Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV
|
|
- Sanna-Kaisa Jääskeläinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat-.4 Optimointiopin seminaari, syksy 999 Referaatti Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV
2 JOHDATO Ross D. Shachter a C. Robert Kenley (989) esittelevät artikkelissaan Gaussian Influence Diagrams vaikutuskaavion sovelluksen, ossa okaisessa solmussa oleva muuttua on atkuva a normaaliakautunut. Jokaisen muuttuan odotusarvo a varianssi riippuu sen edeltäien odotusarvoista a variansseista. Tällaista vaikutuskaaviota he kutsuvat gaussiseksi vaikutuskaavioksi. GAUSSIE VAIKUTUSKAAVIO Jotta vaikutuskaaviota voitaisiin kuvata matemaattisesti, sen solmut tulee indeksoida (indeksioukoksi ), olloin solmuihin voidaan viitata niiden indeksillä. Käytäntönä on ollut numeroida solmut siten, että okaisen solmun edeltäillä on pienemmät indeksit kuin itse solmulla, olloin algoritmien kiroittaminen vaikutuskaavion muunnoksille helpottuu. Tapana on myös ollut merkitä solmua pienellä kiraimella (esim. ) a solmuoukkoa isolla kiraimella (esim. J). C():llä merkitään solmun edeltäien (indeksi)oukkoa a S():llä solmun (suorien) seuraaien oukkoa. Solmuun liittyvää muuttuaa merkitään, a solmuoukkoon J liittyviä muuttuia vastaa vektori J. Kaikki gaussisen vaikutuskaavion muuttuat ovat normaaliakautuneita, a niitä karakterisoivat kullekin muuttualle ominainen ehdollinen odotusarvo µ i a ehdollinen varianssi v i (ossa i on solmun indeksi). Solmuen muuttuat riippuvat edeltäistään, mitä kuvataan solmuun tulevilla kaarilla. Jokaiseen kaareen liittyy lineaarinen termi b i (i:stä :hin), oka kuvaa riippuvuussuhteen voimakkuutta. Gaussinen vaikutuskaavio voidaan kiroittaa kokonaisuudessaan seuraavina regressioyhtälöinä: = µ + [ bk ( k µ k )] + v Z, =,..., n k C ( ) missä n on solmuen lukumäärä a Z,, Z ovat (0,)-normaaliakautuneita riippumattomia satunnaismuuttuia. Lineaarinen termi b i kertoo, kuinka palon :n odotusarvo muuttuu, kun i :n poikkeaa odotusarvostaan. Tästä seuraava tärkeä ilmiö gaussisessa vaikutuskaaviossa on muuttuan odotusarvon muutoksen leviäminen. Kun muuttuan i odotusarvo muuttuu, leviää muutos okaista solmusta i lähtevää (suunnattua)
3 b (µ, v ) (µ, v ) µ ' = E[ = E[ µ = µ + b + b ] = E[ E[ ( µ ( ' µ µ )] )] ]] Kuva. Solmun muuttuan odotusarvon muutos arvosta µ arvoon µ leviää solmuun. polkua pitkin. Kuvassa on havainnolistettu tämä kahden solmun vaikutuskaaviossa. Haittaparametriksi sanotaan muuttuaa, olla ei ole merkitystä päätöksentekiälle. () Gaussisesta vaikutuskaaviosta voidaan poistaa sellaiset solmut, oissa on haittaparametri a oilla ei ole yhtään seuraaaa. () Kahden sattumasolmun välinen kaari voidaan kääntää, olloin vaikutuskaavion solmuen odotusarvot a varianssit sekä lineaariset termit muuttuvat. (3) Mikä tahansa sattumasolmu voidaan poistaa, os kaaret sen seuraaiin käännetään, minkä älkeen se voidaan poistaa ():n perusteella. 3 ELIÖLLIE ARVOFUKTIO Gaussiseen vaikutuskaavioon voi liittyä yksi hyötysolmu, ota merkitään indeksillä 0. Hyötysolmu ei varsinaisesti kuulu vaikutuskaavioon (0 ). Hyötysolmun muuttua 0 on päätöksen tekiän kriteeri vaikutuskaavion hyödystä. Se riippuu kaikista vaikutuskaavion muuttuista, eli kaikista solmuista on kaari hyötysolmuun. Arvofunktio V( ) on 0 :n ehdollinen odotusarvo kaikkien vaikutuskaavion solmuen suhteen eli V ( + T T ) = E[ 0 ] = Q + p r, missä Q on symmetrinen. Arvofunktiota päivitetään aina, kun vaikutuskaavosta poistetaan solmu. Päivitys tapahtuu Schahterin a Kenleyn ohtamalla lauseella, ota tässä ei kuitenkaan käsitellä. Kun vaikutuskaaviosta on redusoitu kaikki solmut pois, vaikutuskaavion hyöty (arvofunktion arvo V( )) saadaan vakion r arvona.
4 4 PÄÄTÖSSOLMUT Gaussisen vaikutuskaavion päätössolmussa on muuttua, onka odotusarvon suuruutta päätöksentekiä kontrolloi. Päätössolmuen varianssi on yleensä nolla, vaikkakin olisi mahdollista tarkastella päätöksiä, oissa on epävarmuutta. Kuten tavallisissakin vaikutuskaaviossa päätössolmuihin osoittavat kaaret kertovat, minkä muuttuien realisaatiot päätöksentekiä tietää päätöshetkellä. Päätösmuuttuille tarvitaan referenssiarvot, oiden avulla muiden muuttuien parametrit voidaan arvioida. Vaikutuskaaviota ratkaistaessa päätössolmu voidaan korvata sattumasolmulla, onka muuttuan odotusarvoksi tulee optimaalinen päätös a varianssiksi 0. Optimaalinen päätös voidaan selvittää melko yksinkertaisesti soveltamalla tähän tarkoitukseen ohdettua lausetta. Tässä referaatissa sitä ei kuitenkaan käsitellä tarkemmin. 5 VAIKUTUSKAAVIO RAKETAMIE Kuvassa on konsultin ongelman gaussinen vaikutuskaavio. Se kuvaa tilannetta, ossa konsultti haluaa vuokrata omistamaansa tietokonetta silloin, kun hän ei itse käytä sitä. (00, 0) ( 500, ) (58 000, ) -5 ( 500, ) Konsultointihinthinta Konsultointi- Konsul- Konsultointitunnitunnitointi (3 500, 00) Konsul- Konsultointikulukulutointi- 33 Konsul- Konsultointiarviarvitointi Vapaat Vapaat tunnit tunnit Tuotto Tuotto 00 Tietokoneaan Tietokoneaan vuokraushinta vuokraushinta 66 Vuokraustunnitunnikulukulut Vuokraus- Vuokraus Vuokraus (5, 0) (750, 0 000) (5 000, ) Kuva. Konsultin ongelman gaussinen vaikutuskaavio. Solmun vieressä olevat numerot ovat solmun muuttuan keskiarvo a varianssi, tässä ärestyksessä.
5 Vaikutuskaaviota rakennettaessa mietitään ensiksi, mitä muuttuia on olemassa a mitkä ovat niiden väliset suhteet, eli muodostetaan vaikutuskaavio, ossa ei ole numeroarvoa. Sen älkeen okaiselle muuttualle asetetaan indeksiärestyksessä okin referenssiarvo a arvioidaan, mitä tällöin sen seuraaat saavat arvokseen. Esimerkiksi konsultin ongelmassa konsultti on asettanut konsultointihinnan referenssiarvoksi 00, olla hän arvelee saavansa odotusarvoisesti 500 konsultointituntia. Konsultointituntien määrä ei ole vakio vaan normaaliakautunut muuttua, olla on varianssi Yhden dollarin konsultointihinnan noston konsultti on arvioinut alentavan konsultointituntien odotusarvoa viidellä. Samoin konsultti on arvioinut, että mikäli konsultointituntea on enemmän kuin niiden odotusarvo 500, niin okaista tuntia kohden konsultointikulut nousevat $4:llä, konsultointiarviota kasvatetaan yhdellä a vapaat tunnit vähenevät kolmella. Jos konsultointituntea on alle 500, on muutos konsultointituntisolmun seuraaissa päinvastainen. Konsultin ongelman arvofunktio on konsultointihinta*konsultointitunnit + tietokoneen vuokrausaika*vuokraustunnit konsultointikulut vuokrauskulut eli V( ) = * + 6 * 7 3 8, oka on neliöllistä muotoa. 6 POHDITOJA Gaussinen vaikutuskaavio eroaa tavallisesta vaikutuskaaviosta monella eri tavalla. Täydellisestä gaussisesta vaikutuskaaviosta ilmenee selkeästi solmuen välisien suhteiden painot a muuttuien tunnusluvut. Tällaista esitysmuotoa ei tavallisessa vaikutuskaaviossa ole. Gaussisessa vaikutuskaaviossa muuttuat ovat atkuvia, kun taas tavallisessa vaikutuskaavion ne ovat diskreetteä. Jatkuvilla muuttuilla ei ouduta raoittumaan tarkastelemaan yksinkertaisia skenaarioita. Kuitenkin gaussisessa vaikutuskaaviossa kaikkien muuttuien on oltava normaaliakautuneita, mitä todellisuuden ilmiöt eivät välttämättä ole. Lisäksi mikäli mallinnettavassa ilmiössä on selvästi diskreetteä muuttuia (esim. syttyykö sota), on gaussisen vaikutuskaavion soveltaminen vaikeaa. ämä tosiasiat raoittavat huomattavasti gaussisen vaikutuskaavion käyttöä. Vaikka kaikki mallinnettavat muuttuat olisivatkin normaaliakautuneita, ongelmaksi tulee odotusarvoen, varianssien a lineaaristen termien arviointi. Jos
6 oitain näistä termeistä ei osata arvioida luotettavasti, ei vaikutuskaavionkaan tuloksiin voida luottaa. Mallin lineaarisuus sattaa puolestaan ohtaa siihen, että onkun luonnostaan ei-negatiivisen muuttuan odotusarvo voi pudota alle nollan, kun sen edeltäien odotusarvot muuttuvat. Lisäksi normaaliakauman ominaisuuksiin kuuluu, että se saa arvoa koko reaaliakselilta, oten negatiivisten tai kohtuuttoman suurten arvoen saaminen on mahdollista vaikkakin hyvin epätodennäköistä. Arvofunktio oli määritelty muuttuan 0 ehdollisena odotusarvona. Arvofunktiota tarkastellessa ei siis mallin variansseilla ole mitään merkitystä, mikä voi olla harhaanohtavaa. Toisaalta voitaisiin tarkastella (esim. Monte Carlo simuloinneilla), miten kriteerin arvo 0 käyttäytyy optimipäätöksillä, a tehdä siitä lisää ohtopäätöksiä. Varianssien tarkasteluun a arviointiin Schahter a Kenley eivät kuitenkaan artikkelissaan puuttuneet. LÄHDELUETTELO Ross D. Schahter, C. Robert Kenley (989). Gaussian Influence Diagrams, Management Science, Vol 35, o.5, May 989.
Dynaaminen ohjelmointi ja vaikutuskaaviot
Teknillinen Korkeakoulu / Ssteemianalsin laboratorio Mat-2.42 Optimointiopin seminaari / Referaatti esitelmästä Sami Mllmäki Dnaaminen ohjelmointi ja vaikutuskaaviot OHDANTO Dnaamiset ohjelmointitehtävät
LisätiedotDynaaminen ohjelmointi ja vaikutuskaaviot
Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin
LisätiedotDemspter-Shafer -sovellus (ja Dempster-Shafer vs. Bayes)
Mat-2.42 Optimointiopin seminaari, Syksy 999 Uskomusverkot a vaikutuskaaviot Referaatti Demspter-Shafer -sovellus (a Dempster-Shafer vs. Bayes) Jyri Mustaoki 7..999 . Johdanto Esitelmä perustuu artikkeliin
LisätiedotINTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti
12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee
LisätiedotYhteistyötä sisältämätön peliteoria jatkuu
Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen
LisätiedotParametrien oppiminen
38 Parametrie oppimie Tilastollise malli (Bayes-verkko rakee o kiiitetty, se umeeriste parametrie (ehdolliste todeäköisyyksie arvot pyritää määräämää Oletamme havaitoe oleva täydellisiä; s.o., okaise datapistee
LisätiedotMTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Lisätiedot= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
LisätiedotMoniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
LisätiedotAlgoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
LisätiedotMoniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat
.9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein
LisätiedotTodennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
LisätiedotTilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
LisätiedotJohdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
Lisätiedot9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
LisätiedotMat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
Lisätiedot. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LisätiedotMTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotOdotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot.. Tehtävä Edellinen tehtävä voidaan ratkaista mm. Bellman-Fordin, Floyd-Warshallin tai Dikstran algoritmilla. Kyseessä on syklitön suunnattu verkko, oten algoritmi. (lyhimmät tiet
LisätiedotDepartment of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.
Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla
LisätiedotTilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
Lisätiedotr = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
LisätiedotTässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
LisätiedotVerkon värittämistä hajautetuilla algoritmeilla
Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analsin perusteet, kevät 007. luento: Kaksisuuntainen varianssianalsi Kai Virtanen Kaksisuuntaisen varianssianalsin perusasetelma aetaan perusoukko rhmiin kahden tekän A a B suhteen
LisätiedotMS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotIlkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
LisätiedotUskomusverkot: Lääketieteelliset sovellukset
Teknillinen korkeakoulu Systeemianalyysin laboratorio Mat-2.142 Optimointiopin seminaari Referaatti Uskomusverkot: Lääketieteelliset sovellukset Sami Nousiainen 44433N Tf V 2 1. JOHDANTO 3 2. YKSINKERTAINEN
LisätiedotOPTIMAALINEN INVESTOINTIPÄÄTÖS
OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotTodennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
LisätiedotGaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely)
Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely) Ohjaaja: TkT Aki Vehtari Valvoja: Prof. Harri Ehtamo Kandidaattiseminaari 21 1.11.21 Esityksen rakenne Tausta Derivaattahavaintojen
Lisätiedot2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
LisätiedotLuku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
LisätiedotFoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
LisätiedotPARITUS KAKSIJAKOISESSA
PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Lisätiedot12. Korkojohdannaiset
2. Korkojohdannaiset. Lähtökohtia Korkojohdannaiset ovat arvopapereita, joiden tuotto riippuu korkojen kehityksestä. korot liittyvät lähes kaikkiin liiketoimiin korkojohdannaiset ovat tärkeitä. korkojohdannaisilla
LisätiedotTodennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
LisätiedotEpäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Lisätiedot30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Lisätiedotmonitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.
Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu
LisätiedotReaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien
Lisätiedot8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
LisätiedotMarkov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät
LisätiedotOletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
LisätiedotDynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
LisätiedotLuento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
LisätiedotTilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
LisätiedotAseiden leviämisen estäminen
Mat-2.142 Optimointiopin seminaari 6.10.1999 Antti Pirinen Aseiden leviämisen estäminen Menetelmä sotilaallisten järjestelmien tehokkuuden arvioimiseksi Referaatti Lähde: Stafira, Parnell, Moore : A Methodology
Lisätiedot4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys
LisätiedotOvatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.
5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan
LisätiedotP (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
LisätiedotYleistetyistä lineaarisista malleista
Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
LisätiedotTentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.
Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).
LisätiedotNollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
LisätiedotLineaariset luokittelumallit: regressio ja erotteluanalyysi
Lineaariset luokittelumallit: regressio ja erotteluanalyysi Aira Hast Johdanto Tarkastellaan menetelmiä, joissa luokittelu tehdään lineaaristen menetelmien avulla. Avaruus jaetaan päätösrajojen avulla
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotThe Metropolis-Hastings Algorithm
The Metropolis-Hastings Algorithm Chapters 6.1 6.3 from Monte Carlo Statistical Methods by Christian P. Robert and George Casella 08.03.2004 Harri Lähdesmäki The Metropolis-Hastings Algorithm p. 1/21 Taustaa
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotInduktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
LisätiedotValintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden
LisätiedotTilastotieteen aihehakemisto
Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet
LisätiedotMatemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto
Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin
LisätiedotTehokas ilmaisku. Terminologiaa. Ilmaisku. Tavoitteiden saavuttaminen. Suunnittelun tavoitteet. S ysteemianalyysin Laboratorio Teknillinen korkeakoulu
Tehokas ilmaisku -Päätösanalyysi suunnittelun tukena- Ilmaisku Terminologiaa saattajat viholliskohde lento saattajat yhteinen viholliskohde määrittää lennon maantieteellinen läheisyys t tukevat toisiaan
LisätiedotTilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
LisätiedotHarha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
LisätiedotMoraalinen uhkapeli: perusmalli ja optimaalinen sopimus
Moraalinen uhkapeli: perusmalli a optimaalinen sopimus Mat-2.4142 Optimointiopin seminaari Mauno Taaamaa 18.02.2008 Esityksen rakenne Johdanto moraalisen uhkapelin käsite) Yksinkertaistettu tapaus a sen
LisätiedotTilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
LisätiedotLuento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
LisätiedotOsakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
Lisätiedot8.1 Ehdolliset jakaumat
8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotJYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
LisätiedotORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa.
ORMS00 Päätöksenteko epävarmuuden vallitessa Syksy 008 Harjoitus Ratkaisuehdotuksia Nämä harjoitukset liittyvät päätöspuiden rakentamiseen: varsinaista päätöksentekoa päätöspuiden avulla tarkastellaan
LisätiedotSilmukkaoptimoinnista
sta TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale
LisätiedotOtosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
LisätiedotTKK @ Ilkka Mellin (2008) 1/5
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,
LisätiedotSallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
LisätiedotSisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17
Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat
LisätiedotPäätöksentekomenetelmät
L u e n t o Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päätösongelmia löytyy joka paikasta Päästökauppa:
LisätiedotT Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedot