Diracin yhtälö Björkenin ja Drellin formulaation mukaan on I 0. 0 i 1 0
|
|
- Aki Kahma
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Diracin spinorit. Määritelmiä Diracin yhtälö Björkenin ja Drellin formulaation mukaan on γ µ (i µ ea µ ψ = mψ, ψ C 4, missä matriisit γ µ ovat ( γ = γ = I I, γ k = γ k = ( σ k σ k missä edelleen I on 2 2-yksikkömatriisi ja σ k ovat Paulin matriisit ( ( ( i σ =, σ 2 =, σ 3 = i Yleensä ψ C 4 on pystyvektorispinori, mutta se voidaan käsittää myös 4 4- matriisiksi, jossa vain ensimmäinen sarake on nollasta eroava, ts. ψ C (4 f, missä f on primitiivi-idempotentti f = 2 ( + γ 2 ( + iγ γ 2 =. Siispä Diracin spinori voidaan esittää joko pystyvektorispinorina tai neliömatriisispinorina ψ ψ ψ 2 ψ = ψ 3 ψ 2 C4 tai ψ = C (4 f, ψ 3 ψ 4 ψ 4 missä ψ k C. Jälkimmäisessä tapauksessa ψ = ψ f + ψ 2 f 2 + ψ 3 f 3 + ψ 4 f 4, missä kompleksisen lineaarisen spinoriavaruuden kanta on f = 4 ( + γ + iγ 2 + iγ 2 = f, f 2 = 4 ( γ 3 + iγ 23 γ 3 + iγ 23 = γ 3 f, f 3 = 4 (γ 3 iγ 3 + γ 23 iγ 23 = γ 3 f, f 4 = 4 (γ iγ 2 γ + iγ 2 = γ f..
2 .2 Matriisialgebran ja aika-avaruusalgebran erot Vaikka voimmekin samaistaa algebrat C Cl,3 C R (4, kompleksikonjugaatti ei ole sama algebrassa C Cl,3 kuin algebrassa C R (4 C (4. Matriisialgebrassa ( C (4 otetaan kompleksikonjugaatteja matriisialkioista, siis u = (u jk = u jk, kun taas kompleksisessa Cliffordin algebrassa C Cl,3 kompleksikonjugaatti ei vaikuta reaaliosaan Cl,3, vaan lasketaan u = (a + ib = a ib, missä a, b Cl,3. Asiaa voi selventää seuraava vastaavuustaulukko: C Cl,3 C (4 kompleksikonjugaatti u γ 3 u γ3 γ 3 u γ3 u kompleksikonjugaatti pääinvoluutio û γ 23 uγ23 reversio ũ γ 3 u γ3 Clifford-konjugaatti ū γ 2 u γ2 γ 3 ũγ3 u transpoosi γ ũ γ u = u Hermiten konjugaatti ũ γ u γ Diracin adjungaatti Mielivaltaiselle alkiolle u = u + u + u 2 + u 3 + u 4 u k k R,3, involuutiot ovat seuraavat: Cl,3, missä û = u u + u 2 u 3 + u 4 ũ = u + u u 2 u 3 + u 4 ū = u u u 2 + u 3 + u 4 pääinvoluutio reversio Clifford-konjugaatti missä reversio ja konjugointi ovat antiautomorfismeja eli ũv = ṽũ, uv = vū ja pääinvoluutio on automorfismi, ûv = ûˆv. Nämä involuutiot laajennetaan algebraan C Cl,3 kompleksisina lineaarikuvauksina siten, että skalaarille λ C ja alkiolle u Cl,3 ovat voimassa (λu = λû, (λu = λũ ja (λu = λū, kun taas kompleksikonjugointi on epälineaarinen (λu = λ u. Pystyvektorispinorille ψ C 4 Diracin adjungaatti on rivimatriisi ( ψ γ = ψ ψ2 ψ3 ψ4 ja neliömatriisispinorin ψ C (4 f Diracin adjungaatti on neliömatriisi ψ γ = γ ψ γ, jossa ainoastaan ensimmäinen rivi on nollasta eroava. Huomaa, että Diracin spinorin reaaliosa ja kompleksikonjugaatti riippuvat käytettävästä algebrasta. 2
3 Kun ψ C (4 f: Re ψ = Re ψ Re ψ 2 Re ψ 3 Re ψ 4, ψ = Kun ψ (C Cl,3 f (matriisiksi tulkittuna: Re ψ = 2 ψ ψ2 ψ 2 ψ ψ 3 ψ4 ψ 4 ψ3, ψ = ψ ψ2 ψ3 ψ4 ψ2 ψ ψ4 ψ3 Toisin sanoen Diracin spinori ψ voi esiintyä pystyvektorispinorina ψ C 4, neliömatriisispinorina ψ C (4 f tai (Clifford- algebrallisena spinorina ψ (C Cl,3 f missä kaksi viimeistä ovat toisistaan eroavia rakenteita. Huomaa, että algebrassa C Cl,3 reaaliosa Re ψ sisältää myös alkuperäisen Diracin spinorin ψ C 4 (toisin kuin Re ψ algebrassa C (4 f....3 Bilineaarikovariantit ja Fierzin identiteetit Pystyvektorispinorilla ψ C 4 on todennäköisyystiheys ψ ψ (> kun ψ (kvanttifysiikassa hiukkasen esiintymistodennäköisyys yksikköväliä kohti ja todennäköisyysvirran tiheys J k = ψ γ γ k ψ (k =, 2, 3 (kvanttifysiikassa todennäköisyysvirta tarkoittaa todennäköisyyttä, jolla hiukkanen ohittaa tarkastelupaikan aikayksikköä kohti, jotka voidaan yhdistää vektoriksi J = J µ γ µ, jonka komponentit ovat J µ = ψ γ γ µ ψ (jolloin J = ψ ψ. Eri muodoissaan ne ovat seuraavia J µ = ψ γ γ µ ψ ψ C 4 = tr ( ψ γ γ µ ψ ψ C (4 f = tr ( γ µ ψψ γ = 4 γµ ψψ γ = 4 γ µ ψ ψ ψ (C Cl,3 f Tässä kerroin 4 ilmaantui siksi, että f = 4 ( + γ + iγ 2 + iγ 2, 3
4 jonka skalaariosa on 4, eli f = 4, mutta tr (f =. Siis todennäköisyysvirtavektori on J = J µ γ µ = γ µ 4 γ µ ψψ γ ψ C (4 f = γ µ γ µ (4ψψ γ = γµ γ µ, 4ψψ γ = 4ψψ γ koska J µ = γ µ J = 4ψ ψ ψ (C Cl,3 f Bivektori S taas muodostetaan seuraavasti: S µν = ψ γ iγ µν ψ, jolle S µν = γ µν S ja S = 2 S µνγ µν. Eri muodoissa saadaan S µν = ψ γ iγ µν ψ ψ C 4 = tr ( ψ γ iγ µν ψ ψ C (4 f = tr ( iγ µν ψψ γ = 4 iγµν ψψ γ = 4 iγ µν ψ ψ ψ (C Cl,3 f S = 2 γµν S µν = 2 γµν 4 iγ µν ψψ γ = γ µν iγ µν (4ψψ γ = γ µν iγ µν, 4ψψ γ = i4ψψ γ = i 4ψψ γ 2 2 = i 4ψ ψ 2 ψ C (4 f ψ (C Cl,3 f Vektori J ja bivektori S ovat esimerkkejä bilineaarikovarianteista, joista alla lista pystyvektorispinorille ψ C 4 ja algebralliselle spinorille ψ (C Cl,3 f. σ = ψ γ ψ = 4 ψ ψ J µ = ψ γ γ µ ψ = 4 ψ γ µ ψ S µν = ψ γ iγ µν ψ = 4 ψ iγ µν ψ K µ = ψ γ iγ 23 γ µ ψ = 4 ψ iγ 23 γ µ ψ ω = ψ γ γ 23 ψ = 4 ψ γ 23 ψ (K = K µ γ µ Kaikki bilineaarikovariantit ovat reaalisia. Bilineaarikovariantit toteuttavat seuraavat kvadraattiset yhtälöt, joita kutsutaan Fierzin identiteeteiksi. J 2 = σ 2 + ω 2 K 2 = J 2 J K = J K = (ω + γ 23 σ S 4
5 Koordinaattimuodossa ne näyttävät seuraavilta: J µ J µ = σ 2 + ω 2 J µ J µ = K µ K µ J µ K µ = J µ K ν K µ J ν = ωs µν + σ (S µν missä (S µν = 2 ε µναβs αβ (ε 23 = tai S = Sγ Spinorin esitys bilineaarikovarianttiensa avulla Olkoot σ, J, S, K, ω Diracin spinorin ψ bilineaarikovariantit. Olkoon η sellainen spinori, jolle η ψ algebrassa C Cl,3 tai vastaavasti η γ ψ algebrassa C (4. Tällöin spinori ψ on muotoa ψ = czη, missä Z = σ + J + is + iγ 23 K + γ 23 ω ja c C. Alkuperäinen ψ saadaan selville algoritmilla N = η Zη = η γ Zη 2 e iα = 4 N η ψ = N η γ ψ ψ = 4N e iα Zη, missä lukua e iα sanotaan vaihekertoimeksi. Erityisesti, jos valitaan η = f, saadaan N = Zf = 2 σ + J γ S γ 2 K γ 3 e iα = ψ ψ Siis spinori ψ voidaan vaihekerrointa e iα vaille määrätä bilineaarikovarianttiensa σ, J, S, K, ω avulla. Voidaan myös todistaa, että jos mielivaltaiset σ, J, S, K, ω toteuttavat Fierzin identiteetit (sekä J > ja 4 η Zη = η γ Zη >, niin ne ovat jonkun spinorin ψ bilineaarikovariantit..5 Äitispinori ja spinorioperaattori Määritellään algebralliselle spinorille ψ (C Cl,3 f äitispinori ψ ψ2 ψ 2 ψ Φ = 4 Re ψ = 2 ψ 3 ψ4 ψ 4 ψ3 5
6 ja spinorioperaattori Ψ = 2 ψ ψ2 ψ 3 ψ4 ψ 2 ψ ψ 4 ψ3 ψ 3 ψ4 ψ ψ2 ψ 4 ψ3 ψ 2 ψ. Äitispinorista Φ Cl,3 2 ( + γ saadaan alkuperäinen Diracin spinori tällöin seuraavasti: ψ = Φ 4 ( + iγ 2 (C Cl,3 f (saatava spinori on neliömatriisimuodossa ja spinorioperaattorista Ψ saadaan äitispinori Φ = Ψ ( + γ ja edelleen alkuperäinen Diracin spinori ψ = Ψ 2 ( + γ 2 ( + iγ 2 = Ψf. Spinorioperaattorin Ψ avulla saadaan esitettyä bilineaarikovarientit seuraavasti: Ψ Ψ = σ + γ 23 ω Ψγ Ψ = J Ψγ 2 Ψ = S Ψγ 3 Ψ = K 2 Fysikaalinen lähestymistapa spinoreihin 2. Aika-avaruusalgebra Cliffordin algebraa Cl,3 kutsutaan (kvanttifyysikoiden keskuudessa yleisemmin aika-avaruusalgebraksi (STA, koska sen generoi Minkowskin aika-avaruusmetriikka. STA:lle määritellään kantavektoreiden γ µ, µ =,, 2, 3 avulla, jotka toteuttavat yhtälön γ µ γ ν = η µν =. Aika-avaruusalgebran kantana on tällöin, {γ µ }, {σ k, γ 23 σ k }, {γ 23 γ µ }, γ 23, 6
7 missä σ k = γ k γ, k =, 2, 3. Huomaa, että fyysikot käyttävät yleensä pseudoskalaarista (γ 23 merkintää i ja imaginääriyksiköstä j. Koska bivektorit σ k toteuttavat kaavan 2 (σ jσ k + σ k σ j = 2 (γ jγ k + γ k γ j = δ jk, ne generoivat kolmiulotteisen euklidisen avaruuden geometrisen algebran. kantana on, {σ k }, {γ 23 σ k }, γ 23, Sen joka voidaan myös samaistaa STA:n parillisen alialgebran kanssa. Tällä tavalla jaetaan kuusi aika-avaruuden bivektoria relatiivivektoreihin ja relatiivibivektoreihin, esim. Faradayn bivektori F voidaan esittää muodossa F = E + γ 23 B, missä E = 2 (F γ F γ, γ 23 B = 2 (F + γ F γ. 2.2 Spinorit Edellä esitetyt Paulin matriisit ovat kvanttifysiikassa operaattoreita, joilla operoidaan kompleksisia spinoreita. Jotta ne paremmin muistettaisiin matriisialgebran alkioiksi, niitä merkitään hattumerkinnällä ˆσ k ja aika-avaruuden bivektoreita σ k. Spinorit kuvaavat kvanttitiloja ja siksi niille annetaan matriisialgebrassa erikoismerkinnät bra- ja ket-operaattoreiden avulla, esim. ket ( ψ = erottamaan niitä aika-avaruuden multivektoreista. Ketit ψ muodostavat kaksiulotteisen kompleksisen vektoriavaruuden. Jotta kvanttitiloja voitaisiin kuvata aika-avaruudessa, esitetään ne yleensä STA:n parillisen alialgebran alkioina ψ = γ ψγ siten, että ( a + ia 3 ψ = a 2 + ia ψ = a + a k γ 23 σ k. ψ ψ 2, 7
8 Erityisen mielenkiinnon kohteena ovat tietenkin tilat spin-ylös ja spin-alas: (, ( γ 23 σ 2. Kvanttioperaattoreiden ˆσ k ja i operaatioita vastaavat nyt seuraavat aika-avaruuden operaatiot: ˆσ k ψ σ k ψσ 3 (k =, 2, 3 i ψ ψγ 23 σ 3. Paulin spinorien laskentakoneisto laajenee helposti Diracin spinoreille. Diracin pystyvektorispinorin ψ ja STA:n välillä on yhteys ψ = a + ia 3 a 2 + ia b + ib 3 b 2 + ib ja operaattoreille ˆγ µ ja i saadaan ψ = a + a k γ 23 σ k + ( b + b k γ 23 σ k σ3 ˆγ µ ψ γ µ ψγ (µ =,, 2, 3 i ψ ψγ 23 σ 3. Lähteet [] Lounesto, P., Clifford Algebras and Spinor Operators, Clifford (Geometric Algebras, Birkhäuser, Boston, Basel, Berlin, 996 [2] Lounesto, P., Clifford Algebras and Spinors, London Mathematical Society Lecture Notes Series 239, Cambridge University Press, 997 [3] Gull, A., Doran, C., Lasenby, A., Electron Physics I, Clifford (Geometric Algebras, Birkhäuser, Boston, Basel, Berlin, 996 8
Paulin spinorit ja spinorioperaattorit
Paulin spinorit ja spinorioperaattorit Spinoreita on useita erilaisia. Esimerkiksi Paulin, Dirackin ja Weyelin spinorit. Yhteisenä piirteenä eri spinoreilla on se, että kukin liittyy tavallisesti johonkin
Lisätiedotsitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n
Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos
Lisätiedot2. Geometrinen algebra dimensioissa kaksi ja kolme
. Geometrinen algebra dimensioissa kaksi ja kolme William Kingdon Cliord (1845-1879) esitteli geometrisen algebransa 1800- luvulla. Cliord yhdisti sisä- ja ulkotulot yhdeksi tuloksi, geometriseksi tuloksi.
LisätiedotExcursio Cliordin analyysiin. 13. helmikuuta 2006
Excursio Cliordin analyysiin 13. helmikuuta 2006 1 Sisältö 1 Cliordin algebra 3 2 Monogeeniset funktiot 5 3 Cauchyn integraalikaava monogeenisille funktioille 9 2 1 Cliordin algebra Tutustutaan tässä kappaleessa
LisätiedotLineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot:
Lineaarikuvaukset 12. joulukuuta 2005 1 Yleistys multivektoreille Olkoon F lineaarikuvaus vektoriavaruudessa. Yleistetään F luonnollisella tavalla terille F (a 1 a n ) = F (a 1 ) F (a n ), (1) sekä terien
LisätiedotMääritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
LisätiedotJohdatusta CLIFFORD-paketin käyttöön Maplessa
Johdatusta CLIFFORD-paketin käyttöön Maplessa Heikki Orelma 4. maaliskuuta 2008 Sisältö 1 Lähtöasetelma 1 2 Perusteita 1 3 Cliordin algebrojen rakenteen tutkiminen 3 4 Cliordin tulo cmulnum-algoritmilla
LisätiedotSisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotLineaariset Lien ryhmät / Ratkaisu 1 D 355 klo ja D 381 klo b 0 1
JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Lineaariset Lien ryhmät 23.1.2012 / Ratkaisu 1 D 355 klo. 10.15-11.45 ja D 381 klo 16.15-17.45 1. Kompleksiluvut reaalisina matriiseina Kuvaus
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Lisätiedot1 Tensoriavaruuksista..
1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m
LisätiedotKonformigeometriaa. 5. maaliskuuta 2006
Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
LisätiedotCLIFFORDIN ANALYYSIÄ AVARUUDESSA R 3
TAMPEREEN TEKNILLINEN YLIOPISTO Konetekniikan osasto HEIKKI ORELMA CLIFFORDIN ANALYYSIÄ AVARUUDESSA R 3 Diplomityö Tarkastaja prof. Sirkka-Liisa Eriksson Määrätty osastoneuvoston kokouksessa 11.5.005 Tiivistelmä
Lisätiedoty z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotJatkoa lineaarialgebrasta
Jatkoa lineaarialgebrasta 16. tammikuuta 2006 Sisältö 1 Singulaariarvohajotelma 1 2 Tensorit ja lineaarikuvausten komponentit 2 2.1 Karteesiset tensorit........................ 3 2.2 Determinantti, osa
LisätiedotGROUPS AND THEIR REPRESENTATIONS - FIFTH PILE. Olemme jo (harjoituksissa!) löytäneet Lien ryhmälle SL 2 (R) seuraavat redusoitumattomat esitykset:
GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE KAREN E. SMITH 32. Ryhmän SL 2 (R) esitykset Example 32.1. Palautamme mieleen, että { x y SL 2 (R) = A = det A = xw yz = 1} ja z w { a b sl 2 (R) = A = Tr
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
Lisätiedot9.2 Lineaarikuvaus Olkoon A kuvaus (funktio) vektoriavaruudesta V vektoriavaruuteen U: jos nyt
9 Lineaarikuvaukset, matriisit 9 Vektoriavaruudet Aiemmin olemmme puhuneet tason (R 2 ja kotiavaruuden (R 3 vektoreista Nämä (kuten mös pelkkä R ovat esimerkkejä reaalisista vektoriavaruuksista Yleisesti
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Lisätiedot1 Cli ordin algebra. Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n :
1 Cli ordin algebra Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n : Joukossa R voidaan määritellä summa ja tulo. Myöskin
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
Lisätiedot(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotOrtogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotMatriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Lisätiedot1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c)
Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, 2017 R Alkuviikko TEHTÄVÄ J1 Laske Gaussin algoritmilla ja Sarrus n säännöllä seuraavat determinantit: 2 3 1 a) 1 2 0 1 4 3, b) 0 2
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotLineaarialgebra, kertausta aiheita
Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotOMINAISARVOISTA JA OMINAISVEKTOREISTA
1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotFourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
LisätiedotCliffordin analyysi ja sovelluksia
Pro gradu -tutkielma Cliffordin analyysi ja sovelluksia Sylvester Eriksson-Bique Ohjaaja: Jari Taskinen Matematiikan ja tilastotieteen laitos Matemaattis-luonnontieteellinen tiedekunta Helsingin Yliopisto
LisätiedotRatkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotRatkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
LisätiedotDiofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 4
Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa
Lisätiedot8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
LisätiedotC = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti
Vaasan yliopiston julkaisuja 189 9 OMINAISARVOTEHTÄVÄ Ch:EigSystem Sec:CMatrix 9.1 Kompleksinen lineaariavaruus 9.1.1 Kompleksiluvut Pian tulemme tarvitsemaan kompleksisen lineaariavaruuden alkeita. Tätä
LisätiedotAlternoivat multilineaarimuodot
LUKU 1 Alternoivat multilineaarimuodot Vektoriavaruudesta R n käytetään seuraavassa merkintää V. Sen k-kertainen karteesinen tulo on tällöin V V = V k. Määritelmä 1.1. Kuvaus T : V k R on multilineaarinen,
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotLineaariset Lien ryhmät / Ratkaisut 6 D 381 klo
JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det
Lisätiedot