802120P Matriisilaskenta (5 op)
|
|
- Aku Nieminen
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 802120P Matriisilaskenta (5 op) Tero Vedenjuoksu Matemaattiset tieteet Syksy / 159 Luennoitsija: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi M321 Kurssilla käytetään Noppaa (noppa.oulu.fi) sekäoptimaa (optima.oulu.fi) Luentomoniste (osissa Noppaan) Harjoitustehtävät, luennot Luento- ja harjoitusajat Tenttiajat Verkkomateriaalia: YouTube, Khan Academy ( 2 / 159
2 Opintojakson suorittaminen Kurssi koostuu luentotapaamisista, ryhmätyöskentelystä sekä itsenäisestä opiskelusta. Viikottain tehtäviä asioita: luentojen esitehtävät (esim. helpohko ongelma ratkaistavaksi ja tulevan kerran käsitteisiin tutustumista) Luennoilla ratkaistavat tehtävät Kurssi suoritetaan loppukokeella TAI jatkuvan arvioinnin kautta. Jatkuva arvionti: Palautettavat viikkotehtävät sekä ennakkotehtävät (n. 3-4 teht /viikko) Itsearvioinnit (oliko hankalia asioita, miten osaan asiakokonaisuuksia, miten paljon käytin aikaa läpikäymiseen, minkä arvosanan antaisin itselleni,...) Päättötyö/-koe Jatkuvassa arvioinnissa kaikki osat pakollisia. Tarkemmat ohjeet sekä piste/arvosanataulukko tulee Optimaan. 3 / 159 Mistä tukea opintojakson sisältöjen opiskeluun Luennot TI ja TO klo Valmistaudu ennakkoon tekemällä ennakkotehtävä Ryhmätyöskentelyä Uskalla kysyä ja keskeyttää Tutortupa (3. krs) avoinna MA-PE Laskuharjoitukset/laskupäivät To Pe Ke / 159
3 Lineaarialgebraa ja matriiseja tarvitaan lähes jokaisella matematiikan kurssilla, ja lisäksi tilastotieteessä, fysiikassa,... Sovelluskohteita: Kuvankäsittely Signaalinkäsittely Tomografia GPS Virheen havaitsevat koodit ja virheen korjaavat koodit Kuvanpakkaus... 5 / 159 Kurssin sisältöä: Vektorit Lineaarinen yhtälöryhmä ja sen ratkaiseminen Matriisit ja niiden laskutoimitukset Determinantti Vektoriavaruudet Matriisin ominaisarvot ja ominaisvektorit Similaarisuus ja diagonalisoituvuus 6 / 159
4 Vektorit 7 / 159 Määritelmä 1 Olkoon n 2 N = {1, 2, 3,...}. Jono x =(x 1, x 2,...,x n ), missä x 1, x 2,...,x n 2 R, on n-ulotteinen tai n-komponenttinen vektori. Kaikkien n-ulotteisten vektorien joukko on avaruus R n, ts. R n = {(x 1, x 2,...,x n ) x 1, x 2,...,x n 2 R}. Vektorit x, y 2 R n ovat samat, jos x i = y i kaikilla i = 1,...,n. Olkoot x, y 2 R n ja 2 R. Tällöin x + y = (x 1 + y 1, x 2 + y 2,...,x n + y n ) 2 R n ja x = ( x 1, x 2,..., x n ) 2 R n. 8 / 159
5 Lause 1 Olkoot x, y, z 2 R n ja,µ2 R. Tällöin (a) x + y = y + x (vaihdannaisuus) (b) x +(y + z) =(x + y)+z (liitännäisyys) (c) on olemassa nollavektori 0 =(0,...,0) 2 R n ja x + 0 = x (d) on olemassa vastavektori x = 1 x ja x +( x) =0 (e) (µx) =( µ)x (f) 1 x = x (g) ( + µ)x = x + µx (h) (x + y) = x + y (osittelulait). Huomautus Edellisen lauseen (d)-kohdan nojalla jokaisella vektorilla y 2 R n on vastavektori y 2 R n. Otetaan käyttöön lyhennysmerkintä x y := x +( y). 9 / 159 Määritelmä 2 Vektoreiden u =(u 1,...,u n ) 2 R n ja v =(v 1,...,v n ) 2 R n pistetulo on u v = u 1 v 1 + u 2 v u n v n. Määritelmä 3 Vektorit u 2 R n ja v 2 R n ovat ortogonaaliset eli kohtisuorassa toisiaan vastaan, jos u v = / 159
6 Luentopähkinät Ratkaise ryhmissä 1 Olkoot u =(1, 3, 5, 2), v =( 3, 6, 3, 1) ja w =(2, 1, 1, 3). a) Laske v + 4w. b) Ovatko jotkin vektoreista ortogonaaliset? c) Ratkaise x =(x 1, x 2, x 3, x 4 ) yhtälöstä 2x = u 3w. 2 Olkoot x, y, z 2 R n ja,µ2 R. Osoita, että (a) x +(y + z) =(x + y)+z (b) ( + µ)x = x + µx. 11 / 159 Määritelmä 4 Avaruuden R n, n = 2, 3, suora on joukko {u + kv k 2 R}, missä u 2 R n ja v 2 R n \{0}. Tätä suoran esitystä kutsutaan suoran vektoriesitykseksi. Vektoria u kutsutaan paikkavektoriksi ja vektoria v suuntavektoriksi. Avaruuden R 2 suora voidaan esittää myös muodossa ax 1 + bx 2 + c = 0, missä a, b, c 2 R ja vähintään toinen luvuista a tai b on nollasta eroava. 12 / 159
7 Määritelmä 5 Avaruuden R 3 taso on joukko {u + kv + tw k, t 2 R}, missä u 2 R 3 ja v, w 2 R 3 \{0} ja vektorit v ja w eivät ole yhdensuuntaiset. Vektoria u kutsutaan paikkavektoriksi ja vektoreita v ja w suuntavektoreiksi. Taso avaruudessa R 3 on myös sellaisten pisteiden (x 1, x 2, x 3 ) 2 R 3 joukko, jotka toteuttavat yhtälön ax 1 + bx 2 + cx 3 + d = 0, missä a, b, c, d 2 R ja ainakin yksi luvuista a, b, c on nollasta eroava. Tätä yhtälöä kutsutaan tason skalaariyhtälöksi. 13 / 159 Luentopähkinät 1 Olkoot x =(1, 1, 1), y =(4, 0, 2) ja z =(0, 1, 1) avaruuden R 3 pisteitä. Kirjoita näiden pisteiden kautta kulkeva taso vektorimuodossa {u + kw + tv k, t 2 R}. 2 Tiedetään, että vektori n =( 2, 5, 1) on kohtisuorassa edellisen tehtävän tasoa vastaan. Määrää taso skalaariyhtälönä eli muodossa ax 1 + bx 2 + cx 3 + d = / 159
Vektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotVastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin
1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
Lisätiedot802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
Lisätiedot802120P MATRIISILASKENTA (5 op)
802120P MARIIILAKENA (5 op) Oulun yliopisto Matemaattiset tieteet 2015 ero Vedenjuoksu 1 Alkusanat ämä luentomoniste pohjautuu osaksi Esa Järvenpään (2011) ja osaksi Hanna Kiilin (2014) kurssin Lineaarialgebra
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotTASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotVEKTORIT paikkavektori OA
paikkavektori OA Piste A = (2, -1) Paikkavektori OA = 2i j 3D: kuvan piirtäminen hankalaa Piste A = (2, -3, 4) Paikkavektori OA = 2i 3j + 4k Piste A = (a 1, a 2, a 3 ) Paikkavektori OA = a 1 i + a 2 j
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
LisätiedotYleiset lineaarimuunnokset
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotHilbertin avaruudet, 5op Hilbert spaces, 5 cr
Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotPaikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotSuorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
LisätiedotTehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
LisätiedotTalousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo
Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
LisätiedotMS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotSuora. Hannu Lehto. Lahden Lyseon lukio
Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotTaso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
LisätiedotKohdeyleisö: toisen vuoden teekkari
Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotAvaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät
11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit
LisätiedotLineaarialgebra MATH.1040 / voima
Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Lisätiedot1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotTekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
LisätiedotPistetulo eli skalaaritulo
Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotMS-A0002 Matriisilaskenta Luento 1:Vektorit ja lineaariyhdistelyt
MS-A0002 Matriisilaskenta Luento 1:Vektorit ja lineaariyhdistelyt Antti Rasila 2016 Vektorit Pysty- eli sarakevektori v = ( v1 v 2 missä v 1, v 2 ovat v:n komponentit. ), Matriisilaskenta 2/6 Vektorit
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
Lisätiedotf(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
LisätiedotFunktiot ja raja-arvo P, 5op
Funktiot ja raja-arvo 800119P, 5op Pekka Salmi 15. syyskuuta 2017 Pekka Salmi FUNK 15. syyskuuta 2017 1 / 122 Yleistä Luennot: ke 810, to 1214 (ensi viikosta lähtien) Luennoitsija: Pekka Salmi, MA327 Laskupäivä:
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Lisätiedot