TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI. LTKY012 Timo Törmäkangas Gerontologian tutkimuskeskus
|
|
- Noora Kivelä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Gerontologian tutkimuskeskus
2 LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L ke :15-12:00 2 L pe :15-12:00 3 L ke :15-16:00 4 L to :15-16:00 5 L to :15-16:00 6 L pe :15-10:00 7 L ke :15-10:00 8 L pe :15-12:00 9 L ti :15-12:00 10 L ke :15-16:00
3 HARJOITUKSET Harjoitusryhmien ajat ja paikat löytyvät Korpista Osallistu vain yhteen ryhmään Ryhmävaihtoja harjoituksen vetäjän suostumuksella Harjoitusten korvaavuuksia vain harjoituksen vetäjän suostumuksella Harjoitusten sisältö ei kulje rinnakkain luentosisältöjen kanssa
4 SUORITUS 1. Luennon jälkeiset nettitestit Opiskelijalle ja opettajalle tietoa osaamisesta Luennoille osallistuminen auttaa 2. Hyväksytty soveltavan luentotentin suoritus vähintään HYVÄT TIEDOT ilmoittaudutaan korpissa Tentit-toiminnon kautta (HUOM! Ei riitä ilmoittautua kurssin kohdalla tenttiryhmään) 3. Harjoitukset: osallistuminen vähintään neljälle harjoituskerralle kuudesta Korvaavuutta voi hakea, jos on suorittanut kurssin, joka Ei kuulu toiseen opintokokonaisuuteen Vastaa sisällöltään tätä kurssia
5 LUENTOTESTEIHIN VASTAAMINEN Testien alussa kysytään nimeä, syöttäkää se siinä muodossa, joka näkyy korpin etusivulla. Esim. minä syöttäisin nimeni muodossa: Timo Törmäkangas Tämän jälkeen testissä esitetään 3-10 kysymystä liittyen viimeisimmän luennon sisältöön jokainen kysymys on omalla sivullaan. Vastausaika on rajoitettu: vastaa viimeistään seuraavaa tenttiä edeltävänä päivänä.
6 KURSSIN INTERNET-SIVU Luentomoniste (ei jaeta kurssilla) Tiedotteet (mm. kurssin käytännön asiat) Linkit nettitesteihin Muut linkit Kysymyksiä ja vastauksia Lisämateriaalia / oheiskirjallisuutta
7 Motivaation tärkeys Lähde: Lähde:
8 MIKSI TILASTOMENETELMIÄ OPISKELLAAN? Kuuluu opintovaatimuksiin Luotettavan tiedon hankkimisen keino, jota käytetään yleisesti terveystieteissä Missä tarvitaan Tutkimustarkoitus Luetaan ja arvioidaan toisten tekemiä tutkimuksia Ymmärtää lyhyitä tutkimusselosteita ja kuvauksia Ymmärtää jokapäiväisiä tutkimustuloksia Käytännön tarpeet (yleissivistys)
9 MITÄ TÄLLÄ KURSSILLA TULISI OPPIA? Opintojakson lopussa opiskelija ymmärtää kvantitatiivisen analyysin peruskäsitteet ja tutkimuksen vaiheet ja osaa soveltaa tätä tietoa tutkimuksen arviointiin / tekemiseen osaa laskea yleisimmin käytettyjä tunnuslukuja osaa kuvata ja tiivistää tutkimusaineiston informaatiota asianmukaisesti tunnuslukujen, kuvaajien ja taulukoiden avulla osaa kriittisesti tulkita tilastollisia perustestejä ja niihin liittyviä tulosteita
10 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit Havaintoaineiston kuvaaminen ja tiedon tiivistäminen (deskriptiivinen) Johtopäätösten tekeminen
11 JOHDANTO
12 MALLI KVANTITATIIVISESSA TUTKIMUKSESSA Kvantitatiivisessa tutkimuksessa tarkastellaan teoreettista mallia (engl. model) suhteessa kerättyyn aineistoon Malli: sanallinen tai kuviopohjainen (tai matemaattinen) kuvaus siitä, millaisena tarkasteltavien ilmiön osien väliset suhteet käsitetään Esimerkkimalleja: Motivaatio Mat. arvosana Patologia Fysiologiset vauriot Toiminnan rajoitus Toiminnan vajaus
13 KVANTITATIIVINEN TUTKIMUS Malli liittyy kvantitatiivisen tutkimuksen malliin yksinkertaistaen seuraavasti: Teoria (malli) Operationalistaminen Empiirisen aineiston keruu ja analysointi Tulkinta Tutkimuksen tarkoitus on selvittää, onko empiirinen aineisto johdonmukainen teorian kanssa Erotus: Havaittu odotettu Hypoteettis-deduktiivinen lähestymistapa
14 MALLI JA TULOSTEN SUHTEELLISUUS Mallin tarkoitus on yleistää tarkasteltavan ilmiön piirteitä niin, että keskitytään vain ilmiöön olennaisesti vaikuttaviin tekijöihin Tällöin joudutaan tekemään oletuksia siitä, mitkä ovat huomionarvoisia tekijöitä Tulosten suhteellisuus: tulokset eivät absoluuttisia totuuksia; ehdollisia teorian pätevyydelle ja oletusten voimassaololle Tutkimuskysymysten toistettu tutkinta Jos samaa tutkimuskysymystä tutkitaan eri tutkittavilla ja saadaan samansuuntaisia tuloksia, teorian pätevyydestä saadaan parempaa osoitusta
15 TILASTOLLISEN TUTKIMUKSEN KOHDE Millaisia ongelmia tilastollinen tutkimus tarkastelee? Millaisista kohteista voidaan muodostaa malli? Tutkimuksen kohde on empiirinen, kvantitatiivinen ja toistuva Konkreettinen, aistein havaittava Numeeriseen tietoon liittyvä kohteesta saadaan mittalukuja, joita voidaan analysoida matemaattisesti Ilmiö koskettaa useampaa yksilöä (poikkileikkausasetelma) tai yhdestä yksilöstä voidaan tarkastella ilmiötä useammin kuin kerran (pitkittäisasetelma) Mikä on keskimääräinen tila? Onko kahden asian välillä riippuvuutta? Voiko ilmiön käyttäytymistä ennustaa tulevaisuudessa?
16 TUTKIMUSKOHTEEN LUONNEHDINTAA Yleisesti kvantitatiivisen tarkastelun kohteena on selvittää, mikä aiheuttaa eroa (tai samanlaisuutta) tutkittavien välillä: hajonta Tarkastellaan yksilöitä osana ryhmiä; tulokset koskevat ryhmiä, eivät niinkään yksittäisiä tutkittavia Erotellaan systemaattisen vaihtelun osuus satunnaisesta Keskeistä: yksilöiden väliset erot systemaattisten vaikutusten takia vs. satunnaisen vaikutuksen takia Esim. systemaattinen ero kävelynopeudessa intervention takia + satunnainen ero (muut tekijät, mittausvirheet jne.) Luodaan teoreettinen malli siitä, mitkä vaikutukset aiheuttavat systemaattisia eroja tutkittavien kesken Esim. kävelynopeus yli 70-vuotiailla on keskimäärin korkeampi miehillä kuin naisilla.
17 TILASTOTIEDE Tavoitteena kehittää menetelmiä, joilla voidaan analysoida eritavoin kerättyjä aineistoja testataan teoreettisia hypoteeseja lasketaan arvioita erilaisten vaikutusten suuruuksista määrittää erilaisten tapausten todennäköisyyksiä tehdä johtopäätöksiä Käytetään useiden tieteiden aputieteenä (väestötiede, taloustiede, lääketiede, yhteiskuntatieteet, arkielämä: esim. vakuutustoiminta, urheilutilastot, gallupit) Tutkijan työväline tiivis raportointiväline usein tieteellisesti perusteltu johtopäätösten teko
18 KVANTITATIIVISTEN MENETELMIEN HYVÄT JA HUONOT PUOLET Hyviä Tutkittava ilmiö saadaan eksaktin käsitejärjestelmän puitteisiin Ilmiöön liittyvä malli voidaan yksinkertaistaa Huonoja Kaikki ilmiöt eivät ole mitattavissa Tieto yksilön erityispiirteistä häviää
19 ESIMERKKI PÄÄTTELYSTÄ KVANTITATIIVISESSA TUTKIMUKSESSA Herra X haluaa selvittää, voiko hän saapua arkipäivänä bussipysäkille 5 minuuttia myöhemmin? Hän tarkkailee viikon ajan bussin lähtöaikoja. Bussin lähtöajaksi on merkitty 8:00, ja Herra X havaitsee seuraavat lähtöajat Ma 8:02 Ti 8:04 Ke 8:03 To 8:09 Pe 8:03 Herra X muuntaa aineisto siten, että hän tarkastelee minuuttimäärää yli klo 8:00
20 Keskimääräinen lähtöaika on 4.2 minuuttia (yli klo 8:00). Keskiarvoon vaikuttaa kuitenkin kovasti torstain poikkeuksellisen myöhäiseltä vaikuttava lähtöaika (8:09). (Täsmällisen) keskimääräisen lähtöajan perusteella herra X olisi siis myöhästynyt jokaisena aamuna, paitsi torstaina. Jos herra X ei halua myöhästyä bussista, hänen kannattaa keskiarvon sijasta tarkastella bussin aikaisinta lähtöaikaa (maanantain 2 minuuttia) ja mennä bussipysäkille ennen kuin kello on 8:02.
21 Herra X:n päätelmän käyttökelpoisuuteen vaikuttavat kuitenkin monet tekijät. Onko 2 minuuttia sittenkään varma päätös sille, ettei myöhästy bussista? Aineistossa yksikään havainto ei alita 2 min. Onko tämä vain sattumaa? Onko viikko tyypillinen? Ovatko tässä havaitut ajat poikkeuksellisen korkeita tai alhaisia? Onko lähtöaikojen vaihtelu todellisuudessa suurempaa? Ajaako linjaa sama kuljettaja vastaisuudessa? Oliko herra X:n kello viisarikello vai digitaalikello ja miten hän pyöristi minuutit?
22 YLEISTÄMISEN ONGELMIA Yhden aineiston analyysin pohjalta voidaan tehdä tilastollisia johtopäätöksiä, kun käytetään tilastotieteen matemaattisia menetelmiä Ongelmia ilmenee siinä vaiheessa, kun tuloksia yleistetään kattamaan laajempaa joukkoa Mallin ja kerätyn aineiston välillä voi olla liian suuria eroja, jotka johtavat harhapäätelmiin Huonon tilastomenetelmän valinta Oletusten huomiotta jättäminen Objektiivisuus: aineiston keruussa keskeistä ottaa huomioon se, että tutkija ei saisi vaikuttaa siihen, millaisia mittaustuloksia saadaan (puolueettomuus, eettisyys)
23 YLEISTÄMISEN ONGELMIA Ongelmia voidaan havaita tilastollisen päättelyketjun eri vaiheissa Onko teoria riittävän yleinen, muttei silti liian yksinkertainen? Puuttuuko mallista jotain tärkeää? Oliko mittarit tai mitattavat valittu oikein? Oliko ominaisuutta mitattu oikealla/riittävällä mittarilla? Oliko ongelmia mittauksessa? Jos käytettiin useampia mittaajia, mittasivatko he samalla tavalla? Oliko ongelmia aineiston käsittelyssä? Tallennettiinko aineisto oikein tietokoneelle? Tulkittiinko tuloksia oikein? Liioiteltiinko vähäisen tuloksen merkitystä? Oliko johtopäätös oikeutettu suhteessa tarkasteltujen tutkittavien määrään? Useisiin näistä ongelmista liittyy subjektiivisuutta ja ne ovat riippuvaisia tieteenalan käytännöistä
24
25
26
27
28
29
30 KURSSILLA KÄSITELTÄVIEN AIHEIDEN RAJAUKSIA Kokeelliset tutkimukset, epidemiologia, havaintotutkimukset (useimmat asetelmat) Yksinkertainen satunnaisotanta Ääretön / suuri perusjoukko Yksinkertaiset tutkimuskysymykset Pääasiassa poikkileikkaustutkimukset
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas LUENNOT 2017 Luento Paikka Vko Päivä Pvm Klo 1 L 304 3 To 19.1.2016 12:15-14:00 2 MaA 103 3 Pe 20.1.2016 10:15-12:00 3 MaA 103 4 Ke
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas LUENNOT KEVÄT 2015 Luento Paikka Vko Päivä Pvm Klo 1 Ag. Auditorio 1 7 Ma 9.2. 10:15-12:00 2 L 304 7 To 12.2. 12:15-14:00 3 L 304 8
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas OTOSTAMISEEN LIITTYVIÄ ONGELMIA Otostamisen ongelmat liittyvä satunnaistamisen epäonnistumiseen Ongelmat otantakehyksen määrittämisessä Väärän otantamenetelmän
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas AINEISTON TARKASTELU JA MUOKKAUS AINA ennen varsinaista analyysia suoritetaan aineiston tarkastelu ja muokkaus, data-analyysi Tavoitteena:
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Matemaatikot ja tilastotieteilijät
Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KATO (MISSING DATA, ATTRITION) Kun otostetuista havaintoyksiköistä saavutetaan (mitataan) vain osa, tarkoittaa kato sitä osaa tutkittavista tai mittauksista,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
Luento-osuusosuus. tilasto-ohjelmistoaohjelmistoa
Kurssin suorittaminen Kvantitatiiviset menetelmät Sami Fredriksson/Hanna Wass Yleisen valtio-oppi oppi Kevät 2010 Luento-osuusosuus Tentti to 4.3. klo 10-12, 12, U40 P674 Uusintamahdollisuus laitoksen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)
Yhteistyöaineiden edustajan puheenvuoro
Yhteistyöaineiden edustajan puheenvuoro Professori Ilkka Virtanen Talousmatematiikka Johdatus laskentatoimen ja rahoituksen tutkielmatyöskentelyyn 21.10.2002 Vaasan yliopisto Johdatus laskentatoimen ja
Otannasta ja mittaamisesta
Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,
MONISTE 2 Kirjoittanut Elina Katainen
MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
Kvantitatiivisen aineiston analyysi
Kvantitatiivisen aineiston analyysi Liiketalouden tutkimusmenetelmät SL 2014 Kvantitatiivinen vs. kvalitatiivinen? tutkimuksen lähtökohtana ovat joko tiedostetut tai tiedostamattomat taustaoletukset (tieteenfilosofiset
Surveytutkimusksen Suunnittelu ja Teoreettisten Konstruktioiden Validointi. Seppo Pynnönen Vaasan yliopisto Menetelmätieteiden laitos
Surveytutkimusksen Suunnittelu ja Teoreettisten Konstruktioiden Validointi Seppo Pynnönen Vaasan yliopisto Menetelmätieteiden laitos Teoreettiset konstruktiot Todellisuus Teoria Todellisuuden jäsentely
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
Mittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
Populaatio tutkimusobjektien muodostama joukko, johon tilastollinen tutkimus kohdistuu, koko N
11.9.2018/1 MTTTP1, luento 11.9.2018 KERTAUSTA Populaatio tutkimusobjektien muodostama joukko, johon tilastollinen tutkimus kohdistuu, koko N Populaation yksikkö tilastoyksikkö, havaintoyksikkö Otos populaation
Tilastollisen tutkimuksen vaiheet
Tilastollisen tutkimuksen vaiheet Jari Päkkilä Johdatus tilastotieteeseen Matemaattisten tieteiden laitos TILASTOLLISEN TUTKIMUKSEN TARKOITUS Muodostaa mahdollisimman hyvä mielikuva havaintoaineistosta,
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Marko: Aineisto: Kolme muuttujaa: Tutkimuskysymys: Kaksi ryhmää (koe ja kontrolli), liikuntainterventio Kävelynopeus (metri/sekunti) Polven ojennusvoima
TIETOINEN HAVAINTO, TIETOINEN HAVAINNOINTI JA TULKINTA SEKÄ HAVAINNOLLISTAMINEN
TIETOINEN HAVAINTO, TIETOINEN HAVAINNOINTI JA TULKINTA SEKÄ HAVAINNOLLISTAMINEN Hanna Vilkka Mikä on havainto? - merkki (sana, lause, ajatus, ominaisuus, toiminta, teko, suhde) + sen merkitys (huom. myös
MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO
8.9.2016/1 MTTTP1 Tilastotieteen johdantokurssi Luento 8.9.2016 1 JOHDANTO Tilastotiede menetelmätiede, joka käsittelee - tietojen hankinnan suunnittelua otantamenetelmät, koejärjestelyt, kyselylomakkeet
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)
Tilastollisten aineistojen kerääminen ja mittaaminen
Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Mittaamisen maailmasta muutamia asioita. Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori
Mittaamisen maailmasta muutamia asioita Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori SISÄLTÖ 1. Mittari vs. indikaattori vs. menetelmä - mittaaminen 2. Luotettavat mittarit 3. Arvioinnin
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista
Psykologia tieteenä. tieteiden jaottelu: TIETEET. EMPIIRISET TIETEET tieteellisyys on havaintojen (kr. empeiria) tekemistä ja niiden koettelua
Psykologia tieteenä tieteiden jaottelu: FORMAALIT TIETEET tieteellisyys on tietyn muodon (kr. forma) seuraamista (esim. logiikan säännöt) matematiikka logiikka TIETEET LUONNON- TIETEET fysiikka kemia biologia
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
HAVAINTO LÄhde: Vilkka 2006, Tutki ja havainnoi. Helsinki: Tammi.
HAVAINTO LÄhde: Vilkka 2006, Tutki ja havainnoi. Helsinki: Tammi. 1 MIKÄ ON HAVAINTO? Merkki (sana, lause, ajatus, ominaisuus, toiminta, teko, suhde) + sen merkitys (huom. myös kvantitatiivisessa, vrt.
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Laadullinen tutkimus. KTT Riku Oksman
Laadullinen tutkimus KTT Riku Oksman Kurssin tavoitteet oppia ymmärtämään laadullisen tutkimuksen yleisluonnetta oppia soveltamaan keskeisimpiä laadullisia aineiston hankinnan ja analysoinnin menetelmiä
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas AINEISTON KERÄÄMINEN Tärkein vaihe tutkimuksen tekemisessä, koska mitatessa tulleita virheitä ei välttämättä voi huomata eikä niitä
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Sisällönanalyysi. Sisältö
Sisällönanalyysi Kirsi Silius 14.4.2005 Sisältö Sisällönanalyysin kohde Aineistolähtöinen sisällönanalyysi Teoriaohjaava ja teorialähtöinen sisällönanalyysi Sisällönanalyysi kirjallisuuskatsauksessa 1
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Johdatus monimuuttujamenetelmiin Luennot 30.10.13.12.-18 Tiistaina klo 12-14 (30.10., BF119-1) Keskiviikkoisin klo 10-12 (MA101,
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
KVANTITATIIVISET TUTKIMUSMENETELMÄT MAANTIETEESSÄ
KVANTITATIIVISET TUTKIMUSMENETELMÄT MAANTIETEESSÄ Syksy 2018 Kurssi-info 29.10.2018 OSAAMISTAVOITTEET Kurssin jälkeen opiskelija osaa tulkita ja arvioida numeeristen aineistojen tarjoamat mahdollisuudet
https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015
25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin
Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:
Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen
TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Johdatus tilastotieteeseen ja mittaaminen TKK (c) Ilkka Mellin (2004) 2 ja mittaaminen: Mitä opimme? 1/3 Tilastollisen tutkimuksen kaikki mahdolliset kohteet
voidaan hylätä, pienempi vai suurempi kuin 1 %?
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 5 viikko 42 6.10.2017 klo 10:42:20 Ryhmät: ke 08.30 10.00 LS C6 Paajanen ke 10.15 11.45 LS
Joustavuus ja eettisyys: Opiskelija osaa tehdä päätöksiä ja toimia itsenäisesti terveystieteiden eettisten perusteiden mukaisesti
Terveystieteiden kandidaatin tutkinnon osaamistavoitteet Osaamistavoitteet vastaavat tutkintojen ja muun osaamisen kansallista viitekehystä, ja laaja- alaisen terveystieteiden kandidaatin tutkinnon suoritettuaan
Fysiikan opinnot Avoimen yliopiston opiskelijoille
Fysiikan opinnot Avoimen yliopiston opiskelijoille 2.9.2014 1 Yliopiston lukuvuosi ja opetusperiodit 2014-2015 Yliopiston lukuvuosi 1.8. 31.7. Syyslukukausi I periodi: 1.9.-17.10. lukuvuoden avajaiset
PSY181 Psykologisen tutkimuksen perusteet, kirjallinen harjoitustyö ja kirjatentti
PSY181 Psykologisen tutkimuksen perusteet, kirjallinen harjoitustyö ja kirjatentti Harjoitustyön ohje Tehtävänäsi on laatia tutkimussuunnitelma. Itse tutkimusta ei toteuteta, mutta suunnitelman tulisi
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI. EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.
NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.2016 Näytön arvioinnista Monissa yksittäisissä tieteellisissä tutkimuksissa
TUTKIMUSOTTEITA TIEDONINTRESSIN NÄKÖKULMA
TUTKIMUSOTTEITA TIEDONINTRESSIN NÄKÖKULMA Hanna Vilkka KVANTITATIIVINEN ANALYYSI ESIMERKKINÄ TEKNISESTÄ TIEDONINTRESSISTÄ Tavoitteena tutkittavan ilmiön kuvaaminen systemaattisesti, edustavasti, objektiivisesti
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas MUITA HAJONNAN TUNNUSLUKUJA Varianssi, variance (s 2, σ 2 ) Keskihajonnan neliö Käyttöä enemmän osana erilaisia menetelmiä (mm. varianssianalyysi),
ROVANIEMEN KAATOPAIKAN GEOFYSIKAALISTEN JA GEOKEMIALLISTEN HAVAINTOJEN YHTEISISTA PIIRTEISTA
- - - Q/19/3612/94/1 GEOLOGIAN TUTKIMUSKESKUS Erkki Lanne Pohjois-Suomen aluetoimisto 10.11.1994 TUTKIMUSRAPORTTI ROVANIEMEN KAATOPAIKAN GEOFYSIKAALISTEN JA GEOKEMIALLISTEN HAVAINTOJEN YHTEISISTA PIIRTEISTA
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen
KVANTITATIIVINEN TUTKIMUS
KVANTITATIIVINEN TUTKIMUS Hanna Vilkka 1 MITÄ KASVATUSTIETEISSÄ HALUTAAN TIETÄÄ, JOS TUTKITAAN KVANTITATIIVISESTI? halutaan ennakoida tulevaa teknisesti ohjata tulevaa strategisesti ja välineellisesti
Korkealämpötilakemia
Korkealämpötilakemia Johdanto kurssiin Ma 30.10.2017 klo 10-11 SÄ114 Vastuuopettaja kurssilla Eetu-Pekka Heikkinen Huone: TF214 - Prosessin kiltahuoneen portaikosta 2. kerrokseen ja käytävää etelää kohti
SP 11: METODOLOGIAN TYÖPAJA Kevät Yliopistonlehtori, dosentti Inga Jasinskaja-Lahti
SP 11: METODOLOGIAN TYÖPAJA Kevät 2010 Yliopistonlehtori, dosentti Inga Jasinskaja-Lahti Työpajan tavoitteet 1. Johdattaa sosiaalipsykologian metodologisiin peruskysymyksiin, niiden pohtimiseen ja niistä
Teema 3: Tilastollisia kuvia ja tunnuslukuja
Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin
&idx=2&uilang=fi&lang=fi&lvv=2015
20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
MTTTP1, luento KERTAUSTA
19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Joustavuus ja eettisyys: Opiskelija osaa tehdä päätöksiä ja toimia itsenäisesti terveystieteiden eettisten perusteiden mukaisesti
ARVIOINTIMATRIISI Terveystieteiden kandidaatin tutkinnon osaamistavoitteet Osaamistavoitteet vastaavat tutkintojen ja muun osaamisen kansallista viitekehystä, ja laaja- alaisen terveystieteiden kandidaatin
5.6.3 Matematiikan lyhyt oppimäärä
5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa
Tekijä(t) Vuosi Nro. Arviointikriteeri K E? NA
JBI: Arviointikriteerit kvasikokeelliselle tutkimukselle 29.11.2018 Tätä tarkistuslistaa käytetään kvasikokeellisen tutkimuksen metodologisen laadun arviointiin ja tutkimuksen tuloksiin vaikuttavan harhan
Korkealämpötilakemia
Korkealämpötilakemia Johdanto kurssiin Ma 29.10.2018 klo 10-12 PR101 Vastuuopettaja kurssilla Eetu-Pekka Heikkinen Huone: TF214 - Prosessin kiltahuoneen portaikosta 2. kerrokseen ja käytävää etelää kohti
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa
Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012
Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko
Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.
1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin
b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.
806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
Tutkimuksellinen vai toiminnallinen opinnäytetyö
Tutkimuksellinen vai toiminnallinen opinnäytetyö (Salonen 2013.) (Salonen (Salonen 2013.) Kajaanin ammattikorkeakoulun opinnäytetyön arviointi (opettaja, opiskelija ja toimeksiantaja) https://www.kamk.fi/opari/opinnaytetyopakki/lomakkeet
Opetusmateriaali. Tutkimustehtävien tekeminen
Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.