8. Monen muu*ujan funk/on differen/aalilaskenta

Koko: px
Aloita esitys sivulta:

Download "8. Monen muu*ujan funk/on differen/aalilaskenta"

Transkriptio

1 8. Monen muu*ujan funk/on differen/aalilaskenta Esim 1. Ideaalikaasun /lanyhtälö p = nrt V Paine riippuu /lavuudesta, ainemäärästä ja lämpö/lasta: p = p(n, T, V) Esim 2. Hiukkasen aaltofunk/o kolmiulo*eisessa avaruudessa ψ = ψ(x,y,z) = ψ(r,θ,ϕ) Kaikki hiukasen paikasta riippuvat funk/ot ovat kolmen muu*ujan funk/oita

2 Usean muu*ujen funk/on piirtäminen Z = f(x,y) kuvaaja on pinta Tässä kuvassa Z = sin(x) + y f(x,y) Käsin piirtäminen vaikeaa, ja > 3 ulo*uvuudessa y mahdotonta x

3 Usean muu*ujen funk/on piirtäminen Voidaan lukita yhden muu*ujan arvo ja piirtää Z = f(x,y 0 ) Tässä esim sin(x) + y, y:n arvoilla 1,0,1,2 f(x,y) y x

4 Useamman muu*ujan funk/on differen/aalilaskennan käsi*eitä Skalaariarvoisten (= ei vektori) funk/oiden f(x,y,z...) osi*aisderivaatat Skalaari ja vektoriarvoisten funk/oiden erilaiset "vektoriderivaatat" (ei käsitellä tällä kurssilla): grad(f) = f = f x i + f y x, y, 2 x y, jne f j + k z div( v ) = v = v x x + v y y + v z z curl( v ) = v = ( v z y - v y z ) i + ( v x z - v z x ) j + ( v y x - v x y ) k

5 Useamman muu*ujan funk/on integraalilaskennan käsi*eitä Funk/on f viivaintegraali käyrää C pitkin f(x,y) ds C Sulje*u viivaintegraali (C:n alku ja loppupiste samat) C f(x,y) ds Moninkertaiset integraalit (integroidaan useamman koordinaa/n yli), tärkeimpänä /lavuusintegraali: y 2 x 2 z 2 y 2 x 2 f(x,y,z)dxdydz = f(x,y,z)dx dy dz z 2 z 1 y 1 x 1 z 1 y 1 x 1

6 Osi*aisderivaa*a Esim. f(x,y)=2x 3 y 2 2x 2 y + 7 ( f(x,y) ) y = 6x 2 4xy x ( f(x,y) ) x = 2y 2x 2 y Vakiona pide*ävä muu*uja(t) merkitään alaindeksillä. Se on tärkeä! Esim. Sisäenergian U derivaa*a lämpö/lan T suhteen riippuu siitä, pidetäänkö /lavuus V vai paine p vakiona. ( U T ) V ( U T ) p

7 Muita osi*aisderivaatan merkintätapoja ovat esim: ( f x ) y = f x (x,y) = D x f(x,y) Esimerkki: ideaalikaasulain paineen osi*aisderivaa*a kolmen muun muu*ujan suhteen: p = nrt V ( p n ) V,T = RT V ( p T ) V,n = nr V ( p V ) n,t = nrt V 2

8 Korkeammat osi*aisderivaatat Esim. f(x,y): x ( f x ) = ( 2 f x 2 ) = f xx y ( f x ) = ( 2 f y x ) = f yx x ( f y ) = ( 2 f x y ) = f xy y ( f y ) = f ( 2 y 2 ) = f yy Jos funk/o f(x,y) on "siis/s/ käy*äytyvä", osi*aisderivaatat f yx ja f xy ovat samoja. ( 2 f y x ) = ( 2 f x y )

9 Testataan esimerkkisysteemillä ovatko ris/derivaatat samat. p = nrt V Lasketaan p TV = T ( p V ), p VT = V ( p T ) 2 p T V = T ( p V ) = nrt ( T V 2 ) = -nr V 2 2 p V T = V ( p T ) = V (nr V ) = -nr V 2 Kyllä, ris/derivaatat ovat samat.

10 Sta/onääriset pisteet = pisteet joissa derivaatat ovat nollia. Kertausta: 1 ulo*eisen funk/on f(x) mahdolliset minimit ja maksimit löytyvät kodista joissa df(x)/dx = 0. minimi: f'(x) + maksimi: f'(x) + Toinen tapa olisi: minimi: maksimi: d 2 f(x) dx 2 > 0 d 2 f(x) dx 2 < 0

11 Otetaan seuraavaksi 2 ulo*einen funk/o f(x,y). Mahdolliset minimit ja maksimit löytyvät tässäkin tapauksessa derivaatan nollakohdista f(x,y) x = 0 ja Minimin ja maksimin paljastavat toiset derivaatat. f xx < 0 ja Maksimi, kun Minimi, kun f yy < 0 ja f xx f yy (f xy ) 2 > 0 f xx > 0 ja f yy > 0 ja f(x,y) y f xx f yy (f xy ) 2 > 0 = 0 yhtälöpari Jos f xx f yy (f xy ) 2 < 0, kyseessä on satulapiste: minimi yhden muu*ujan suhteen ja maksimi toisen suhteen. Maksimi:

12 f(x) = (x 2 +y 2 ); maksimi

13 f(x) = x 2 +y 2 ; minimi

14 f(x) = x 2 y 2 ; satulapiste

15 Esim. f(x,y) = x 3 + 6xy 2 2y 3 12x. Etsi funk/on maksimit ja minimit. Ratkaisu: etsitään derivaa*ojen nollakohdat f(x,y) = 3x 2 + 6y 2-12 x f(x,y) = 12xy - 6y 2 y Saadaan yhtälöpari: 3x 2 + 6y 2-12 = 0 (1) 12xy - 6y 2 = 0 (2) Yhtälöstä 2: 12xy - 6y 2 = 6y(2x y) = 0 y = 0 tai y = 2x Maksimi:

16 Tapaus y=0: sijoitetaan yhtälöön 1: 3x 2 + 6y 2-12 = 3x 2-12 = 0 3x 2 =12 x 2 = 4 x = ±2 Mahdollisia minimejä tai maksimeja ovat siis (2,0) ja ( 2,0) Tapaus y=2x, sijoitetaan yhtälöön 1: 3x 2 + 6y 2-12 = 3x (2x) 2-12 = 0 27x 2 12 = 0 27x 2 =12 x 2 = = 4 9 x = ± 2 3 Maksimi: Mahdollisia minimejä tai maksimeja ovat siis (2/3, 4/3) ja ( 2/3, 4/3)

17 Sta/onääristen pisteiden luonne selviää laskemalla toisten derivaa*ojen arvot. Annetulle funk/olle f xx = 6x f yy =12x 12y f xy = f yx =12y x y f xx f yy f xy f xx f yy f xy 2 luonne >0 minimi >0 maksimi Maksimi: 2/3 4/ <0 satulapiste 2/3 4/ <0 satulapiste

18 Kokonaisdifferen/aali = muu*ujan hyvin pieni muutos kun yhtä tai useampaa toista muu*ujaa muutetaan 1 ulo6einen tapaus: y = f(x) y:n hyvin pientä muutosta kun x muu*uu hyvin vähän kuvaa kokonaisdifferen/aali dy = df(x) dx = f'(x)dx dx 2 ulo6einen tapaus: z = f(x,y) z:n hyvin pientä muutosta kun x ja y muu*uvat hyvin vähän kuvaa kokonaisdifferen/aali: dz = ( f(x,y) x ) y dx + ( f(x,y) y ) x dy

19 Kokonaisdifferen/aali 3 ulo6einen tapaus: u = f(x,y,z) du = ( f(x,y,z) ) y,z dx + ( f(x,y,z) ) x,z dy + ( f(x,y,z) ) x,y dz x y z Ja vastaavas/ myös enemmän kuin 3 muu*ujan funk/oille...

20 Kokonaisdifferen/aali & integroin/ 1 ulo6einen tapaus: y = f(x) dy = f'(x)dx Δy = 2 ulo6einen tapaus: z = f(x,y) dz = ( f(x,y) x ) y Δz = z 1 y 2 dy = f'(x)dx y 1 dx + ( f(x,y) y ) x dy z 2 f(x,y) dz = ( x ) y dx + ( f(x,y) y ) x dy C x 2 x 1 reih viivaintegraali (tästä lisää myöhemmin)

21 Kokonaisdifferen/aali: esimerkkejä Laske funkaoiden kokonaisdifferenaaalit a) 1 r(x,y,z) = (x 2 + y 2 + z 2 ) 2 dr = ( r x ) y,z dx + ( r y ) x,z dy + ( r z ) x,y dz = 1 2 (x2 + y 2 + z 2 ) 1 2 [ 2xdx + 2ydy + 2zdz] b) x(r,θ,ϕ) = rsinθcosϕ dx = ( x r ) θ,ϕ dr + ( x θ ) r,ϕ dθ + ( x ϕ ) r,θ dϕ = sinθcosϕdr + rcosθcosϕdθ - sinθsinϕdϕ

22 Kokonaisdifferen/aali: esimerkkejä Laske funkaoiden kokonaisdifferenaaalit c) T(p,V,n) = pv nr dt = ( T p ) V,n dp + ( T V ) p,n dv + ( T n ) p,vdn = V nr dp + p nr dv - PV n 2 R dn

23 Kokonaisdifferen/aali: esimerkkejä Termodynamiikan perusyhtälö sanoo: du = TdS - pdv (1) U = sisäenergia, S = entropia, V = /lavuus, T = lämpö/la U:n riippuma*omat muu*ujat ovat S ja V, siis U = U(S,V) joten U:n kokonaisdifferen/aali on: du = ( U S ) VdS+ ( U V ) SdV (2) Vertaamalla yhtälöitä 1 ja 2 saadaan seuraavat /edot: ( U S ) V = T ( U V ) S = -P

24 Kokonaisdifferen/aali: esimerkkejä Esim: V= V(p,T,n) α = 1 V ( V T ) p,n terminen laajenemiskerroin κ = - 1 V ( V p ) T,n isoterminen puristuvuuskerroin V m = ( V n ) p,t moolinen tilavuus Esitä V:n kokonaisdifferen/aali näiden (mita*avien) parametrien avulla. dv = ( V p ) T,n dp + ( V T ) p,n dt + ( V n ) T,p dn = -κvdp +αvdt + V m dn

25 Funk/on virheen arvioiminen kokonaisdifferen/aalin avulla 1 ulo*einen tapaus: on vain yksi virhelähde. y = f(x) dy = f'(x)dx Δy = f'(x 0 )Δx 1)Mitataan x = x 0 x:n mi*auksen tarkkuus on Δx 2)Määritetään y sekä y:n esitystarkkuus Δy x 0 on x:n mi*austulos.

26 Esim: liuoksen ph:n mi*aus ph = log[h 3 O + ] ph:n mi*auksen virhe on tyypillises/ ± Arvioi sen vaikutusta [H 3 O + ]:n arvoon, kun ph = Ratkaisu: [ H 3 O + ] =10 ph = (e ln10 ) ph = e -ln10 ph [ ] = d [ H 3 O+ ] Δ H 3 O + dph ph=1.000 ΔpH = de-ln10 ph dph ph=1.000 ΔpH = -ln10 e -ln10 ph ph=1.000 ΔpH

27 -ln10 e -ln10 ph ΔpH ph=1.000 = -ln10 e -ln = M [H 3 O + ] = (0.100 ± 0.023)M Laske*u arvo ph = Lasketun arvon virhe ph:ta ei siis voi ilmoi*aa kuin 2 desimaalin tarkuudella koska virhe on yli [H 3 O + ] = (0.10 ± 0.02) M

28 Funk/on virheen arvioiminen kokonaisdifferen/aalin avulla Useampiulo*einen tapaus: monta virhelähde*ä. Olkoon halu*u suure u, joka riippuu mitatuista muu*ujista x 1, x 2, x 3,...,x n. u = u(x 1, x 2, x 3,...,x n ) Olkoon kutankin muu*ujaa i vastaava mi*austulos x i,0 ja k.o. muu*ujan mi*ausvirhe Δx i. Nyt saadaan suureen u maksimivirheeksi: Δu = n i=1 ( U x i x i =x i,0 Δx i )

29 Esim: ideaalikaasun /lavuus on V = (2.0 ± 0.1)dm 3 ja paine on p = (754.7 ± 0.2) torr. Mikä on kaasun lämpö/la kun n = 0.1 mol (tarkka)? Ratkaisu: pv = nrt T = pv nr Sijoitetaan arvot, saadaan T = K. T:n maksimivirhe (MP = mi*auspiste): ΔT = T V MP ΔV + T p MP Δp = torr = 0.1 mol R 0.1 dm 3 + = K T = (242 ± 12 )K 2.0 dm mol R p nr MP ΔV + V nr MP Δp 0.2 torr

30 Eksak/t ja epäeksak/t differen/aalit f = f(x,y) f:n kokonaisdifferen/aali on: df = ( f(x,y) x ) y dx + ( f(x,y) y ) x dy f yx = 2 f(x,y) y x = 2 f(x,y) x y ) = f xy Koska ris/derivaatat ovat samat Tästä saadaan tes/ sille onko differen/aalimuotoinen lauseke kokonaisdifferen/aali. Kokonaisdifferen/aali = eksak/ differen/aali

31 Eksak/t ja epäeksak/t differen/aalit Differen/aalilauseke df = G(x,y)dx + H(x,y)dy on eksak/ jos G(x,y) y = H(x,y) x Esim: onko eksak/ differen/aali? df = (x 2 + y 2 )dx + 2xydy Ratkaisu: G(x,y) = (x 2 + y 2 ) ja H(x,y) = 2xy G(x,y) on eksaka. = 2y, H(x,y) = 2y y x

32 Esim: onko eksak/ differen/aali? dv = RT dp + R p dt p 2 Ratkaisu (muu*ujat ovat nyt x:n ja y:n sijaan p ja T): dv = G(p,T)dp + H(p,T)dT G(p,T) = -RT p 2, H(p,T) = R p dv on eksaka. G(p, T) = -R H(p,T) T p 2 = -R p p 2 Esim: onko eksak/ differen/aali? dw = pdv = RT dp + RdT p Ratkaisu: G(p,T) = -RT p, H(p,T) = R G(p, T) = -R H(p, T) = 0 dw ei ole eksaka. T p p

33 Esim: /edetään e*ä entalpian differen/aali dh = TdS + Vdp on eksak/ ( = kokonaisdifferen/aali). Kuten aiemmin du:n tapauksessa, tästä voidaan suoraan päätellä: dh = TdS+ Vdp ( H S ) p ds+ ( H p ) S dp T = ( H S ) p, V = ( H p ) S Toisekseen, dh:n eksak/uden takia täytyy päteä: ( T p ) S = ( V S ) p Tämä on yksi ns. Maxwellin relaaaoista (muut voidaan johtaa vastaavalla tavalla muista eksakteista differen/aaleista, esim du, dg, da), nämä ovat termodynamiikassa varsin keskeisiä.

34 Yhdistetyn funk/on derivoin/ 1 ulo6uvuudessa F = f(x) ja x = x(u) Tällöin f=f(u) df(x) du = df(x) dx dx du 2 ulo*uvuudessa f = f(x,y) ja x = x(u,v), y = y(u,v) Tällöin f = f(u,v) ( f u ) v = ( f x ) y( x u ) v + ( f y ) x( y u ) v

35 Esimerkki liuoskemian kurssilta: Liuoksen puskurikapasiteeh on Puskuriliuokselle joka on tehty hapon HA vesiliuoksesta lisäämällä emästä NaOH: c B = K HA c K HA + H 3 O + [ ] K HA = hapon HA happovakio, c = [HA] + [A ] c B = lisätyn emäksen määrä = [Na + ] P = dc B dph = d dph ( K HA c K HA + H 3 O + [ ] ) P = dc B dph [ H 3 O + ] = e -ln10 ph = d d[ H 3 O + ] ( K c HA K HA + H 3 O + [ ] ) d [ H 3 O + ] dph

36 P = d [ ] ( K HAc K HA + [ H 3 O + ] ) d [ H 3 O + ] dph d H 3 O + d = K HA c d H 3 O + (K HA + [ H 3 O + ]) ) d(e -ln10 ph ) dph [ ] ( 1-1 = K HA c -ln10 (K HA + [ H 3 O + e-ln10 ph 2 ]) [ ] K HAc H 3 O + (K HA + [ H 3 O + ]) 2

37 Z = Z(x,y) dz = ( Z x ) y dx + ( Z y ) x dy Tapaus 1 x = vakio, dx=0 dz = ( Z y ) x dy Tarpeellisia kaavoja "Jaetaan dz:lla ja muistetaan e*ä x on vakio" ( Z Z ) x =1 = ( Z y ) x( y Z ) x ( Z y ) x = 1 ( y Z ) x : ( y Z ) x Huom: molemmissa osi*aisderivaa/ossa x vakio

38 Z = Z(x,y) dz = ( Z x ) y dx + ( Z y ) x dy Tapaus 2 z = vakio, dz=0 ( Z x ) y dx + ( Z y ) x dy = 0 Tarpeellisia kaavoja "Jaetaan dy:lla ja muistetaan e*ä z on vakio" ( Z x ) y( x y ) z + ( Z y ) x( y y ) z = ( Z x ) y( x y ) z + ( Z y ) x 1 = 0 ( Z x ) y( x y ) z = ( Z y ) x Huom: kaikissa kolmessa osi*aisderivaatassa on eri muu*uja vakiona (epäintui/ivinen miinusmerkki tulee tästä)

39 Tarpeellisia kaavoja Yhdistetään edelliset 2 tulosta. ( Z y ) x = 1 ( y Z ) x ( Z x ) y( x y ) z =, toisaalta ( Z x ) y ( x y ) z = ( Z y ) x 1 ( y Z ) x ( Z x ) y( x y ) z( y Z ) x = 1 Huom: kaikissa kolmessa osi*aisderivaatassa on eri muu*uja vakiona (epäintui/ivinen miinusmerkki tulee tästä)

40 Esimerkki 1 : pv = nrt, n vakio lasketaan ( P V ) T( V T ) p( T p ) V p = nrt V, V = nrt p, T = pv nr ( P V ) T ( V T ) p ( T p ) V ( nrt = ( V ) ( nrt V ) T ( p ) pv ( T ) p ( nr ) p = nrt V 2 = - nrt nrt = -1 nr p V nr = nrt pv ) V pv = nrt

41 Esimerkki 2 : ilmaise ( p T ) V seuraavien vakioiden avulla : α = 1 V ( V T ) p, κ = - 1 V ( V p ) T Ratkaisu : ( p T ) V( T V ) p( V p ) T = 1 ( p T ) V( V p ) T = ( p T ) V = 1 ( V T ) p ( V p ) T 1 ( T V ) p = = 1( V T ) p 1 V ( V T ) p 1 V ( V p ) T = α κ

8. Monen muu*ujan funk/on differen/aalilaskenta

8. Monen muu*ujan funk/on differen/aalilaskenta 8. Monen muu*ujan funk/on differen/aalilaskenta Esim 1. Ideaalikaasun /lanyhtälö p = nrt V Paine riippuu /lavuudesta, ainemäärästä ja lämpö/lasta: p = p(n, T, V) Esim 2. Hiukkasen aaltofunk/o kolmiulo*eisessa

Lisätiedot

7. Monen muu/ujan funk4on differen4aalilaskenta

7. Monen muu/ujan funk4on differen4aalilaskenta 7. Monen muu/ujan funk4on differen4aalilaskenta Esim 1. Ideaalikaasun 4lanyhtälö p = nrt V Paine riippuu 4lavuudesta, ainemäärästä ja lämpö4lasta: p = p(n, T, V) Esim 2. Hiukkasen aaltofunk4o kolmiulo/eisessa

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta

Viivaintegraali: Pac- Man - tulkinta Viivaintegraali: "Pac- Man" - tulkinta Otetaan funk6o f(x,y), joka riippuu muu@ujista x ja y. Jokaiselle x,y tason pisteellä funk6olla on siis joku arvo. Tyypillisiä fysikaalis- kemiallisia esimerkkejä

Lisätiedot

Esim 1 Esim 2 ei käsitellä tällä kurssilla

Esim 1 Esim 2 ei käsitellä tällä kurssilla 8. Monen m-jan fnk2on differen2aalilaskenta Esim 1. Ideaalikaasn 2lanhtälö p = nrt V Paine riipp 2ladesta, ainemäärästä ja lämpö2lasta: p = p(n, T, V) Usean m-jen fnk2on piirtäminen Z = f(,) kaaja on pinta

Lisätiedot

Thermodynamics is Two Laws and a Li2le Calculus

Thermodynamics is Two Laws and a Li2le Calculus Thermodynamics is Two Laws and a Li2le Calculus Termodynamiikka on joukko työkaluja, joiden avulla voidaan tarkastella energiaan ja entropiaan lii2yviä ilmiötä kaikissa luonnonilmiöissä ja lai2eissa Voidaan

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A > B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

Matematiikka B1 - TUDI

Matematiikka B1 - TUDI Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin

Lisätiedot

11. Virheen arvioin-

11. Virheen arvioin- 11. Virhee arvioi- = mi%austarkkude ja määritystarkkuude arvioi4. Erilaisia virheitä: 1. Karkeat virheet Huolima5omuudesta tai työvirheestä johtuva moka Usei huomaa äly5ömää tuloksea 2. Systemaa?set virheet

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

Mat Matematiikan peruskurssi K2

Mat Matematiikan peruskurssi K2 Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =

Lisätiedot

Osa 11. Differen-aaliyhtälöt

Osa 11. Differen-aaliyhtälöt Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

Luku Pääsääntö (The Second Law)

Luku Pääsääntö (The Second Law) Luku 3 2. Pääsääntö (he Second Law) Some things happen naturally, some things don t Spontaneous must be interpreted as a natural tendency that may or may not be realized in prac=ce. hermodynamics is silent

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

4. Integraalilaskenta

4. Integraalilaskenta 4. Integraalilaskenta Johda3eleva esimerkki: kun hiukkasen paikka s(t) derivoidaan ajan suhteen, saadaan hiukkasen nopeus: v(t) = s'(t) Kun nopeus derivoidaan ajan suhteen saadaan kiihtyvyys a(t) = v'(t)

Lisätiedot

( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V

( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Vektorilaskenta, tentti

Vektorilaskenta, tentti Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö:

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö: 9//3 Osi+aisintegroin3 Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) = df(x) g(x) + f(x) dg(x) f(x)

Lisätiedot

edition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.

edition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti. 1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2014 Luennoitsija: Jukka Maalampi Luennot: 53-55, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 16 ja 17 eli 14 274 Harjoitusassistentti: Ville Kotimäki Laskuharjoitukset:

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

Luennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko).

Luennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko). 1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2017 Luennoitsija: Jukka Maalampi Luennot: 63 35, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 15 (pääsiäisviikko) Harjoitusassistentit: Petri Kuusela ja Tapani

Lisätiedot

4. Integraalilaskenta

4. Integraalilaskenta 4. Integraalilaskenta Johda3eleva esimerkki: kun hiukkasen paikka s(t) derivoidaan ajan suhteen, saadaan hiukkasen nopeus: v(t) = s'(t) Kun nopeus derivoidaan ajan suhteen saadaan kiihtyvyys a(t) = v'(t)

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G: 7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012

763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012 763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan

Lisätiedot

Fr ( ) Fxyz (,, ), täytyy integroida:

Fr ( ) Fxyz (,, ), täytyy integroida: 15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x)

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x) /9/ Osi*aisintegroin Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) df(x) g(x) + f(x) dg(x) f(x) g(x)

Lisätiedot

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

Tilavuusintegroin3. Tilavuusintegroin3

Tilavuusintegroin3. Tilavuusintegroin3 /5/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x,y,z)dxdydz z 2 # y 2 # x 2 & & = % % f(x,y,z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa

Lisätiedot

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre. 2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.

Lisätiedot

Vektorianalyysi II (MAT21020), syksy 2018

Vektorianalyysi II (MAT21020), syksy 2018 Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz

Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz /9/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x, y, z)dxdydz z 2 # y 2 # x 2 & & = % % f(x, y, z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 / M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

9. Tilasto+eteen eri/äin alkeelliset alkeet ja virheen arvioin+

9. Tilasto+eteen eri/äin alkeelliset alkeet ja virheen arvioin+ 9. Tilasto+eteen eri/äin alkeelliset alkeet ja virheen arvioin+ Kemiassa ja muissa luonnon+eteissä käsitellään usein suuria määriä mi/ausdataa. Mi/ausdatan käsi/elyä ja jatkojalostusta varten (esim: selostusten

Lisätiedot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Derivaatta: funktion approksimaatio lineaarikuvauksella. Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen

Lisätiedot