Muuttujien eliminointi



Samankaltaiset tiedostot
Approksimatiivinen päättely

Reikä. Säätila. Hammassärky Osuma

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus tn-laskentaan perjantai

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tutkimustiedonhallinnan peruskurssi

P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

TILASTOLLINEN OPPIMINEN

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

Pelaisitko seuraavaa peliä?

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Sovellettu todennäköisyyslaskenta B

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

6. laskuharjoitusten vastaukset (viikot 10 11)

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Sovellettu todennäköisyyslaskenta B

Erilaisia Markov-ketjuja

Tilastollisia peruskäsitteitä ja Monte Carlo

Muuttujien riippumattomuus

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Parametrin estimointi ja bootstrap-otanta

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

Informaation arvo. Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Otoskoko 107 kpl. a) 27 b) 2654

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Estimointi. Vilkkumaa / Kuusinen 1

Martingaalit ja informaatioprosessit

Nollasummapelit ja bayesilaiset pelit

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Kanta ja Kannan-vaihto

1. TILASTOLLINEN HAHMONTUNNISTUS

Numeeriset menetelmät

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

4.2.2 Uskottavuusfunktio f Y (y 0 X = x)

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Stokastiikan perusteet

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

Konvergenssilauseita

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

PRELIMINÄÄRIKOE. Pitkä Matematiikka

Algoritmit 1. Luento 13 Ti Timo Männikkö

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

,ܾ jaü on annettu niin voidaan hakea funktion

Mallipohjainen klusterointi

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Sovellettu todennäköisyyslaskenta B

Moniulotteisia todennäköisyysjakaumia

Sovellettu todennäköisyyslaskenta B

3. laskuharjoituskierros, vko 6, ratkaisut

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Harjoitus 2: Matlab - Statistical Toolbox

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Jatkuvat satunnaismuuttujat

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy Jatkossa ratkaisuehdotukset ovat tyypillisesti paljon lakonisempia.

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Numeeriset menetelmät

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

4.0.2 Kuinka hyvä ennuste on?

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Luottamusvälit. Normaalijakauma johnkin kohtaan

Likimääräisratkaisut ja regularisaatio

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

Maximum likelihood-estimointi Alkeet

Tilastotieteen aihehakemisto

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Markov-ketjut pitkällä aikavälillä

S Laskennallinen Neurotiede

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Numeeriset menetelmät

30A02000 Tilastotieteen perusteet

8.1 Ehdolliset jakaumat

Transkriptio:

228 Muuttujien eliminointi Toistuvat alilauseet voidaan evaluoida kerran ja niiden arvo talletetaan käytettäväksi aina tarvittaessa Tarkastellaan muuttujien eliminointi -algoritmia lausekkeen P(Murto jussikäy, meerikäy) evaluoinnissa: P(Murto) j P(j) h P(h Murto, j) M J H P(jussikäy h) P(meerikäy h) JK MK Edellä on tekijöille otettu lyhennysmerkinnät Tekijä MK, P(meerikäy h), ei vaadi yli muuttujan MeeriKäy summaamista, koska arvo meerikäy on kiinnitetty 229 Talletetaan todennäköisyydet 2-alkioiseen vektoriin f MK (Hälytys) = [P(meerikäy hälytys), P(meerikäy hälytys)] T Tekijälle JK talletetaan samanlainen vektori f JK (Hälytys) P(murto).001 Murto Järistys P(järistys).002 Hälytys Murto Järistys P(hälytys).95.94.29 f JK (Hälytys) f MK (Hälytys).001 1

230 TekijäH on P(h Murto, j) ja se vaatii 2 2 2 matriisin f H (Hälytys, Murto, Järistys) Tekijöiden MK, JK ja H tulosta summataan Hälytys pois, jolloin saadaan yli muuttujien Murto ja Järistys arvoalueiden käyvä 2 2 matriisi f,jk,mk (Murto, Järistys) = h f H (h, Murto, Järistys) f JK (h) f MK (h) = f H (hälytys, Murto, Järistys) f JK (hälytys) f MK (hälytys) + f H ( hälytys, Murto, Järistys) f JK ( hälytys) f MK ( hälytys) P(murto).001 Murto Järistys P(järistys).002 f,jk,mk (Murto, Järistys) 231 Kahden matriisin pisteittäisen tulon laskeminen A B f 1 (A,B) B C f 2 (B,C) T T.3 T T.2 T F.7 T F.8 F T.9 F T.6 F F.1 F F.4 A B C f 3 (A,B,C) T T T.3.2 T T F.3.8 T F T.7.6 T F F.7.4 F T T.9.2 F T F.9.8 F F T.1.6 F F F.1.4 2

232 Vastaavasti muuttuja Järistys summataan pois tulosta f J (Järistys) f,jk,mk (Murto, Järistys), jolloin saadaan matriisi f,,jk,mk (Murto) = f J (järistys) f,jk,mk (Murto, järistys) + f J ( järistys) f,jk,mk (Murto, järistys) P(murto).001 Murto f,,jk,mk (Murto) 233 Lopulta saadaan kyselyn P(Murto jussikäy, meerikäy) vastaus f M (Murto) f,,jk,mk (Murto), missä f M (Murto) = P(Murto) Muuttujien summaamisessa pois voidaan tekijät, jotka eivät riipu muuttujan arvosta, siirtää summauksen ulkopuolelle Kyselyn kannalta irrelevantit tekijät voidaan poistaa Kysely P(JussiKäy murto) antaa lauseen, jonka viimeinen tekijä on h mk P(meerikäy = mk Hälytys = h), jonka arvo määritelmän mukaan on 1 Verkon solmut, jotka eivät ole kyselymuuttujan esi-isiä tai havaintomuuttujia ovat kyselyn kannalta irrelevantteja 3

234 Bayes-verkko on monipuu (polytree), jos kunkin solmuparin välillä on korkeintaan yksi suuntaamaton polku Tarkan päättelyn aika- ja tilavaativuus monipuussa on verkon koon suhteen lineaarista Päättely Bayes-verkossa sisältää erikoistapauksenaan propositiologiikan päättelyn Näin ollen yleisessä tapauksessa päättely Bayes-verkossa on NP-kovaa Itse asiassa voidaan osoittaa, että päättely on yhtä vaativaa kuin toteuttavien arvoasetusten lukumäärän laskeminen Ongelma on aidosti vaikeampi kuin NP-kova, se on #P-kova 235 Approksimatiivinen päättely Koska tarkka päättely on laskennallisesti vaativaa, niin on syytä tarkastella ratkaisujen approksimointia Approksimointi perustuu satunnaiseen otantaan tunnetusta todennäköisyysjakaumasta Esim. painottamaton kolikko voidaan mieltää satunnaismuuttujaksi Lantti, jonka arvoalue on [kruuna, klaava] ja prioritodennäköisyys P(Lantti) = [0.5, 0.5] Otanta tästä jakaumasta vastaa kolikon heittoa, todennäköisyydellä 0.5 tuloksena on kruuna ja todennäköisyydellä 0.5 klaava Jos satunnaislukugeneraattori, jolta saadaan lukuja väliltä [0, 1], niin minkä tahansa yhden muuttujan jakaumasta voidaan helposti tehdä otantaa 4

236 P(pilveä).50 Pilveä Pilveä P(sataa).80 Kastelu Sataa.20 Pilveä P(kastelu).10.50 Märkä- Ruoho Kastelu Sataa P(märkäruoho).99.90.90.00 237 Prioriotanta Bayes-verkosta, johon ei liity havaintoja, otantaa voidaan tehdä muuttuja kerrallaan topologisessa järjestyksessä Kun vanhempien arvot on arvottu, niin tiedetään minkä jakauman perusteella otanta lapsessa on tehtävä Kiinnitetään esimerkkiverkon solmuille topologinen järjestys [Pilveä, Kastelu, Sataa, MärkäRuoho] 1. Vedetään jakaumasta P(Pilveä) = [0.5, 0.5] satunnainen arvo, esim. 2. Vedetään jakaumasta P(Kastelu pilveä) = [0.1, 0.9] satunnainen arvo, esim. 3. Vedetään jakaumasta P(Sataa pilveä) = [0.8, 0.2] satunnainen arvo, esim. 4. Vedetään jakaumasta P(MärkäRuoho kastelu, sataa) = [0.9, 0.1] satunnainen arvo, esim. 5

238 Verkon määräämästä prioriyhteisjakaumasta nyt vedetty tapahtuma siis on [,,, ] Merkitään todennäköisyyttä, että prioriotanta vetää tietyn tapahtuman S PO (x 1,, x n ) Otantamenetelmän perusteella se on i=1,,n P(x i vanhemmat(x i )) Toisaalta tämä on tapahtuman todennäköisyys Bayes-verkon esittämässä yhteisjakaumassa, joten S PO (x 1,, x n ) = P(x 1,, x n ) Merk. tapahtuman x 1,, x n frekvenssiä N PO (x 1,, x n ) yhteensä N:n otospisteen joukossa 239 Tapahtuman otantafrekvenssi konvergoituu rajalla odotusarvoonsa lim N N PO (x 1,, x n )/N = S PO (x 1,, x n ) = P(x 1,, x n ) Esim. S PO ([,,, ]) = 0.5 0.9 0.8 0.9 = 0.324, joten kun N on iso, niin odotamme, että 32.4% otospisteistä on tämä tapahtuma Menetelmän antama arvio on konsistentti siinä mielessä, että todennäköisyys on eksakti rajalla Osittain määrätyn tapahtuman x 1,, x m, m n, todennäköisyydelle saadaan myös konsistentti estimaatti P(x 1,, x m ) N PO (x 1,, x m )/N Otoksesta arvioitua todennäköisyyttä merk. P data ( ) 6

240 Hylkäysotanta Ehdollisen todennäköisyyksien P(X e) arvioimiseksi voitaisiin käyttää seuraavaa otantamenetelmää 1. Vedetään otos verkon määräämästä priorijakaumasta 2. Hylätään kaikki otospisteet, jotka eivät toteuta havaintoja e 3. Arvon P data (X = x e) määräämiseksi lasketaan kuinka suuressa osassa jäljellejääneistä otospisteistä pätee X = x Menetelmän antama jakauma P data (X e)on algoritmin perusteella N PO (X, e) = N PO (X, e) / N PO (e) Osittain määrätyn tapahtuman todennäköisyyden arviona tämä on konsistentti estimaatti P data (X e) P(X, e) / P(e) = P(X e) 241 Vedetään 100 otospistettä jakauman P(Sataa kastelu) estimoimiseksi Saamistamme tapahtumista 73, joilla pätee Kastelu =, hylätään Lopuilla tapahtumilla pätee kastelu Näistä 8:ssa tapauksessa Sataa = ja19:ssä Tässä tapauksessa P data (Sataa kastelu) [0.296, 0.704], kun todellinen jakauma on [0.3, 0.7] Suurempi otos tuottaa tarkemman estimaatin Tn. arvioiden virheen hajonta on suhteessa osamäärään 1/ n, missä n on otospisteiden lukumäärä Turhaan vedettyjen otospisteiden suuri määrä on ongelma: havaintojen kanssa konsistenttien otospisteiden lukumäärä putoaa eksponentiaalisesti ehtomuuttujien lkm:n kasvaessa 7

242 Painotusotanta Turhaan hylättävien otospisteiden vetämisen välttämiseksi kiinnitetään havaintomuuttujien E arvot ja tehdään otanta vain muuttujien X ja Y yli Vedetyt tapahtumat eivät kuitenkaan kaikki oli samanarvoisia Tapahtumia painotetaan uskomusarvoilla (likelihood) Kuinka uskottavasti tapahtuma vastaa havaintoja mitattuna havaintomuuttujien ehdollisten todennäköisyyksien tulolla annettuna niiden vanhemmat Intuitiivisesti ajatellen tapahtumille, joissa havaintojen yhdessä esiintyminen vaikuttaa epäuskottavalta, annetaan vähemmän painoarvoa 243 Kyselyyn P(Sataa kastelu, märkäruoho) vastaamiseksi painoarvo w alustetaan arvoon 1.0 Vedetään otos jakaumasta P(Pilveä) = [0.5, 0.5], esim. arvo Koska Kastelu on havaintomuuttuja, jonka arvo on, niin painoa päivitetään w w P(kastelu pilveä) = 0.1 Vedetään otos jakaumasta P(Sataa pilveä) = [0.8, 0.2], esim. arvo MärkäRuoho on havaintomuuttuja, jonka arvo on w w P(märkäruoho kastelu, sataa) = 0.099 Saatiin siis esimerkki [,,, ] tapauksesta Sataa = painoltaan 0.099 8

244 Merkitään Z = { X } U Y Otospisteitä painottava otanta arpoo kullekin muuttujista Z arvon annettuna sen vanhempien arvot S W (z, e) = i=1,,l P(z i vanhemmat(z i )) Vanhemmat(Z i ) voi sisältää niin havainto- kuin piilomuuttujiakin Painottava otanta siis ottaa havainnot paremmin huomioon kuin priorijakauma P(z) Toisaalta S W ottaa huomioon vain kunkin muuttujan Z i esi-isiin lukeutuvat havainnot Todellinen posteriorijakauma P(z e) huomioi kaikki havainnot 245 Uskottavuuspainot w korjaavat jakaumien eron Olkoon otospiste x muodostunut muuttujien arvoista z ja e, jolloin w(z, e) = i=1,,m P(e i vanhemmat(e i )) Täten otospisteen painotettu todennäköisyys S W (z, e) w(z, e) on i=1,,l P(z i vanhemmat(z i )) i=1,,m P(e i vanhemmat(e i )) = P(z, e), koska tulojen muuttajat kattavat kaikki verkon muuttujat 9

246 Nyt voidaan osoittaa, että painotusotannan estimaatit ovat konsistentteja P data (x e) = y N W (x, y, e) w(x, y, e) ' y S W (x, y, e) w(x, y, e) = ' y P(x, y, e) = 'P(x, e) = P(x e) Painotusotanta on tehokas menetelmä, koska kaikki vedetyt otospisteet hyödynnetään Menetelmä kuitenkin kärsii kun havaintomuuttujien lukumäärä kasvaa, koska useimpien otospisteiden paino on hyvin pieni ja harvat pisteet dominoivat estimaattia 247 MCMC-algoritmi Markov chain Monte Carlo Monte Carlo -algoritmi on satunnaisalgoritmi, joka voi tuottaa väärän vastauksen pienellä todennäköisyydellä (vs. Las Vegas - algoritmi) Otospisteitä vedetään tekemällä satunnainen muutos edelliseen tapahtumaan Seuraava tila valitaan arpomalla arvo yhdelle ei-havaintomuuttujista X i ehdollistettuna sen Markov-peitteeseen kuuluvien muuttujien nykyisillä arvoilla Solmun Markov-peitteeseen kuuluvat sen vanhemmat, lapset ja lapsien vanhemmat MCMC tuottaa satunnaiskulun tila-avaruudessa, jossa havaintomuuttujien arvoja ei muuteta 10

248 4.2 YKSINKERTAISET PÄÄTÖKSET Liitetään tilaan S numeerinen hyötyarvio (utility) U(S), joka kuvaa tilan saavuttamisen haluttavuutta Epädeterministisen toiminnon A mahdollisia tulostiloja ovat Tulos i (A), missä i käy yli eri tulosten Ennen toiminnon A suorittamista sen mahdollisille tuloksille annetaan todennäköisyydet P(Tulos i (A) Suorita(A), E), missä E on agentin havainnot A:n odotettu hyöty (expected utility): EU(A E) = i P(Tulos i (A) Suorita(A), E) U(Tulos i (A)) 249 Maksimaalisen odotetun hyödyn periaate edellyttää rationaalisen agentin valitsevan sen toiminnon, jonka odotusarvoinen hyöty on suurin Jos ideaa haluttaisiin soveltaa toimintojonojen valintaan, niin kaikki mahdolliset jonot tulisi arvottaa, mikä on käytännössä mahdotonta Jos hyötyfunktio heijastaa käytettyä tuloksellisuusmittaa, niin periaatteen mukaan toimiva agentti saavuttaa parhaan mahdollisen tuloksen yli mahdollisten toimintaympäristöjen Mallinnetaan epädeterminististä toimintoa arvonnalla (lottery) L, jossa mahdollisiin tuloksiin C 1,, C n liittyvät todennäköisyydet p 1,, p n L = [p 1, C 1 ; p 2, C 2 ; ; p n, C n ] 11

250 A B Agentti preferoi arvontaa A A ~B agentille A ja B ovat samanarvoisia A B agentti preferoi A:ta tai A ja B ovat sille samanarvoisia Deterministinen arvonta [1,A] A Preferenssirelaatiolle asetetaan rationaalisuuden nimissä seuraavat rajoitteet Järjestyvyys: agentin on kyettävä suhtauttamaan mitkä tahansa kaksi tilaa keskenään, valitsemaan niiden väliltä (A B) (B A) (A ~ B) Transitiivisuus: (A B) (B C) (A C) 251 Jatkuvuus: A B C p: [p, A; 1-p, C] ~ B Korvattavuus: A ~B [p, A; 1-p, C] ~ [p, B; 1-p, C] Monotonisuus: A B (p q [p, A; 1-p, B] [q, A; 1-q, B]) Jaettavuus: Sisäkkäiset arvonnat voidaan todennäköisyyslaskennan sääntöjen mukaan purkaa [p, A; 1-p, [q, B; 1-q, C]] ~ [p, A; (1-p)q, B; (1-p)(1-q), C] Huom.: ei mainintaa hyödyistä 12

252 1. Hyötyperiaate: Jos agentin preferenssit noudattavat edellä olleita aksioomia, niin on olemassa reaaliarvoinen funktio U s.e. U(A) > U(B) A B U(A) = U(B) A ~B 2. Odotetun hyödyn maksimoimisen periaate: Arvonnan hyöty on U([p 1, S 1 ; ; p n, S n ]) = i=1,,n p i U(S i ) Täten epädeterministisen toiminnon hyöty on kuten aiemmin esitimme 253 Hyötyfunktioita Rahavarat vaikuttaisi suoraviivaiselta hyötymitalta Agentti preferoi monotonisesti rahaa Rahan arvonnoillekin on määrättävä toimintamalli Olemme voittaneet tietokilpailussa miljoonan Tarjolla on kolikonheitto, jossa kruuna tietää kaiken rahan häviämistä ja klaava puolestaan kolmen miljoonan voittoa Onko ainoa rationaalinen valinta odotusarvoltaan puolentoista miljoonan tarjouksen hyväksyminen? Oikeasti kyseessä onkin varallisuuden (ei voiton) maksimointi 13

254 Hyödyn aksioomat eivät määrää yksikäsitteistä hyötyfunktiota Voimme esim. tehdä funktiolle U(S) lineaarisen muunnoksen U'(S) = k 1 + k 2 U(S) (k 1 on vakio, k 2 on mielivaltainen positiivinen vakio) ilman, että agentin käyttäytyminen muuttuu Deterministisessä maailmassa, jossa ei ole arvontoja, mikä tahansa monotoninen muunnos säilyttää agentin käytöksen Esim. ³ (U(S)) Hyötyfunktio on tällöin ordinaalinen se antaa tiloille järjestyksen, numeerisilla arvoilla ei ole merkitystä 255 Hyötyarvojen skaala käy parhaasta mahdollisesta palkinnosta u pahimpaan katastrofiin u Normalisoidulla hyödyllä u = 0 ja u = 1 Ääriarvojen väliin jäävän tilan S arvottamiseksi agentti voi verrata sitä standardiarvontaan [p, u ; 1-p, u ] Todennäköisyyttä p on säädettävä kunnes agentin mielestä standardiarvonta ja S ovat samanarvoisia Jos käytössä on normalisoidut hyödyt, niin lopullinen p on S:n hyötyarvo Usein hyötyarvo on monen muuttujan (attribuutin) X = X 1,, X n arvojen x = [x 1,, x n ] määräämä 14

256 Tarkastellaan tilannetta, missä muiden arvojen ollessa samat, attribuutin korkeampi arvo tietää myös korkeampaa hyötyfunktion arvoa Jos attribuuttivektoreille x ja y pätee x i y i i, niin x dominoi (aidosti) y:tä Jos esim. lentokentän mahdollinen sijoituspaikka S 1 on halvempi, tuottaa vähemmän äänisaastetta ja on turvallisempi kuin S 2, niin jälkimmäistä ei enää tarvitse harkita Epävarmuuden vallitessa aidot dominointisuhteet ovat harvinaisempia kuin deterministisessä tapauksessa Stokastinen dominanssi on usein käyttökelpoinen vertailutapa 257 Jos lentokentän sijoittamiskustannuksen uskotaan olevan tasaisesti jakautunut välille S 1 : 2.8 ja 4.8 miljardia euroa S 2 : 3.0 ja 5.2 miljardia euroa niin kumulatiivisia jakaumia tarkastelemalla havaitaan S 1 :n dominoivan stokastisesti S 2 :ta (koska kustannukset ovat negatiivisia) 1.0 todennäköisyys.5 S 2 S 1-5 -4-3 Negatiivinen kustannus 15

258 Kumulatiivinen jakauma on alkuperäisen jakauman integraali Olk. tapahtumien A 1 ja A 2 jakaumat attribuutille Xp 1 (x) ja p 2 (x) A 1 dominoi stokastisesti A 2 :ta, jos x: -,,x p 1 (x') dx -,,x p 2 (x') dx' Jos A 1 dominoi stokastisesti A 2 :ta ja U(x) on mv. monotonisesti ei-vähenevä hyötyfunktio, niin A 1 :n odotusarvoinen hyöty on vähintään yhtä korkea kuin A 2 :n Jos jokin toiminto on toisen dominoima kaikkien attribuuttien suhteen, niin se voidaan jättää huomiotta 16