TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan nykyisin yleensä puolijohdediodin avulla (kuva 1). Diodi päästää virtaa lävitseen vain yhteen suuntaan. Kuva 1. Puolijohdediodin piirrosmerkinnät. Oheisessa kytkennässä (kuva 2) vaihtojännitelähteen kanssa on kytketty sarjaan diodi ja vastus. diodin läpi sähkövirta kulkee vain kuvan mukaisesti päästösuuntaan. Yhdellä diodilla voidaan suorittaa puoliaaltotasasuuntaus, jossa sinimuotoisesta vaihtojännitteestä u poistetaan joka toinen puolijakso. Vastuksen R navoista saadaan näin puoliaaltotasasuunnattu jännite U AB, joka ei vaihda merkkiään. Samalla tietenkin tasasuuntautuu myös sinimuotoinen vaihtovirta. Kuva 2. Puoliaaltotasasuuntaus yhdellä diodilla. Vaihtojännitteen (ja vaihtovirran) kokoaaltotasasuuntaus saadaan neljän diodin sarjakytkennällä (kuva 3). Piirissä virta kulkee vastuksen läpi aina samaan suuntaan. Vastuksessa R jännitehäviö U AB vaihtelee nollan ja tietyn maksimiarvon välillä. Jännitehäviö ei vaihda merkkiä. Kuva 3. Kokoaaltotasasuuntaus neljän diodin avulla (diodien siltakytkentä).
Tasasuunnatun jännitteen vaihtelua voidaan tasata vastuksen R rinnalle kytketyllä kondensaattorilla C. C R Kuva 4. Tasasuunnatun jännitteen vaihtelun tasaus kondensaattorilla. Muita fysikaalisia ja kemiallisia menetelmiä, joilla saadaan aikaan tasavirtaa/tasajännitettä: Fysikaaliset tasasähkölähteet: - tasavirtageneraattori - aurinkopari (fotodiodi) - valokenno - lämpösähköpari (Peltierin ilmiö) Kemialliset tasasähkölähteet: - sähköpari (jännitesarja, elektrodireaktiot) - akku (palautuvat reaktiot) - polttokenno Esim. akkulaturissa tasasuuntaus tapahtuu diodisillan avulla ja jännitteen vaihtelu tasataan rinnan kytketyllä kondensaattorilla (kuva 5). Kuva 5. Akkulaturi. Tehtävä (YO-K05-11). Alla olevassa on esitetty yksityiskohtaisempi akkulaturin kytkentäkaavio. a) Nimeä kytkennät osat 1, 2 ja 3 ja kerro, mikä on niiden tehtävä. b) Miten ladattava akku kytketään napoihin A ja B? c) Kuinka suuri sähkövirta kulkee ladattaessa akun läpi, kun vastuksen napojen välillä on jännite 15,6 V? Akun lähdejännite on 12,1 V ja sisäinen resistanssi 0,032 Ω?
Tehtävä (YO-K05-11): Akkulaturi / RATKAISU: a) Osa 1 on muuntaja, jolla verkkojännite alennetaan laitteeseen sopivaksi. Osa 2 on tasasuuntaussilta, joka muuttaa vaihtojännitteen sykkiväksi tasavirraksi. Osa 3 on kondensaattori, joka tasaa sykkivän tasajännitteen vaihtelua. b) Ladattavan akun plusnapa kytketään napaan A ja miinusnapa napaan B (kuva). Kuva. Akun lataus. c) U AB = 15,6 V, E = 12,1 V, R s = 0,032 Ω, I =? Kirchhoffin II lain mukaan suljetulla kierroksen virtapiirissä potentiaalimuutosten summa on nolla: =0, josta saadaan = I = : R = =,,, Ω 109 110 Vastaus: 110 A.
P U O L I J O H T E E T p- ja n-tyypin puolijohteet Puolijohdemateriaaleja on p- ja n-tyyppiä: n-tyypin puolijohteissa varauksenkuljettajina toimivat negatiivisesti varautuneet elektronit, p-tyypin puolijohteissa varauksenkuljettajina toimivat positiiviset aukot. n-tyypin puolijohdetta voidaan valmistaa sekoittamalla 14. ryhmän alkuaineen kiteeseen (esim. pii tai germanium) pieniä määriä epäpuhtauksina 15. ryhmän alkuainetta (esim. arseeni). Tällöin kiteeseen jää jokaista lisättyä atomia kohti yksi elektroni, joka ei osallistu atomien välisiin sidoksiin (kuva 1). Nämä vapaat elektronit toimivat varauksenkuljettajina. (Si = pii, As = Arseeni, Ga = Gallium). Kuva 1a. n-tyypin puolijohde Kuva 1b. p-tyypin puolijohde - varauksenkuljettajina elektronit - varauksenkuljettajina positiiviset aukot ( elektronivajaukset ) p-tyypin puolijohdetta voidaan valmistaa sekoittamalla 14. ryhmän alkuaineesta (pii tai germanium) valmistettuun kiteeseen hiukan 13. ryhmän alkuainetta (esim. gallium). Tällöin jokaista lisättyä atomia kohti kiderakenteeseen jää yhden elektronin vajaus eli positiivisesti varautunut aukko. Näin syntyneet aukot voivat liikkua kiteessä eli toimia varauksen kuljettajina. Vastaava tilanne on esitetty myös kuvissa 2a ja 2b. Kuvassa 2a piin (Si) kidehilassa yksi piiatomi on korvattu arseeniatomilla (As), joka 15. ryhmän alkuaine. Neljä arseenin viidestä valenssielektronista (ulkokuoren elektronista) tarvitaan kovalenttisiin sidoksiin (yhteinen elektronipari) lähinaapureina olevien neljän piiatomin kanssa. Arseenin viides valenssielektroni voi näin ollen toimia varauksen kuljettajana. Lisäämällä piikiteeseen epäpuhtautena arseeniatomeja saadaan varauksenkuljettajia (elektroneja) lisää ja näin muodostuu n-tyypin puolijohde. Kuva 2b esittää p-tyypin puolijohdetta. Piikiteeseen lisätään nyt 13. ryhmän alkuainetta, booria (B). Kiteeseen tulee nyt atomeja, joilla on vain kolme valenssielektronia. Kuvassa 2b piikiteen piiatomi on korvattu booriatomilla. Booriatomilla on vain kolme valenssielektronia, joten yksi elektroni puuttuu, jotta (kovalenttiset) sidokset viereisiin piiatomeihin olisivat täydelliset (4 yhteistä elektroniparia). Pieni lämpövärähtelyn antama lisäenergia voi nyt siirtää naapuriatomin (Si) valenssielektronin täydentämään vierasatomin (B) sidoksen. Syntynyt elektronivajaus voi puolestaan täyttyä viereiseltä piiatomilta ja niin edelleen. Elektronin vajaus eli aukko voin näin liikkua kiteessä.
Lisäämällä piikiteeseen epäpuhtautena booriatomeja saadaan varauksenkuljettajia (positiivisia aukkoja eli elektronivajauksia) lisää ja näin muodostuu p-tyypin puolijohde. Kuva 2a. n-tyypin puolijohde Kuva 2b. p-tyypin puolijohde Lisäasiaa: Kiinteän aineen energiavyöt ja sähkönjohtavuus Kiinteiden aineiden elektronien voidaan ajatella asettuvan erilaisiin energiavöihin energiatasojen sijasta, kun halutaan tarkastella ja ymmärtää aineiden sähkönjohtokykyä (ks. kuva 3, alhaalla) Uloin vyö on johtavuusvyö, jossa elektronit pystyvät liikkumaan antaen kiteelle sähkönjohtokyvyn. Johtavuusvyön alapuolella on energia-aukko, jossa ei ole energiatasoja. Siinä olevat elektronit osallistuvat atomien välisiin sidoksiin eivätkä pysty liikkumaan atomilta toiselle. Eristeessä aukko on niin suuri (~ 5 ev), että kaikki elektronit asettuvat valenssivyöhön. Yleensä kaikki valenssivyön tilat ovat täynnä, joten elektronit eivät pysty liikkumaan atomien välillä. Paulin kieltosäännön mukaan kaksi elektronia ei voi olla yhtä aikaa täsmälleen samassa energiatilassa eli kvanttitilassa, jossa kaikki neljä kvanttilukua: n, l, m l ja s olisivat samat. Elektronin siirtyminen atomista toiseen on mahdollista vain, jos atomissa on vapaita energiatiloja. Johtavuusvyössä on vapaita energiatiloja ja elektronien liikkuminen on mahdollista. Elektronille on annettava tarpeeksi energiaa, jotta se voisi siirtyä johtavuusvyöhön. Metalleilla valenssivyö ja johtavuusvyö ovat lähellä toisiaan, joten elektronien vapaa siirtyminen vöiden välillä on mahdollista. siksi metalli johtaa hyvin sähköä. Puolijohteilla (esim. Si, Ge) energia-aukko on elektronivoltin (ev) suuruusluokkaa, joten jo huoneenlämpötilassa elektronit saavat jonkin verran energiaa, jotta ne voivat siirtyä johtavuusvyöhön. Puolijohteiden sähkönjohtokykyä voidaan lisätä esim. saostamalla kiteeseen sopivia epäpuhtausatomeja sekä säteilyllä ja lämmöllä. (Fotoni 8). Kuva 3. Kiinteän aineen energiavyöt.
Diodin toiminta pn -rajapinnalla Puolijohdediodin toiminnan perusta on pn-rajapinta (ks. kuvat 4a ja 4b). Kun p- ja n-tyyppinen puolijohde liitetään yhteen, syntyy pn-rajapinta. Varauksenkuljettajat kulkevat rajapinnan yli lämpöliikkeen vuoksi. Rajapinnan lähellä n-tyypin puolijohteesta elektroneja siirtyy rajapinnan yli p-tyypin puolijohteeseen, jolloin aukkoja täyttyy elektroneilla p-tyypin puolijohteessa. Vastaavasti p-tyypin puolijohteesta n-tyypin puolijohteeseen siirtyneet aukot täyttyvät myös elektroneilla. Tätä tapahtumaa kutsutaan rekombinaatioksi. Rekombinaatiossa molemmat varauksenkuljettajat, sekä vapaat elektronit että aukot, häviävät. Rekombinaation vuoksi rajapinnan läheisyydessä ei ole tasapainotilanteen syntymisen jälkeen enää vapaita varauksenkuljettajia. Rajapinnan ympäristöön on syntynyt kapea tyhjennysalue. Tyhjennysalue varautuu p-puolella negatiivisesti ja n-puolella positiivisesti. Rajapintaan syntyy näin sähkökenttä ja potentiaaliero eli jännite. Syntyvää jännitettä kutsutaan kynnysjännitteeksi (kuva 4b). pn-rajapinta aukko elektroni p-tyypin puolijohde n-tyypin puolijohde Kuva 4a. pn-puolijohde. tyhjennysalue Kuva 4b. p- ja n-tyypin alueiden on pn-rajapintaan muodostuvan potentiaaliero eli kynnysjännite. sähkökentän voimakkuus. Jotta varauksenkuljettajia voisi ylittää nyt rajapinnan, diodin tulee olla kytkettynä jännitteeseen. Varauksenkuljettajat liikkuvat sähköisen voiman vaikutuksesta ja niillä tulee olla riittävästi energiaa rajapinnan ylittämiseen. Tapahtumaan tarvittavaa potentiaalieroa eli jännite on siis kynnysjännite. Kun diodi kytketään jännitelähteeseen päästösuuntaan (kuva 5a) (p-tyypin pää jännitelähteen +napaan ja n-tyypin pää napaan), niin elektronit ja aukot liikkuvat kohti rajapintaa. Jos päästösuuntainen jännite on suurempi kuin kynnysjännite, niin rekombinaatioita (aukkojen ja elektronien yhtymisiä) alkaa tapahtua. Sähkövirta siis kulkee pn-rajapinnan läpi eli sähkövirta kulkee diodin läpi. Kuva 5a. Diodi on kytketty päästösuuntaan. Kun diodi kytketään jännitelähteeseen estosuuntaan (kuva 5b) eli toisinpäin kuin edellä (p-tyypin pää jännitelähteen napaan ja n-tyypin pää +napaan), niin ulkoinen jännite kasvattaa potentiaalieroa rajapinnassa. Sähköinen voima siirtää varauksenkuljettajia poispäin pn-rajapinnasta. Rajapinta tyhjenee varauksenkuljettajista eikä rekombinaatio ole mahdollinen. Sähkövirta ei näin ollen kulje diodin läpi. Kuva 5b. Diodi on kytketty päästösuuntaan.
Yhteenvetoa: pn-rajapinta aukko elektroni tyhjennysalue p-tyypin puolijohde n-tyypin puolijohde p-tyypin puolijohde n-tyypin puolijohde Kuva 6a. Diodi päästösuunnassa Kuva 6b. Diodi estosuunnassa - varauksenkuljettaja siirtyvät - varauksenkuljettajat siirtyvät poispäin pn-rajapinnan läpi pn-rajapinnasta rekombinaatio rajapinta tyhjenee, ei rekombinaatioita virta kulkee diodin läpi virta ei kulje diodin läpi Kuvassa 7 on esitetty diodin ominaiskäyrä eli sähkövirta I jännitteen U funktiona; I = I(U). Diodin kynnysjännite on U k. Piidiodilla kynnysjännite on noin 0,7 V ja germaniumdiodilla 0,2 V. Kuva 7. Diodin ominaiskäyrä. pn-liitoksen - Erilaisia diodeja: läpi kulkevalle kokonaisvirralle voidaan johtaa diodiyhtälö (Shockleyn yhtälö): o ks. esim. http://fi.wikipedia.org/wiki/diodi - ks. myös: puolijohteet: http://www.kotiposti.net/ajnieminen/pujo.pdf ####################################################################################### Ylimääräistä asiaa: = /( ) I S = estosuuntaisen virran kyllästysarvo (A) e = alkeisvaraus = 1,6021773 10-19 C (Huom! kantaluku e on Neperin luku) U = ulkoinen jännite (V) k = Boltzmannin vakio (MAOL s. 71) T = termodynaaminen lämpötila (K) η = puolijohdemateriaalista riippuva ideaalisuuskerroin
Tehtävä: Kuinka suuri jännite on kytkettävä piistä valmistettuun puolijohdediodiin, jotta diodin läpi kulkisi 3,8 ma:n virta? Lämpötila on 20 o C ja diodin vuotovirran kyllästysarvo kyseisessä lämpötilassa on 2,0 na. Piin (Si) ideaalisuuskerroin η = 2,0. Piirrä laskimella diodiyhtälön kuvaaja: =2, /( 1,380658 10 23, ) 1 A Vastaus: 0,73 V. ####################################################################################### RATKAISU:
Diodiyhtälön (Shockleyn yhtälö) mukaan: RATKAISU: otetaan puolittain = ln /( ) 1 = 1 +1 = +1 :IS +1 = +1 = Päästösuuntaan +1 = kytketyn diodin sähkövirta on positiivinen: I = 3,8 ma. = +1 U = 0,73044 V 0,73 V. =,, /,,,, +1 Diodin ominaiskäyrä: I = I(U) I kynnysjännite Uk U ########################################################################