kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja



Samankaltaiset tiedostot
renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

Esko Turunen Luku 3. Ryhmät

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a).

Esko Turunen MAT Algebra1(s)

MAT Algebra I (s) periodilla IV 2012 Esko Turunen

MAT Algebra 1(s)

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

ALGEBRA KEVÄT 2013 JOUNI PARKKONEN

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

6. Tekijäryhmät ja aliryhmät

a b 1 c b n c n

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

Algebra I, harjoitus 5,

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

Algebra 1. Jouni Parkkonen Luentoja Jyväskylän yliopistossa talvella 2019

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

1 Algebralliset perusteet

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

H = H(12) = {id, (12)},

(xa) = (x) (a) = (x)0 = 0

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Liite 2. Ryhmien ja kuntien perusteet

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät sivua Heikki Koivupalo ja Rami Luisto

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Lukuteorian kertausta

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

Jäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Insinöörimatematiikka D

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

ja jäännösluokkien joukkoa

Tekijäryhmät ja homomorsmit

Kuvaus. Määritelmä. LM2, Kesä /160

Käänteismatriisi 1 / 14

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

1 Lineaariavaruus eli Vektoriavaruus

802320A LINEAARIALGEBRA OSA I

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016

Koodausteoria, Kesä 2014

Algebra kl Tapani Kuusalo

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Kvasiryhmistä ja niiden sovelluksista

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Insinöörimatematiikka D

5.6 Yhdistetty kuvaus

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =

Ennakkotehtävän ratkaisu

HN = {hn h H, n N} on G:n aliryhmä.

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Luonnollisten lukujen ja kokonaislukujen määritteleminen

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

Algebra II. Syksy 2004 Pentti Haukkanen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

9 Matriisit. 9.1 Matriisien laskutoimituksia

Algebra I, Harjoitus 6, , Ratkaisut

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

1 Cli ordin algebra. Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n :

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

MS-A0402 Diskreetin matematiikan perusteet

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

Johdatus lineaarialgebraan

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Ortogonaalinen ja ortonormaali kanta

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Lineaarikuvauksen R n R m matriisi

2017 = = = = = = 26 1

Algebra, 1. demot,

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Polynomien suurin yhteinen tekijä ja kongruenssi

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Algebra I, harjoitus 8,

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Diofantoksen yhtälön ratkaisut

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tommi Kuusisto

Insinöörimatematiikka IA

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

a ord 13 (a)

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Johdatus p-adisiin lukuihin

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Transkriptio:

Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta, mutta kertolasku ei välttämättä ole kommutatiivinen. Määritelmä (5.1) Olkoon R joukko, jolla on määritelty kaksi assosiatiivista laskutoimitusta, kommutatiivinen laskutoimitus + ja toinen laskutoimitus, jota merkitsemme kertolaskulla. Kolmikko (R, +, ) (ykkösellinen) rengas, jos 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja 3 kertolaskulla on neutraalialkio 1 = 1 R R, eli 1 R a = a1 R = a kaikille a R.

Huomaa, että (R, ) ei välttämättä ole kommutatiivinen eikä välttämättä edes ryhmä! Merkitsemme laskutoimituksen + neutraalialkiota 0 symbolilla 0 R. Rengas on kommutatiivinen, jos kertolasku on kommutatiivinen. Jos alkiolla u R on käänteisalkio kertolaskun suhteen sanotaan, että u on renkaan R yksikkö. Yksiköitä voi renkaassa olla useita, mutta 0 R ei voi olla yksikkö, jos renkaassa on ainakin kaksi alkiota. Ryhmä (R, +) on renkaan R additiivinen ryhmä. Huomatus. Yllä määrittelemäämme rakennetta kutsutaan ykköselliseksi renkaaksi. Joskus renkaalta ei vaadita ominaisuutta (3) eli kertolaskun neutraalialkiota ei välttämättä ole renkaassa R.

Propositio (5.2) Olkoon R rengas. Tällöin 1 0 R x = 0 R kaikilla x R, 2 x( y) = ( x)y = (xy) kaikilla x, y R, 3 x(y z) = xy xz ja (y z)x = yx zx kaikilla x, y, z R, 4 jos #R 2, niin 0 1, 5 jos #R 2, niin neutraalialkiolla 0 ei ole käänteisalkiota kertolaskun suhteen. Todistus. (1) Distributiivisuuden nojalla 0 R + x = x = 1 R x = (0 R + 1 R )x = 0 R x + 1 R x = 0 R x + x kaikilla x R. Supistussäännöstä seuraa, että 0 R x = 0 R. (5) seuraa kohdista (4) ja (1). Loput harjoitustehtävässä 60.

Esimerkki (5.3) (1) Z, R ja Q ovat kommutatiivisia renkaita. (2) Olkoon p N. Kokonaislukujen kertolasku on yhteensopiva kongruenssin, a a a = a + kp jollain k Z kanssa. Tätä kongruenssia merkitään usein a a mod p, ja sanotaan, että a on kongruentti luvun a kanssa modulo p. Esimerkiksi 5 3 mod 2. Joukko Z p (eli jakojäännösluokat jaetaessa luvulla p) varustettuna kokonaislukujen yhteen- ja kertolaskujen tekijälaskutoimituksilla on kommutatiivinen rengas (Harjoitustehtävä 58). Tämä renkas on äärellinen jokaisella luvulla p.

Esimerkki (5.3. jatkoa) (3) Olkoon X, ja olkoon R rengas. Olkoon F (X, R) joukko, joka koostuu kaikista kuvauksista joukolta X renkaaseen R. Määritellään tässä joukossa yhteen- ja kertolasku pisteittäin: Olkoot f, g F (X, R). Asetamme (f + g)(x) = f (x) + g(x) ja (fg)(x) = f (x)g(x) kaikilla x X. Joukko F (X, R) varustettuna näillä laskutoimituksilla on rengas, jota kutsutaan kuvausrenkaaksi. Se on kommutatiivinen, jos R on kommutatiivinen. Esimerkiksi siis F (R, R) on kommutatiivinen rengas.

Esimerkki (5.3 jatkoa) (4) Olkoon (A, +) kommutatiivinen ryhmä. Olkoon Hom(A, A) = {φ : A A : φ on homomorfismi}. Määrittelemme joukkoon Hom(A, A) kaksi laskutoimitusta: Homomorfismien yhteenlasku : (φ φ )(a) = φ(a) + φ (a), ja homomorfismien yhdistäminen. Yhteenlasku on laskutoimitus: Jos φ, φ Hom(A, A) niin (φ φ )(a + b) = φ(a + b) + φ (a + b) = φ(a) + φ(b) + φ (a) + φ (b) = (φ φ )(a) + (φ φ )(b), joten φ φ Hom(A, A). (Hom(A, A), ) on kommutatiivinen ryhmä: Laskutoimituksen assosiatiivisuus ja kommutatiivisuus on helppo tarkastaa (Harjoitustehtävä 61).

Esimerkki (5.3 jatkoa) Nollahomomorfismi, n(a) = 0 kaikille a A, on neutraalialkio +:n suhteen. Homomorfismin φ käänteisalkio yhteenlaskun suhteen on sellainen homomorfismi φ, että jos φ(x) = a, niin φ(x) = a. Identtinen homomorfismi id(a) = a on kertolaskun neutraalialkio, joten tarkastettavaksi jää distributiivisuus: Olkoot φ, ψ, ς Hom(A, A). Tällöin distributiivisuus vasemmalta on voimassa: [(ψ ς) φ](a) = [ψ φ](a) + [ς φ](a) = ([ψ φ] [ς φ])(a), joka on voimassa aina, kun a A. Siis (ψ ς) φ = [ψ φ] [ς φ]. Vastaavasti distributiivisuus oikealta pätee.

Esimerkki (5.3 jatkoa) (5) Olkoon R rengas, #R 2. R-kertoimisten n n-matriisien joukko M n R varustettuna matriisien yhteen- ja kertolaskulla on rengas. Kaikki muut ominaisuudet paitsi distributiivisuus osoitettiin tapauksessa n = 2 ja R = R harjoitustehtävissä 5, 6 ja 7. Kun n 2, niin M n R ei ole kommutatiivinen rengas, koska matriisien kertolasku ei ole kommutatiivinen.

Esimerkki (5.3 jatkoa) (5) Olkoon R rengas, #R 2. R-kertoimisten n n-matriisien joukko M n R varustettuna matriisien yhteen- ja kertolaskulla on rengas. Kaikki muut ominaisuudet paitsi distributiivisuus osoitettiin tapauksessa n = 2 ja R = R harjoitustehtävissä 5, 6 ja 7. Kun n 2, niin M n R ei ole kommutatiivinen rengas, koska matriisien kertolasku ei ole kommutatiivinen. Määritelmä (5.4) Olkoot R ja R renkaita. Kuvaus φ : R R on rengashomomorfismi, jos se on homomorfismi yhteenlaskulle ja kertolaskulle, ja jos lisäksi φ(1) = 1. Bijektiivinen rengashomomorfismi on rengasisomorfismi.

Muista: Harjoitustehtävissä 20 ja 21 osoitettiin, että surjektiivinen homomorfismi kuvaa neutraalialkion neutraaliakioksi, mutta ilman surjektiivisuutta näin ei välttämättä ole. Kuitenkin ryhmähomomorfismi kuvaa neutraalialkion neutraaliakioksi (LH 22). Propositio (5.5) Jos f : R S ja g : S T ovat rengashomomorfismeja, niin g f on rengashomomorfismi. Rengashomomorfismi f : R S on rengasisomorfismi, jos ja vain jos on olemassa rengashomomorfismi f : S R, jolle f f = id R ja f f = id S. Todistus. Harjoitustehtävä 62.

Muista: Harjoitustehtävissä 20 ja 21 osoitettiin, että surjektiivinen homomorfismi kuvaa neutraalialkion neutraaliakioksi, mutta ilman surjektiivisuutta näin ei välttämättä ole. Kuitenkin ryhmähomomorfismi kuvaa neutraalialkion neutraaliakioksi (LH 22). Propositio (5.5) Jos f : R S ja g : S T ovat rengashomomorfismeja, niin g f on rengashomomorfismi. Rengashomomorfismi f : R S on rengasisomorfismi, jos ja vain jos on olemassa rengashomomorfismi f : S R, jolle f f = id R ja f f = id S. Todistus. Harjoitustehtävä 62. Määritelmä (5.6.) Olkoon R rengas. Jos S R varustettuna indusoiduilla laskutoimituksilla on rengas, ja jos 1 S = 1 R niin S on renkaan R alirengas.

Alirengas täten määrittelemällä halutaan siis, että inkluusiokuvaus i : S R, i(s) = s on rengashomomorfismi. Alirenkaille on samanlainen testi kuin aliryhmille (Propositio 4.6). Propositio (5.7.) Olkoon R rengas, ja olkoon S R, S. Tällöin S on renkaan R alirengas, jos ja vain jos 1 Kaikille x, y S pätee x + y S ja xy S, ja 2 1 S. Todistus. Harjoitustehtävä 66.

Alirengas täten määrittelemällä halutaan siis, että inkluusiokuvaus i : S R, i(s) = s on rengashomomorfismi. Alirenkaille on samanlainen testi kuin aliryhmille (Propositio 4.6). Propositio (5.7.) Olkoon R rengas, ja olkoon S R, S. Tällöin S on renkaan R alirengas, jos ja vain jos 1 Kaikille x, y S pätee x + y S ja xy S, ja 2 1 S. Todistus. Harjoitustehtävä 66. K.s. myös Harjoitustehtävä 67.

Esimerkki (5.8) (1) Z on Q:n alirengas.

Esimerkki (5.8) (1) Z on Q:n alirengas. (2) Joukko S = {( a 0 0 0 ) } : a R on rengas renkaasta M 2 R indusoiduilla laskutoimituksilla. ( ) Sen 1 0 kertolaskun neutraalialkio on kuitenkin matriisi, 0 0 joten S ei ole renkaan M 2 R( alirengas; ) M 2 R:n kertolaskun 1 0 neutraalialkio on nimitäin. 0 1 Rengas ( S on rengasisomorfinen ) renkaan R kanssa: Kuvaus a 0 a on rengasisomorfismi. 0 0

Esimerkki (5.8 jatkoa) (3) Olkoon R = {f : [0, 1] R}, jolloin R on Esimerkin 5.3. (3) nojalla ryhmä. Myös R on ryhmä. Nyt kuvaus h : R R, joka on määritelty siten, että h(f ) = f ( 1 2 ) on rengashomomorfismi: esimerkiksi h(f + g) = (f + g)(1/2) = f (1/2) + g(1/2) = h(f ) + h(g),

Esimerkki (5.8 jatkoa) (3) Olkoon R = {f : [0, 1] R}, jolloin R on Esimerkin 5.3. (3) nojalla ryhmä. Myös R on ryhmä. Nyt kuvaus h : R R, joka on määritelty siten, että h(f ) = f ( 1 2 ) on rengashomomorfismi: esimerkiksi h(f + g) = (f + g)(1/2) = f (1/2) + g(1/2) = h(f ) + h(g), (4) Samaan tapaan kuin permutaatioryhmille määriteltiin aliryhmiä rajoittumalla kuvauksiin, joille on tiettyjä ominaisuuksia, voimme määritellä kuvausrenkaiden F (X, R) alirenkaita. Tällaisia ovat esimerkiksi kuvausrenkaan F (R, R) alirenkaat. C(R) = {f : R R : f on jatkuva}, ja C k (R) = {f : R R : f on k kertaa jatkuvasti derivoituva}, k N.

Esimerkki (5.8 jatkoa) (5) Osoitetaan, että L (R n ) = {L : R n R n : L on lineaarikuvaus} on renkaan Hom(R n, R n ) alirengas: Lineaarikuvaukset ovat ryhmän (R n, +) homomorfismeja itselleen, joten niiden summa on myös homomorfismi. Lisäksi aina, kun L, L L (R n, R n ), x R n ja a R, myös (L + L )(ax) = L(ax) + L (ax) = al(x) + al (x) = a(l(x) + L (x)) = a(l + L )(x), joten lineaarikuvauksen toinenkin ehto toteutuu. Tunnetusti lineaarikuvausten yhdistetty kuvaus on lineaarikuvaus. Siis molemmat laskutoimitukset toteuttavat Proposition 5.7 ehdon (1). Lisäksi identtinen kuvaus id : R n R n on lineaarikuvaus, kuten myös kuvan id, ( id(x) = x), joten Proposition 5.7 mukaan L (R n, R n ) on alirengas.

Alirenkaat ja rengashomomorfismit ovat yhteensopivia samaan tapaan kuin ryhmähomomorfismit: Propositio (5.9) Olkoon φ : R R rengashomomorfismi. 1 Olkoon S renkaan R alirengas. Tällöin φ(s) on renkaan R alirengas. 2 Olkoon S renkaan R alirengas. Tällöin φ 1 (S ) on renkaan R alirengas. Todistus. (1) Proposition 4.8 mukaan riittää tarkastella kertolaskua ja ykkösen kuvautumista. Olkoot φ(a), φ(b) φ(s). Tällöin φ(a)φ(b) = φ(ab) φ(s). Koska 1 R S, pätee φ( 1 R ) = φ(1 R ) = 1 R φ(s). (2) Harjoitustehtävä 67.

Määritelmä (5.10) Olkoon R rengas, #R 2. 1 Jos a, b, c R siten, että ab = c, niin a ja b ovat c:n tekijöitä.

Määritelmä (5.10) Olkoon R rengas, #R 2. 1 Jos a, b, c R siten, että ab = c, niin a ja b ovat c:n tekijöitä. 2 Jos a, b R, a, b 0 ja ab = 0, niin a ja b ovat nollan jakajia.

Määritelmä (5.10) Olkoon R rengas, #R 2. 1 Jos a, b, c R siten, että ab = c, niin a ja b ovat c:n tekijöitä. 2 Jos a, b R, a, b 0 ja ab = 0, niin a ja b ovat nollan jakajia. 3 Jos renkaassa R ei ole nollan jakajia, R on kommutatiivinen ja kertolaskun neutraalialkio 1 on olemassa, niin R on kokonaisalue.

Määritelmä (5.10) Olkoon R rengas, #R 2. 1 Jos a, b, c R siten, että ab = c, niin a ja b ovat c:n tekijöitä. 2 Jos a, b R, a, b 0 ja ab = 0, niin a ja b ovat nollan jakajia. 3 Jos renkaassa R ei ole nollan jakajia, R on kommutatiivinen ja kertolaskun neutraalialkio 1 on olemassa, niin R on kokonaisalue. 4 Jos kaikki renkaan R nollasta poikkeavat alkiot ovat yksiköitä eli aina, kun u 0 on olemassa sellainen R:n alkio v että uv = 1 R, niin R on vino kunta eli jakorengas.

Määritelmä (5.10) Olkoon R rengas, #R 2. 1 Jos a, b, c R siten, että ab = c, niin a ja b ovat c:n tekijöitä. 2 Jos a, b R, a, b 0 ja ab = 0, niin a ja b ovat nollan jakajia. 3 Jos renkaassa R ei ole nollan jakajia, R on kommutatiivinen ja kertolaskun neutraalialkio 1 on olemassa, niin R on kokonaisalue. 4 Jos kaikki renkaan R nollasta poikkeavat alkiot ovat yksiköitä eli aina, kun u 0 on olemassa sellainen R:n alkio v että uv = 1 R, niin R on vino kunta eli jakorengas. 5 Kommutatiivinen jakorenkas on kunta.

Määritelmä (5.10) Olkoon R rengas, #R 2. 1 Jos a, b, c R siten, että ab = c, niin a ja b ovat c:n tekijöitä. 2 Jos a, b R, a, b 0 ja ab = 0, niin a ja b ovat nollan jakajia. 3 Jos renkaassa R ei ole nollan jakajia, R on kommutatiivinen ja kertolaskun neutraalialkio 1 on olemassa, niin R on kokonaisalue. 4 Jos kaikki renkaan R nollasta poikkeavat alkiot ovat yksiköitä eli aina, kun u 0 on olemassa sellainen R:n alkio v että uv = 1 R, niin R on vino kunta eli jakorengas. 5 Kommutatiivinen jakorenkas on kunta. Yleensä nimitystä vino kunta käytetään vain sellaisista jakorenkaista, jotka eivät ole kuntia. Jos d, m R ja d on m:n tekijä sanotaan joskus, että d jakaa m:n ja merkitään d m.

Esimerkki (5.11) (1) Kokonaislukujen joukko Z varustettuna yhteen- ja kertolaskulla on selvästikin kokonaisalue: jos ab = 0, a, b Z, niin a = 0 tai b = 0, eli nollan jakajia ei Z:ssa ole. Toisaalta Z ei ole jakorengas eikä siis kunta, sillä esimerkiksi 3 Z, mutta millekään a Z ei päde 3a = 1; kokonaisluvuilla ei ole käänteisalkioita kertolaskun suhteen kokonaislukujen joukossa.

Esimerkki (5.11) (1) Kokonaislukujen joukko Z varustettuna yhteen- ja kertolaskulla on selvästikin kokonaisalue: jos ab = 0, a, b Z, niin a = 0 tai b = 0, eli nollan jakajia ei Z:ssa ole. Toisaalta Z ei ole jakorengas eikä siis kunta, sillä esimerkiksi 3 Z, mutta millekään a Z ei päde 3a = 1; kokonaisluvuilla ei ole käänteisalkioita kertolaskun suhteen kokonaislukujen joukossa. (2) Helposti nähdään, että Q ja R ovat kuntia.

Esimerkki (5.11) (1) Kokonaislukujen joukko Z varustettuna yhteen- ja kertolaskulla on selvästikin kokonaisalue: jos ab = 0, a, b Z, niin a = 0 tai b = 0, eli nollan jakajia ei Z:ssa ole. Toisaalta Z ei ole jakorengas eikä siis kunta, sillä esimerkiksi 3 Z, mutta millekään a Z ei päde 3a = 1; kokonaisluvuilla ei ole käänteisalkioita kertolaskun suhteen kokonaislukujen joukossa. (2) Helposti nähdään, että Q ja R ovat kuntia. (3) M n R ei ole kokonaisalue, kun n 2 ja R on kunta. Jos A, B M n R, ja niiden ainoat nollasta poikkeavat kertoimet ovat A 11 ja B nn, niin AB = 0, joten ne ovat nollan jakajia.

Esimerkki (5.11 jatkoa) (4) Määritellään joukossa R 4 yhteenlasku komponenteittain, ja kertolasku asettamalla (a 1, a 2, a 3, a 4 )(b 1, b 2, b 3, b 4 ) = (a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4, a 1 b 2 + a 2 b 1 + a 3 b 4 a 4 b 3, a 1 b 3 a 2 b 4 + a 3 b 1 + a 4 b 2, a 1 b 4 + a 2 b 3 a 3 b 2 + a 4 b 1 ). Näillä laskutoimituksilla varustettuna R 4 on vino kunta H, (Hamiltonin kvaterniot.) Kertolaskun neutraalialkio on (1, 0, 0, 0), tarkasta distributiivisuus! Se ei ole kommutatiivinen, koska (0, 1, 0, 0)(0, 0, 1, 0) = (0, 0, 0, 1) (0, 0, 0, 1) = (0, 0, 1, 0)(0, 1, 0, 0). Alkion (a, b, c, d) H\ {0} käänteisalkio on (a, b, c, d) (a 2 +b 2 +c 2 +d 2 ).

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1. Oletetaan, että ab = 0, jolloin (ab) d = 0 d = 0.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1. Oletetaan, että ab = 0, jolloin (ab) d = 0 d = 0. Silloin a = a 1 = a(bd) = (ab)d = 0, mikä on ristiriita.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1. Oletetaan, että ab = 0, jolloin (ab) d = 0 d = 0. Silloin a = a 1 = a(bd) = (ab)d = 0, mikä on ristiriita. (2) Olkoon E äärellinen kokonaisalue. Olkoon a E, a 0. Kuvaus V a : E E, V a (x) = ax on injektio: jos nimittäin V a (x) = V a (y), niin a(x y) = 0.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1. Oletetaan, että ab = 0, jolloin (ab) d = 0 d = 0. Silloin a = a 1 = a(bd) = (ab)d = 0, mikä on ristiriita. (2) Olkoon E äärellinen kokonaisalue. Olkoon a E, a 0. Kuvaus V a : E E, V a (x) = ax on injektio: jos nimittäin V a (x) = V a (y), niin a(x y) = 0. Koska kokonaisalueessa E ei ole nollan jakajia, on x y = 0 eli x = y.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1. Oletetaan, että ab = 0, jolloin (ab) d = 0 d = 0. Silloin a = a 1 = a(bd) = (ab)d = 0, mikä on ristiriita. (2) Olkoon E äärellinen kokonaisalue. Olkoon a E, a 0. Kuvaus V a : E E, V a (x) = ax on injektio: jos nimittäin V a (x) = V a (y), niin a(x y) = 0. Koska kokonaisalueessa E ei ole nollan jakajia, on x y = 0 eli x = y. Kuvaus V a on myös surjektio, koska E on äärellinen (mieti tarkemmin!)

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1. Oletetaan, että ab = 0, jolloin (ab) d = 0 d = 0. Silloin a = a 1 = a(bd) = (ab)d = 0, mikä on ristiriita. (2) Olkoon E äärellinen kokonaisalue. Olkoon a E, a 0. Kuvaus V a : E E, V a (x) = ax on injektio: jos nimittäin V a (x) = V a (y), niin a(x y) = 0. Koska kokonaisalueessa E ei ole nollan jakajia, on x y = 0 eli x = y. Kuvaus V a on myös surjektio, koska E on äärellinen (mieti tarkemmin!) Siis on olemassa sellainen ā E, jolle aā = 1.

Propositio (5.12) 1 Jakorenkaassa eli vino kunnassa ei ole nollan jakajia. Siis erityisesti kunta on kokonaisalue. 2 Äärellinen kokonaisalue on kunta. Todistus. (1) Olkoon K jakorengas. Olkoot a, b K, a, b 0. Tällöin b on yksikkö; on siis olemassa alkio d K siten, että bd = 1. Oletetaan, että ab = 0, jolloin (ab) d = 0 d = 0. Silloin a = a 1 = a(bd) = (ab)d = 0, mikä on ristiriita. (2) Olkoon E äärellinen kokonaisalue. Olkoon a E, a 0. Kuvaus V a : E E, V a (x) = ax on injektio: jos nimittäin V a (x) = V a (y), niin a(x y) = 0. Koska kokonaisalueessa E ei ole nollan jakajia, on x y = 0 eli x = y. Kuvaus V a on myös surjektio, koska E on äärellinen (mieti tarkemmin!) Siis on olemassa sellainen ā E, jolle aā = 1. Koska E on kommutatiivinen, on āa = 1, joten ā = a 1.

Määritelmä (5.13) Jos K on kunta ja K K varustettuna indusoiduilla laskutoimituksilla on kunta, niin K on kunnan K alikunta.

Määritelmä (5.13) Jos K on kunta ja K K varustettuna indusoiduilla laskutoimituksilla on kunta, niin K on kunnan K alikunta. Liittyen laskutehtäviin 66, 68 ja 69, kuntaa (K, +, ) voi luonnehtia myös sanomalla, että (K, +, ) on sellainen rengas, missä lisäksi (K \ {0}, ) on kommutatiivinen ryhmä.