Aaltoputket ja resonanssikaviteetit

Samankaltaiset tiedostot
Aaltoputket ja resonanssikaviteetit

Aaltoputket ja resonanssikaviteetit

Aaltoputket ja mikroliuska rakenteet

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2015)

Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2015)

Aaltojen heijastuminen ja taittuminen

Onteloresonaattorit. Onteloresonaattori saadaan aikaan, kun metallisen aaltop utken molemmat suljetaan metalliseinällä ja sen

Kvanttifysiikan perusteet 2017

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Aaltojen heijastuminen ja taittuminen

Elektrodynamiikka, kevät 2002

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

Shrödingerin yhtälön johto

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

a P en.pdf KOKEET;

ELEC C4140 Kenttäteoria (syksy 2016)

Scanned by CamScanner

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

Aaltojen heijastuminen ja taittuminen

PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ 1 JOHDANTO 2 HYBRIDIMENETELMÄN MATEMAATTINEN ESITYS

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni.

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

ELEC C4140 Kenttäteoria (syksy 2015)

= ωε ε ε o =8,853 pf/m

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

Häiriöt kaukokentässä

ELEC C4140 Kenttäteoria (syksy 2016)

Osittaisdifferentiaaliyhtälöt

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

SEISOVA AALTOLIIKE 1. TEORIAA

Useita oskillaattoreita yleinen tarkastelu

XFYS4336 Havaitseva tähtitiede II

Infrapunaspektroskopia

9 VALOAALTOJEN SUPERPOSITIO

ELEC C4140 Kenttäteoria (syksy 2015)

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

ELEC-A4130 Sähkö ja magnetismi (5 op)

Sähkömagneettiset aallot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

ELEC-A4130 Sähkö ja magnetismi (5 op)

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

4 Optiikka. 4.1 Valon luonne

J 2 = J 2 x + J 2 y + J 2 z.

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin Suuriniemi

Sähkömagneettiset aallot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Kvanttifysiikan perusteet 2017

ELEC C4140 Kenttäteoria (syksy 2015)

Elektrodynamiikan tenttitehtäviä kl 2018

Radiotekniikan perusteet BL50A0301

Tfy Fysiikka IIB Mallivastaukset

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

RF-tekniikan perusteet BL50A0300

Sähkömagneettiset aallot

a) Lasketaan sähkökenttä pallon ulkopuolella

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

Esimerkki 1 Ratkaise differentiaaliyhtälö

Mekaniikan jatkokurssi Fys102

Elektrodynamiikka, kevät 2008

25 INTERFEROMETRI 25.1 Johdanto

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

12. Eristeet Vapaa atomi

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

Magneettikenttä väliaineessa

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Säteilevät systeemit. Luku 15. z L/2 y L/2

4 Optiikka. 4.1 Valon luonne

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Maxwell ja hänen yhtälönsä mitä seurasi?

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki

Aikariippuva Schrödingerin yhtälö

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

FYSA242 Statistinen fysiikka, Harjoitustentti

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

5.10. HIUKKANEN POTENTIAALIKUOPASSA

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

RATKAISUT: 18. Sähkökenttä

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Teddy 1. harjoituksen malliratkaisu kevät 2011

Luento 15: Mekaaniset aallot

Transkriptio:

Luku 12 Aaltoputket ja resonanssikaviteetit Tässä luvussa tutustutaan ohjattuun aaltoliikkeeseen. Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla. Äärettömän hyvän johteen sisällä ei ole sähkökenttää, koska vapaasti liikkuvat varaukset luovat pinnalle sellaisen varauskatteen σ S, että kokonaiskenttä johteen sisällä on nolla. Samoin ajasta riippuva magneettikenttä häviää ideaalijohteen sisällä. Varaukset liikkuvat pinnalla luoden sellaisen pintavirran K, että kokonaiskenttä on nolla johteessa. Muut reunaehdot ovat B:n normaalikomponentin ja E:n tangentiaalikomponentin jatkuvuus. Koska B ja E ovat nollia ideaalijohteessa, niin aivan johteen ulkopuolella sähkökenttä on kohtisuorassa pintaa vastaan ja magneettikenttä pinnan suuntainen. Todellisuudessa ideaalijohteita ei ole, mutta malli antaa kuitenkin hyvän peruskäsityksen aaltoputkista. Aalto heijastuu (lähes) häviöttömästi putken reunoilta, joten putken avulla sähkömagneettista aaltokenttää voidaan siirtää lähettimestä haluttuun paikkaan. Yksi käytännön esimerkki aaltoputkesta on optinen kuitu. Rakentamalla johtavista seinistä muodostuva sopivansuuruinen laatikko aalto voidaan vangita haluttuun tilaan ja syntyy resonanssikaviteetti. Mikroaaltouuni on kaikille tuttu resonanssikaviteettilaite. 151

152 LUKU 12. AALTOPUTKET JA RESONANSSIKAVITEETIT 12.1 Sylinteriputki Tarkastellaan onttoa poikkileikkaukseltaan mielivaltaista metallisylinteriä, jonka seinämät oletetaan ideaalijohteiksi. Sylinterin sisällä aine oletetaan johtamattomaksi (permittiivisyys ɛ 0, permeabiliteetti µ 0 ). Kenttien aikariippuvuus olkoon harmoninen (e iωt ). Maxwellin yhtälöt sylinterin sisällä ovat E = 0 (12.1) ja kenttien Helmholtzin yhtälöiksi saadaan B = 0 (12.2) E iωb = 0 (12.3) B + iωɛ 0 µ 0 E = 0. (12.4) ( 2 + ω2 )E = 0 (12.5) c2 ( 2 + ω2 )B = 0. (12.6) c2 Valitaan koordinaatisto siten, että z-akseli osoittaa aallon etenemissuuntaan. Sylinterigeometrian vuoksi tehdään yritteet E(x, y, z) = E(x, y)e i(kz ωt), B(x, y, z) = B(x, y)e i(kz ωt). (12.7) z-akselin negatiiviseen suuntaan etenevä aalto e ikz käsitellään vastaavalla tavalla. On huomattava, että nyt ei enää yleensä ole k = ω/c. Sijoittamalla yritteet aaltoyhtälöihin saadaan missä ( 2 t + ω2 c 2 k2 )E = 0 (12.8) ( 2 t + ω2 c 2 k2 )B = 0, (12.9) t = e z z, 2 t = 2 2 z 2. (12.10) Jaetaan kentät pitkittäiseen ja poikittaiseen osaan, esimerkiksi E = E z + E t, (12.11) missä E z = (E e z ) e z ; E t = (e z E) e z (12.12) ja vastavaasti magneettikentälle.

12.1. SYLINTERIPUTKI 153 Nyt Maxwellin yhtälöt saadaan muotoon (HT) t E t = E z z = ike z (12.13) t B t = B z z = ikb z (12.14) e z ( t E t ) = iωb z (12.15) t E z E t z = te z ike t = iωe z B t (12.16) e z ( t B t ) = iω c 2 E z (12.17) t B z B t z = tb z ikb t = i ω c 2 e z E t. (12.18) Jos B z ja E z tunnetaan, voidaan poikittaiset kentät ratkaista. Yhtälöitä (12.13-12.18) ei pidä opetella ulkoa, vaan on ymmärrettävä käsittelyn perusideat. TEM-moodit TEM-moodit (transverse electromagnetic modes) ovat sähkömagneettisia aaltoja, joiden kentät ovat kohtisuorassa etenemissuuntaan nähden (siis B z = 0, E z = 0). Tällöin yhtälöistä (12.13-12.18) seuraa t E t = 0, t B t = 0, t E t = 0, t B t = 0 ja kenttien laskeminen palautuu muodollisesti kaksiulotteiseksi statiikan ongelmaksi: TEM-moodeilla on seuraavanlaisia ominaisuuksia: 1. Aaltoluku k on 2 t E t = 0, 2 t B t = 0. (12.19) k = ω/c = ω µ 0 ɛ 0. (12.20) 2. Kentillä on (12.18):n mukaan samanlainen yhteys kuin tyhjiön tasoaalloissa: B t = 1 c e z E t. (12.21) 3. TEM-moodi ei voi edetä, jos sylinteri on ontto. Tällöin koko sylinterin sisäseinä on samassa potentiaalissa (valitaan ϕ = 0) ja sähkökenttä sisällä on täsmälleen nolla. Jos sylinteripintoja on useampia kuten koaksiaalikaapelissa, TEM-moodit voivat edetä, koska pintojen välillä voi olla potentiaaliero. 4. TEM-moodilla ei ole katkaisutaajuutta (cut-off frequency) eli taajuutta, jolla aaltoluku häviäisi, eli ω = k/c voi olla mitä tahansa.

154 LUKU 12. AALTOPUTKET JA RESONANSSIKAVITEETIT TM- ja TE-moodit Tarkastellaan onttoa sylinteriä, jossa ei siis ole TEM-moodeja. Oletetaan nyt, että kentillä on etenemissuuntaiset (z-)komponentit. Kentät voidaan jakaa kahteen toisistaan riippumattomaan moodiin: 1. TM-moodit (transverse magnetic modes): B z = 0 kaikkialla E z = 0 sylinterin pinnalla. 2. TE-moodit (transverse electric modes): E z = 0 kaikkialla B z / n = n t B z = 0 sylinterin pinnalla (HT). Huom. Kirjallisuus on moodien nimityksessä varsin sekava. Jälleen on tärkeää ymmärtää nimenomaan moodien fysikaaliset ominaisuudet, jolloin sopeutuminen erilaiseen nimityssopimukseen on helpompaa. Tarkastellaan ensin TM-moodeja ja oletetaan z- ja t-riippuvuudet harmonisiksi: e i(kz ωt). Lausutaan B t ja E t E z :n avulla (vrt. 12.13, 12.16, 12.18): B t = ω kc 2 e z E t (12.22) ja missä on merkitty E z ratkaistaan yhtälöstä (12.8): E t = ik γ 2 te z, (12.23) γ 2 = ω2 c 2 k2. (12.24) ( 2 t + γ 2 )E z = 0. (12.25) Samalla tavalla käsitellään TE-moodeja, ja saadaan (HT) E t = ω k B t e z (12.26) missä B z toteuttaa yhtälön (12.9): B t = ik γ 2 tb z, (12.27) ( 2 t + γ 2 )B z = 0. (12.28)

12.2. SUORAKULMAINEN AALTOPUTKI 155 Suureen γ 2 :n on oltava positiivinen, jotta E z ja B z ovat värähteleviä ja reunaehdot voivat toteutua. Yhtälöiden ratkaisuja vastaa joukko ominaisarvoja γ p, joita puolestaan vastaavat aaltoluvut k p. Katkaisutaajuus saadaan määritelmän mukaan asettamalla k 2 nollaksi, jolloin ω p = cγ p = γ p / µ 0 ɛ 0. (12.29) Aaltoluku on tällöin ω 2 ωp 2 k p =. (12.30) c Kun ω lähenee (ylhäältäpäin) katkaisutaajuutta, k pienenee eli aallopituus kasvaa suureksi. Jos taajuus on alle katkaisutaajuuden, aaltomoodi on eksponentiaalisesti vaimeneva, eikä siis etene. 12.2 Suorakulmainen aaltoputki Erikoistapauksena tutkitaan suorakulmaisessa aaltoputkessa eteneviä TEmoodeja (kuva 12.1). Ratkaistaan ensin B z :n Helmholtzin yhtälö ( 2 x 2 + 2 y 2 + γ2 )B z = 0 (12.31) reunaehdoin B z / n = 0, kun x = 0, x = a, y = 0, y = b. y ideaalijohde b x a Kuva 12.1: Aaltoputki, jonka poikkileikkaus on suorakaide. Sähköstatiikan menetelmiä muistellen tehdään separointiyrite B z (x, y) = X(x)Y (y), jolloin saadaan X + p 2 X = 0, Y + q 2 Y = 0, (12.32) missä p 2 on separointivakio ja q 2 = γ 2 p 2. Ratkaisu on B z (x, y) = B 0 (e ipx + Ce ipx )(e iqy + De iqy ), (12.33)

156 LUKU 12. AALTOPUTKET JA RESONANSSIKAVITEETIT missä B 0, C ja D ovat vakioita. Reunaehdot toteutuvat, jos Yhtälön ominaisarvot ovat siis joita vastaavat ratkaisut ovat Katkaisutaajuudet ovat C = D = 1 sin(p a) = 0 p = mπ/a ; m = 0, 1, 2,... (12.34) sin(q b) = 0 q = nπ/b ; n = 0, 1, 2,... γ 2 mn = p 2 + q 2 = π 2 (m 2 /a 2 + n 2 /b 2 ), (12.35) B z,mn (x, y) = B mn cos mπx a nπy cos. (12.36) b ω mn = cγ mn = πc m 2 /a 2 + n 2 /b 2. (12.37) Jos a > b, niin matalin katkaisutaajuus on ω 10 = πc/a. Tällaista moodia merkitään T E 10. Sen B z -komponentti on B z = B 0 cos πx a ei(kz ωt) (12.38) ja muut komponentit saadaan yhtälöistä (12.26) ja (12.27): k = B t = ika π B 0 sin πx a ei(kz ωt) e x (12.39) E t = iωa π B 0 sin πx ω 2 /c 2 π 2 /a 2 = a ei(kz ωt) e y (12.40) ω 2 ω10 2. (12.41) c Vastaavalla tavalla käsitellään z-akselin negatiiviseen suuntaan etenevä aalto (e ikz ).

12.3. RESONANSSIKAVITEETIT 157 12.3 Resonanssikaviteetit Tarkastellaan äärellisen pituisia sylinterimäisiä aaltoputkia (kaviteetteja, onkaloita), joiden päissä on täydellisesti johtavat seinät. Sisällä oleva aine on johtamatonta sähkömagneettisin parametrein µ 0, ɛ 0. Resonanssikaviteetti on onkalo, jonka pituus on jonkin aaltoputken moodin aallonpituuden monikerta. Kenttien z-riippuvuus on muotoa A sin kz + B cos kz (seisovat aallot eli e +ikz ja e ikz - aaltojen summa). Jos päädyt ovat tasoilla z = 0 ja z = d, niin reunaehdot voivat sekä TM- että TE-moodeille toteutua vain, jos k = πp/d, p = 0, 1, 2,.... Silloin γ 2 = ω2 c 2 π2 p 2 d 2 (12.42) eli jokaisella p ominaisarvoa γ q vastaa ominaistaajuus ω qp : ω 2 qp = c 2 (γ 2 q + π2 p 2 d 2 ). (12.43) Ominaisarvot määräytyvät systeemin geometriasta. Aaltoputkien ja resonanssikaviteettien välillä on siis tärkeä ero: aaltoputkissa taajuus ω voi saada minkä tahansa katkaisutaajuutta suuremman arvon. Kaviteetissa taajuus saa vain diskreettejä arvoja. TM- ja TE-moodit voidaan käsitellä käyttämällä suoraan aaltoputkille saatuja tuloksia laskemalla sopivasti yhteen e +ikz - ja e ikz -aaltoja. Esimerkiksi TM-moodilla sähkökentän tangentiaalikomponentin häviäminen pinnoilla z = 0 ja z = d vaatii, että E z = ψ(x, y) cos πpz d, (12.44) koska silloin E t = πp πpz γ 2 sin d d tψ(x, y). (12.45) Funktio ψ toteuttaa Helmholtzin yhtälön Magneettikenttä saadaan lausekkeesta B t = ( 2 t + γ 2 )ψ(x, y) = 0. (12.46) iω πpz γ 2 cos c2 d e z t ψ(x, y). (12.47) Hyödyllinen HT on osoittaa, että nämä lausekkeet toteuttavat kaikki Maxwellin yhtälöt. Reunaehdoista seuraa puolestaan lisäehtoja ψ:lle. Tarkastellaan esimerkkinä ympyräsylinteriä (säde R). TM-moodissa E z :n on hävittävä sylinterin pystyreunoilla eli sylinterikoordinaateissa ψ(r, φ) = 0. Separointimenetelmällä saadaan fysikaalisesti kelvolliseksi ratkaisuksi ψ(r, φ) = ψ mn (r, φ) = AJ m (γ mn r)e ±imφ, m = 0, 1, 2,..., (12.48)

158 LUKU 12. AALTOPUTKET JA RESONANSSIKAVITEETIT missä J m on Besselin funktio ja γ mn = x mn /R ja x mn on yhtälön J m (x) = 0 n:s juuri. Ominaistaajuudet ovat nyt ω 2 mnp = c 2 ( x2 mn R 2 + π2 p 2 d 2 ). (12.49) Alin TM-moodi on T M 010, jossa ω 010 2, 405c/R. Tämä on riippumaton sylinterin korkeudesta. Vastaavalla tavalla käsitellään TE-moodit (yksityiskohdat sivuutetaan). Niiden ominaistaajuuksissa on aina myös d-riippuvuus, joten taajuuksien säätäminen on helpompaa kuin TM-moodilla. Mikroaaltouuneista 1 Mikroaallot ovat sähkömagneettista säteilyä aallonpituuksilla 1 mm 0,3 m (taajuus 10 9 3 10 11 Hz). Mikroaaltouunin käyttö ruuanvalmistuksessa perustuu siihen, että mikroaallot saavat ruoka-aineiden polaariset molekyylit pyörähtelemään. Kitkan takia osa pyörähdysenergiasta muuttuu lämmöksi. Mikroaaltouuneissa käytetään tyypillisesti aallonpituutta 12,2 cm (taajuus 2450 MHz), jolloin saavutetaan hyvä absorptio erityisesti vesimolekyylille. Oleellista on, että ruoka-aineiden pitää sisältää polaarisia molekyylejä. Polaarittomat aineet läpäisevät mikroaaltoja ja metallit taas heijastavat niitä. Tyypillinen tunkeutumissyvyys ruoka-aineissa on muutaman senttimetrin luokkaa. Kypsennys tapahtuu siis suoraan ruuan sisällä, ellei annos ole kovin paksu, jolloin sisäosissa kuumennus tapahtuu johtumalla. Mikroaaltouunin tärkein osa on luonnollisesti uunitila, jossa ruoka kuumennetaan ja joka on siis resonanssikaviteetti. Mikroaaltokenttä synnytetään magnetronissa, josta kenttä johdetaan aaltoputkea pitkin uuniin. Magnetroni koostuu useasta resonanssiontelosta (sähköisestä värähtelypiiristä). Erillinen uunitila on tarpeen, koska ruoka ei mahdu näihin onteloihin. HT: Monissa uunimalleissa on ovessa verkko, jonka läpi näkee uunin sisälle. Koska siis näkyvä valo kulkee oviverkon läpi, voiko mikroaaltosäteily vuotaa ympäristöön? 1 Arkipäivän elektrodynamiikkaa