekemisessä, koska mitatessa tulleita virheitä ei välttämättä voi huomata eikä niitä
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Hannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164
86118P JOHDATUS TILASTOTIETEESEEN Harjoituksen 3 ratkaisut, viikko 5, kevät 19 1. a) Havaintomatriisissa on viisi riviä (eli tilastoyksikköä) ja neljä saraketta (eli muuttujaa). Hannu mies LTK 18 Johanna
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas NORMAALIJAKATUNEISUUDEN TESTAUS H 0 : Muuttuja on perusjoukossa normaalisti jakautunut. H 1 : Muuttuja ei ole perusjoukossa normaalisti
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
TUTKIMUSAINEISTON ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KVANTITATIIVISEN TUTKIMUKSEN VAIHEET (EI VALMISTA AINEISTOA) 1. Tutkimusongelman määrittäminen Kirjallisuuteen perehtyminen 2. Suunnitteluvaihe Ongelman
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Kandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
Til.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas LUENNOT 2017 Luento Paikka Vko Päivä Pvm Klo 1 L 304 3 To 19.1.2016 12:15-14:00 2 MaA 103 3 Pe 20.1.2016 10:15-12:00 3 MaA 103 4 Ke
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Harjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI. LTKY012 Timo Törmäkangas Gerontologian tutkimuskeskus
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Gerontologian tutkimuskeskus LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 303 3 ke 16.1.2013 10:15-12:00 2 L 303 3 pe 18.1.2013 10:15-12:00
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
Teema 3: Tilastollisia kuvia ja tunnuslukuja
Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin
Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4
18.9.2018/1 MTTTP1, luento 18.9.2018 KERTAUSTA Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4 pyöristetyt todelliset luokka- frekvenssi luokkarajat luokkarajat keskus 42 52 41,5
TUTKIMUSOPAS. SPSS-opas
TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,
MONISTE 2 Kirjoittanut Elina Katainen
MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö
SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.
806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien
Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 6
Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 6 Käytännön asioita seminaariin liittyen Vastaanotto 2.2. -16.3. To 13.00-13.45 huone TF 112 Sähköposti: ihtesem@cs.tut.fi
Teema 5: Ristiintaulukointi
Teema 5: Ristiintaulukointi Kahden (tai useamman) muuttujan ristiintaulukointi: aineiston analysoinnin ja tulosten esittämisen perusmenetelmä usein samat tiedot esitetään sekä taulukkona että kuvana mahdollisen
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Johdatus monimuuttujamenetelmiin Luennot 30.10.13.12.-18 Tiistaina klo 12-14 (30.10., BF119-1) Keskiviikkoisin klo 10-12 (MA101,
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011
Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi
MTTTP1, luento KERTAUSTA
19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?
Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus
7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
Työllisyyskatsauksen tilastoliite, Häme lokakuu TEM/Työnvälitystilastot Päivitetty /Sanna Paakkunainen
Työllisyyskatsauksen tilastoliite, Häme lokakuu 2016 Päivitetty 22.11.2016/Sanna Paakkunainen Työttömät työnhakijat kuukauden lopussa Hämeen ELY-keskuksen alueella vuosina 2011 2016 2 Hämeen ELY-keskuksen
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
Vieraskieliset työttömät Espoossa. Tuija Soininen
Vieraskieliset työttömät Espoossa Tuija Soininen 20.5.2015 Vieraskieliset työnhakijat työllisyyskoodeittain Työllisyyskoodi 2015 Maaliskuu %-osuus 00 Työllistetty 248 3,5 % 01 Työssä yleisillä työmarkk.
Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä.
Tehtävä 1 Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä Ei Hypoteesi ei ole hyvä tutkimushypoteesi, koska se on liian epämääräinen.
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
2. Aineiston kuvailua
2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
Tilastollisten aineistojen kuvaaminen
Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten
Ohjeita kvantitatiiviseen tutkimukseen
1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas LUENNOT KEVÄT 2015 Luento Paikka Vko Päivä Pvm Klo 1 Ag. Auditorio 1 7 Ma 9.2. 10:15-12:00 2 L 304 7 To 12.2. 12:15-14:00 3 L 304 8
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Tilastolliset toiminnot
-59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta
Kotoutuminen, maahanmuuttajat. Eduskunnan työelämä- ja tasa-arvovaliokunta Liisa Larja
Kotoutuminen, maahanmuuttajat Eduskunnan työelämä- ja tasa-arvovaliokunta Liisa Larja 9.3.2017 % Naisten heikko työllistyminen painaa ulkomaalaistaustaisten työllisyysastetta alas 80 70 60 Työllisyysaste
Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä..
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä.. TEHTÄVÄ 1 Taulukko 1 Kuvailevat tunnusluvut pääkaupunkiseudun terveystutkimuksesta vuonna 2007 (n=941) Keskiarvo (keskihajonta) Ikä
RISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja:
RISKITASO Riskitaso (α) määrittää virhepäätelmän todennäköisyyden testattaessa Todennäköisyys, jolla tutkija on valmis hylkäämään nollahypoteesin, vaikka se saattaisikin pitää perusjoukossa paikkansa Käytettyjä
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.
1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin
Järvi 1 Valkjärvi. Järvi 2 Sysijärvi
Tilastotiedettä Tilastotieteessä kerätään tietoja yksittäisistä asioista, ominaisuuksista tai tapahtumista. Näin saatua tietoa käsitellään tilastotieteen menetelmin ja saatuja tuloksia voidaan käyttää
SPSS-perusteet. Sisältö
SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn
Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3
ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6
Sisällysluettelo ALKUSANAT 4 ALKUSANAT E-KIRJA VERSIOON 5 SISÄLLYSLUETTELO 6 1 PERUSASIOITA JA AINEISTON SYÖTTÖ 8 11 PERUSNÄKYMÄ 8 12 AINEISTON SYÖTTÖ VERSIOSSA 9 8 Muuttujan määrittely versiossa 9 11
Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.
Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.2009 Tietosuoja - lähtökohdat! Periaatteena on estää yksiköiden suora
1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.
MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia
Kyllä. Kyllä. Jäitkö vielä epävarmaksi: Selvitä antavatko testit samansuuntaisen tuloksen.
Data: järjestysast. Ei Kyllä Jatkuva, normaali Kyllä t-testi Ei Suuria poikkeavia arvoja Ei Mann-Whitney Kyllä Mediaani testi ks. luentomoniste Valintakaavio: Kahden riippumattoman ryhmän jakauman keskikohdan
Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:
Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,
Tilastomenetelmien lopputyö
Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien
voidaan hylätä, pienempi vai suurempi kuin 1 %?
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 5 viikko 42 6.10.2017 klo 10:42:20 Ryhmät: ke 08.30 10.00 LS C6 Paajanen ke 10.15 11.45 LS
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774