TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
|
|
- Ari Pesonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas
2 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit
3 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Luokittelu- ja järjestysasteikko: Ristiintaulukko Sukupuoli Mies (1) Nainen (2) Maa Suomi (1) Ruotsi (2) Tanska (3) Yhteensä Arvoparin frekvenssi näkyy taulukon soluista Ehdolliset frekvenssit: kiinnitetään yksi maamuuttujan luokka (esim. Suomi) ja tarkastellaan sukupuolijakaumaa
4 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Sukupuoli Mies (1) Nainen (2) Maa Suomi (1) Ruotsi (2) Tanska (3) Yhteensä Riviprosentit: esim / 355 = %
5 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Luokitteluasteikko: Ristiintaulukko Sukupuoli Mies (1) Nainen (2) Maa Suomi (1) 119 (34 %) 236 (66 %) 355 (100 %) Ruotsi (2) 159 (43 %) 209 (57 %) 368 (100 %) Tanska (3) 222 (46 %) 259 (54 %) 481 (100 %) Yhteensä Riviprosentit: esim / 355 = % Suomessa otos painottui selkeämmin naisiin (vain noin kolmannes oli miehiä)
6 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Sukupuoli Mies (1) Nainen (2) Maa Suomi (1) Ruotsi (2) Tanska (3) Yhteensä Sarakeprosentit: esim / 500 = %
7 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Sukupuoli Mies (1) Nainen (2) Maa Suomi (1) 119 (24 %) 236 (34 %) 355 Ruotsi (2) 159 (32 %) 209 (30 %) 368 Tanska (3) 222 (44 %) 259 (37 %) 481 Yhteensä 500 (100 %) 704 (100 %) 1204 Sarakeprosentit: esim / 500 = % Miehistä vähiten oli suomalaisia, naisista pienin osuus oli ruotsalaisilla
8 RISTIINTAULUKON GRAAFINEN ESITYS 300 Huono: Vaikea erottaa pylväitten keskinäisiä korkeuksia Miehet 100 Naiset 50 0 Suomi Ruotsi Tanska Naiset Miehet
9 RISTIINTAULUKON GRAAFINEN ESITYS Mies Nainen 50 0 Suomi Ruotsi Tanska Maa
10 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus
11 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus
12 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus
13 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Tulkintaa helpottavia kuvaajia Identiteettiviiva
14 KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Tulkintaa helpottavia kuvaajia Identiteettiviiva Regressiosuora
15 RIIPPUVUUS Antavatko muuttujan X arvoihin liittyvät frekvenssit lisätietoa muuttujan Y arvojen frekvensseistä? Keskeisiä riippuvuuden ominaisuuksia ovat suunta ja voimakkuus, jotka pyritään kuvaamaan yhdellä tunnusluvulla (jos mahdollista) Muuttujat kannattaa koodata niin, että suuret arvot tarkoittavat mitattavan ominaisuuden suurempaa esiintymistä tutkittavassa: Esim. terveydentila suuret arvot tarkoittavat parempaa terveyttä
16 1. LUOKITTELUASTEIKOLLISET MUUTTUJAT Ovatko muuttujan X jakaumat samanlaiset muuttujan Y eri luokissa (ehdolliset jakaumat)? Tunnuslukuja mm. χ 2 testisuure, kontingenssikerroin Muita: McNemarin testi, Fisherin nelikenttätesti
17 ESIMERKKI 1 EI RIIPPUVUUTTA MUUTTUJIEN VÄLILLÄ Esim. Tupakoinnin useus ja sukupuoli. Onko tässä muuttujien välillä riippuvuutta? Päivittäin Silloin Ei koskaan Yhteensä tällöin Mies Nainen Yhteensä Tarkastellaan esim. riviprosentteja Samaan johtopäätökseen päästään tarkastelemalla sarakeprosentteja
18 ESIMERKKI 1 EI RIIPPUVUUTTA MUUTTUJIEN VÄLILLÄ Päivittäin Silloin Ei koskaan Yhteensä tällöin Mies 40 (33.3) 52 (43.3) 28 (23.3) 120 (100) Nainen 50 (33.3) 65 (43.3) 35 (23.3) 150 (100) Yhteensä Johtopäätös: Tupakoinnin useus ei riipu siitä kumpaa sukupuolta tarkastellaan muuttujien välillä ei ole (lainkaan) riippuvuutta Riippuvuuden tarkastelussa kannattaa kiinnittää huomio ehdollisiin prosenttijakaumiin
19 ESIMERKKI 2 RIIPPUVUUTTA MUUTTUJIEN VÄLILLÄ Esim. Tupakoinnin useus ja sukupuoli, kun muuttujien välillä on riippuvuutta Päivittäin Silloin Ei koskaan Yhteensä tällöin Mies Nainen Yhteensä
20 ESIMERKKI 2 RIIPPUVUUTTA MUUTTUJIEN VÄLILLÄ Esim. Tupakoinnin useus ja sukupuoli, kun muuttujien välillä on riippuvuutta Päivittäin Silloin Ei koskaan Yhteensä tällöin Mies 59 (64.1) 5 (5.4) 28 (30.4) 92 Nainen 14 (7.3) 4 (2.1) 174 (90.6) 192 Yhteensä Riviprosentit Johtopäätös: Tupakoinnin useuden ja sukupuolen välillä on riippuvuutta; miehillä painottuu päivittäinen tupakointi, kun taas naiset eivät tupakoi.
21 2. JATKUVAT MUUTTUJAT Kun muuttujan X arvot lisääntyvät yksikön, liittyykö myös muuttujan Y arvoihin lisäystä tai vähentymistä? Lineaarinen riippuvuus Korrelaatiokertoimet (mm. Spearman ja Pearson)
22 HAJONTAKUVIO EI RIIPPUVUUTTA
23 HAJONTAKUVIO POSITIIVINEN RIIPPUVUUS
24 HAJONTAKUVIO POSITIIVINEN RIIPPUVUUS
25 HAJONTAKUVIO POSITIIVINEN RIIPPUVUUS
26 HAJONTAKUVIO SUURIN MAHDOLLINEN POSITIIVINEN RIIPPUVUUS
27 HAJONTAKUVIO NEGATIIVINEN RIIPPUVUUS
28 SAMANAIKAINEN HAJONTAKUVIO Pituuden, painon ja kehon rasvaprosentin samanaikainen hajontakuvio 75-vuotiaille jyväskyläläisille miehille vuonna 1989.
29 3. JÄRJESTYSASTEIKOLLISET MUUTTUJAT Käsitys riippuvuudesta samankaltainen kuin jatkuvilla muuttujilla Varsinaisten havaintoarvojen sijasta käytetään järjestyslukuja
30 LINEAARISUUDESTA Usein kiinnostus kohdistuu yksikertaisiin riippuvuussuhteisiin muuttujien välillä, kuten edellä on esitetty Lineaarisuus: kuvaajaan asetettu suora kuvaa riippuvuudesta olennaisimman Joskus muuttujien väliset yhteydet eivät ole lineaarisia lineaarinen kuvaus on riittämätön tulokset saattavat olla epätarkkoja tai harhaanjohtavia
31 sprint60 60 metrin sprintin aika ja ikä. Veteraaniurheilijat ATHLAS-tutkimus ( ).
32 Lineaarisen yhteyden kuvaaja sprint60 60 metrin sprintin aika ja ikä. Veteraaniurheilijat ATHLAS-tutkimus ( ).
33 sprint60 Lineaarisen yhteyden kuvaajan (yhtenäinen viiva), ohella kaarevan yhteyden kuvaaja (katkoviiva). 60 metrin sprintin aika ja ikä. Veteraaniurheilijat ATHLAS-tutkimus ( ).
34 sprint60 Lineaarisen yhteyden kuvaajan (yhtenäinen viiva), ohella kaarevan yhteyden kuvaaja (katkoviiva), sekä empiirinen LOESS -kuvaaja. 60 metrin sprintin aika ja ikä. Veteraaniurheilijat ATHLAS-tutkimus ( ).
35 sprint60 Selitysaste tukee paremmin kaarevaa yhteyden kuvaajaa 60 metrin sprintin aika ja ikä. Veteraaniurheilijat ATHLAS-tutkimus ( ).
36 RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista alaryhmissä, mikä saattaa johtaa virhepäätelmiin riippuvuudesta Jos muuttujissa on sukupuolten välisiä tasoeroja, riippuvuuden tunnusluvut saattavat kertoa enemmän ryhmien välisestä erosta kuin riippuvuudesta Tällöin on usein järkevämpää raportoida riippuvuustarkastelu miehille ja naisille erikseen
37 Pituuden ja painon yhteys 75-vuotiailla glostrupilaisilla vuonna 1989.
38 Pituuden ja painon yhteys 75-vuotiailla glostrupilaisilla vuonna 1989.
39 Pituuden ja painon yhteys 75-vuotiailla glostrupilaisilla vuonna Miesten ja naisten kuvaajien (punainen katkoviiva) nousukulmat ovat matalampia kuin Kokonaisaineiston kuvaajalla (musta yhtenäinen viiva): Osa kokonaisaineiston riippuvuudesta tulee ryhmien tasoeroista.
40 KOLMANNEN TEKIJÄN VAIKUTUS Eroja saattaa esiintyä myös muiden kuin sukupuolimuuttujien suhteen Yleisesti voidaan viitata kolmannen tekijän vaikutukseen riippuvuuden tarkastelussa Jos tällainen tekijä on mitattu voidaan sen vaikutusta huomioida esim. tarkastelemalla riippuvuutta osittaiskorrelaatiokertoimen avulla
41 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit
42 RIIPPUVUUDEN TUNNUSLUKUJA A. LUOKITTELUASTEIKKO: Χ 2 TESTISUURE χ 2 testisuure mittaa kahden muuttujan välisen riippuvuuden voimakkuutta, mutta ei määritä sille suuntaa Mitä suuremman arvo suure saa, sitä enemmän muuttujien välillä on riippuvuutta Arvo vaihtelee teoreettisesti välillä [0, ] Perustuu ristiintaulukkoon Tunnusluvun laskenta: 1) Määritetään odotetut frekvenssit. 2) Lasketaan testisuureen arvo. χ 2 testisuuratta laskettaessa muuttujan arvoille ei odoteta järjestystä
43 ESIMERKKI Onko tupakoinnin useus riippuvaista sukupuolesta? Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) Nainen (2) Yhteensä Merkintöjä (rivi i ja sarake j) Rivisumma: f i (esim. f 1 = 91) Sarakesumma: f j (esim. f 2 = 42)
44 ODOTETUT FREKVENSSIT Nimitetään ristiintaulukoksi E sellaista, jossa ei ole ollenkaan riippuvuutta Ristiintaulukon E marginaalit ( Yhteensä ) ovat samat kuin havaitussa ristiintaulukossa; olkoon tämä jälkimmäinen F Ristiintaulukon E solufrekvenssit lasketaan e ij = f i f j / n
45 Χ 2 TESTISUURE Määrittää mikä on havaitun ristiintaulukon (F) etäisyys täydellisestä riippumattomuudesta (E), ts. F E. Lasketaan missä g on rivien ja h sarakkeiden lukumäärä (tässä esimerkissä g = 2 ja h = 3).
46 ESIMERKKI: ODOTETUT FREKVENSSIT Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) Nainen (2) Yhteensä Mies, usein: / 284 = Mies, harvoin: / 284 = Mies, ei tupakoi: / 284 = Nainen, usein: / 284 = Nainen, harvoin: / 284 = Nainen, ei tupakoi: / 284 =
47 HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) Nainen (2) Yhteensä Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) Nainen (2) Yhteensä
48 f ij e ij : Usein (1) Harvoin (2) Ei tupakoi (3) Mies (1) Nainen (2) (f ij e ij ) 2 /e ij : Usein (1) Harvoin (2) Ei tupakoi (3) Mies (1) Nainen (2) χ 2 = =
49 MERKITSEVYYS χ 2 -testisuure poikkeaa siis nollasta, joten riippuvuutta on muuttujien välillä Jos riippuvuus on tilastollisesti merkitsevää, voidaan riippuvuutta sanoa olevan myös perusjoukossa Tilastollinen testi suureelle osoittaa, että siihen liittyy pieni p-arvo (Asymp. Sig.), joten riippuvuus on tässä merkitsevää
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
LisätiedotHAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
LisätiedotKandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas AINEISTON TARKASTELU JA MUOKKAUS AINA ennen varsinaista analyysia suoritetaan aineiston tarkastelu ja muokkaus, data-analyysi Tavoitteena:
LisätiedotMTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
LisätiedotMTTTP1, luento KERTAUSTA
19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotMTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas OTOSTAMISEEN LIITTYVIÄ ONGELMIA Otostamisen ongelmat liittyvä satunnaistamisen epäonnistumiseen Ongelmat otantakehyksen määrittämisessä Väärän otantamenetelmän
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KATO (MISSING DATA, ATTRITION) Kun otostetuista havaintoyksiköistä saavutetaan (mitataan) vain osa, tarkoittaa kato sitä osaa tutkittavista tai mittauksista,
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen
Lisätiedot1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas LUENNOT 2017 Luento Paikka Vko Päivä Pvm Klo 1 L 304 3 To 19.1.2016 12:15-14:00 2 MaA 103 3 Pe 20.1.2016 10:15-12:00 3 MaA 103 4 Ke
Lisätiedot1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI. LTKY012 Timo Törmäkangas Gerontologian tutkimuskeskus
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Gerontologian tutkimuskeskus LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 303 3 ke 16.1.2013 10:15-12:00 2 L 303 3 pe 18.1.2013 10:15-12:00
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas NORMAALIJAKATUNEISUUDEN TESTAUS H 0 : Muuttuja on perusjoukossa normaalisti jakautunut. H 1 : Muuttuja ei ole perusjoukossa normaalisti
LisätiedotOngelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?
Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus
LisätiedotKURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
LisätiedotNäistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
LisätiedotTeema 5: Ristiintaulukointi
Teema 5: Ristiintaulukointi Kahden (tai useamman) muuttujan ristiintaulukointi: aineiston analysoinnin ja tulosten esittämisen perusmenetelmä usein samat tiedot esitetään sekä taulukkona että kuvana mahdollisen
LisätiedotNäistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
LisätiedotLuento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas MUITA HAJONNAN TUNNUSLUKUJA Varianssi, variance (s 2, σ 2 ) Keskihajonnan neliö Käyttöä enemmän osana erilaisia menetelmiä (mm. varianssianalyysi),
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Marko: Aineisto: Kolme muuttujaa: Tutkimuskysymys: Kaksi ryhmää (koe ja kontrolli), liikuntainterventio Kävelynopeus (metri/sekunti) Polven ojennusvoima
LisätiedotTUTKIMUSOPAS. SPSS-opas
TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien
LisätiedotRISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja:
RISKITASO Riskitaso (α) määrittää virhepäätelmän todennäköisyyden testattaessa Todennäköisyys, jolla tutkija on valmis hylkäämään nollahypoteesin, vaikka se saattaisikin pitää perusjoukossa paikkansa Käytettyjä
LisätiedotKorrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012
Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170
LisätiedotHannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164
86118P JOHDATUS TILASTOTIETEESEEN Harjoituksen 3 ratkaisut, viikko 5, kevät 19 1. a) Havaintomatriisissa on viisi riviä (eli tilastoyksikköä) ja neljä saraketta (eli muuttujaa). Hannu mies LTK 18 Johanna
LisätiedotTulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?
Tilastollinen tietojenkäsittely / SPSS Harjoitus 4 Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimus, riittää, että tutkit tunnuslukujen arvoja ja teet niiden perusteella päätelmiä.
Lisätiedotb6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.
806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
LisätiedotMäärällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla
LisätiedotKyllä. Kyllä. Jäitkö vielä epävarmaksi: Selvitä antavatko testit samansuuntaisen tuloksen.
Data: järjestysast. Ei Kyllä Jatkuva, normaali Kyllä t-testi Ei Suuria poikkeavia arvoja Ei Mann-Whitney Kyllä Mediaani testi ks. luentomoniste Valintakaavio: Kahden riippumattoman ryhmän jakauman keskikohdan
Lisätiedot806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen
LisätiedotRegressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
LisätiedotJos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen
LisätiedotJos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
LisätiedotMTTTP1, luento KERTAUSTA JA TÄYDENNYSTÄ. Tunnusluvut. 1) Sijainnin tunnuslukuja. Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1)
20.9.2018/1 MTTTP1, luento 20.9.2018 KERTAUSTA JA TÄYDENNYSTÄ Tunnusluvut 1) Sijainnin tunnuslukuja Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1) Muita sijainnin tunnuslukuja ala- ja yläkvartiili,
Lisätiedot5 Lisa materiaali. 5.1 Ristiintaulukointi
5 Lisa materiaali 5.1 Ristiintaulukointi 270. a) Aineiston koko nähdään frekvenssitaulukon oikeasta alakulmasta: N = 559. Tilastotieteen johdantokurssille osallistui yhteensä 559 opiskelijaa. Huomaa: Opiskelijoiden
LisätiedotTil.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
LisätiedotOHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen
LisätiedotHarjoitukset 4 : Paneelidata (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä
LisätiedotTilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
LisätiedotRISTIINTAULUKOINTI JA Χ 2 -TESTI
RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotTilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi
Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien
Lisätiedotpisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
LisätiedotMonitasomallit koulututkimuksessa
Metodifestivaali 9.5.009 Monitasomallit koulututkimuksessa Mitä ihmettä? Antero Malin Koulutuksen tutkimuslaitos Jyväskylän yliopisto 009 1 Tilastollisten analyysien lähtökohta: Perusjoukolla on luonnollinen
Lisätiedot1. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti
Sosiaalitieteiden laitos Tilastotieteen jatkokurssi, kevät 20 7. laskuharjoitusten ratkaisuehdotukset. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti
LisätiedotSPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö
SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin
Lisätiedotr = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas AINEISTON KERÄÄMINEN Tärkein vaihe tutkimuksen tekemisessä, koska mitatessa tulleita virheitä ei välttämättä voi huomata eikä niitä
LisätiedotTilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen
Tilastollisen analyysin perusteet Luento 5: Sisältö Tilastotieteessä tehdään usein oletuksia havaintojen jakaumasta. Useat tilastolliset menetelmät toimivat tehottomasti tai jopa virheellisesti, jos jakaumaoletukset
LisätiedotKynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
LisätiedotIlkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
LisätiedotOhjeita kvantitatiiviseen tutkimukseen
1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2
Lisätiedot54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):
Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei
LisätiedotOpinnäytetyön kvantitatiivinen osuus
Opinnäytetyön kvantitatiivinen osuus Kajaanin ammattikorkeakoulu, Simo Määttä 2012 Liiketalous ja innovaatiot- sekä Aktiviteettimatkailun osaamisalueet 1. Tilastollisen opinnäytetyön ohjausprosessi Kvantitatiivisen
LisätiedotJohdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotLuentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012
Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko
LisätiedotTilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
LisätiedotLuento 4.9.2014 1 JOHDANTO
1 1 JOHDANTO Luento 4.9.2014 Tilastotiede menetelmätiede, joka käsittelee - tietojen hankinnan suunnittelua otantamenetelmät koejärjestelyt kyselylomakkeet - tietojen keruuta - tietojen esittämistä kuvailevaa
LisätiedotTilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
LisätiedotKaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.
Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa
LisätiedotHarjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen
LisätiedotVäliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
LisätiedotTodennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
LisätiedotHarjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä..
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä.. TEHTÄVÄ 1 Taulukko 1 Kuvailevat tunnusluvut pääkaupunkiseudun terveystutkimuksesta vuonna 2007 (n=941) Keskiarvo (keskihajonta) Ikä
LisätiedotSPSS-perusteet. Sisältö
SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn
LisätiedotPopulaatio tutkimusobjektien muodostama joukko, johon tilastollinen tutkimus kohdistuu, koko N
11.9.2018/1 MTTTP1, luento 11.9.2018 KERTAUSTA Populaatio tutkimusobjektien muodostama joukko, johon tilastollinen tutkimus kohdistuu, koko N Populaation yksikkö tilastoyksikkö, havaintoyksikkö Otos populaation
LisätiedotIdentifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
LisätiedotMäärällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi
Lisätiedot805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
LisätiedotTilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin
Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta
LisätiedotMittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.
1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin
Lisätiedotχ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
LisätiedotTodennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotTarkista vielä ennen analysoinnin aloittamista seuraavat seikat:
Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,
Lisätiedotxi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =
1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista
Lisätiedot