Verkon värittämistä hajautetuilla algoritmeilla
|
|
- Hilja Kähkönen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Verkon värittämistä hajautetuilla algoritmeilla Jukka Suomela tammikuuta
2 Verkko 2
3 Verkko solmu 3
4 Verkko solmu kaari 4
5 Hajautettu järjestelmä solmu (tietokone) kaari (tiedonsiirtoyhteys) 5
6 Verkon väritys Naapurisolmut aina eri värisiä kukin solmu v tulostaa värin c(v) {1, 2,, k} jos verkossa on kaari {u, v} niin oltava c(u) c(v) 6
7 Verkon väritys Sovelluksia: resurssien jakaminen, aikatauluttaminen kaari = radiolähetykset häiritsevät toisiaan väri = radiokanava kaikki voivat lähettää samaan aikaan 7
8 Verkon väritys Keskeinen hajautetun laskennan alalla Moni ongelma palautettavissa verkon väritykseen joskus myös päinvastoin nopea algoritmi verkon väritykseen nopea algoritmi maksimaalisiin riippumattomiin joukkoihin 8
9 Verkon väritys Värittäminen mahdollisimman pienellä määrällä värejä vaikeaa olisiko 3 väriä riittänyt tässä? yleisesti NP-kova ongelma 9
10 Verkon väritys Värittäminen mahdollisimman pienellä määrällä värejä vaikeaa Mutta hyvin helppoa, jos värejä käytettävissä reilusti ahne algoritmi 10
11 Verkon väritys hajautetulla algoritmilla? Värittäminen mahdollisimman pienellä määrällä värejä vaikeaa Mutta hyvin helppoa, jos värejä käytettävissä reilusti ahne algoritmi 11
12 Verkon väritys Miten rikkoa symmetria? identtiset tietokoneet sama deterministinen algoritmi käynnistetään samaan aikaan, toimivat synkronisesti symmetrinen verkko 12
13 Verkon väritys Kaikki solmut samassa tilassa ennen kierrosta 1 kaikki lähettävät samat viestit kierroksella 1 kaikki vastaanottavat samat viestit kierroksella 1 Kaikki solmut samassa tilassa kierroksen 1 jälkeen 13
14 Verkon väritys Kaikki solmut samassa tilassa ennen kierrosta i kaikki lähettävät samat viestit kierroksella i kaikki vastaanottavat samat viestit kierroksella i Kaikki solmut samassa tilassa kierroksen i jälkeen 14
15 Verkon väritys Jos kierroksen i jälkeen jokin solmu tulostaa värin x ja pysähtyy 15
16 Verkon väritys Jos kierroksen i jälkeen jokin solmu tulostaa värin x ja pysähtyy niin kaikki muutkin solmut tulostavat samanaikaisesti saman värin x ja pysähtyvät 16
17 Verkon väritys Mikään deterministinen hajautettu algoritmi ei voi tuottaa kelvollista väritystä (esim. syklissä) Ellei käytettävissä ole jotain lisäinformaatiota, joka rikkoo symmetrian 17
18 Solmujen nimet Oletetaan, että kullakin solmulla on yksilöllinen tunniste esim. IP-osoite, MAC-osoite, koneen nimi Tällöin väritys on 15 4 helppo löytää ahneesti
19 Ahne väritys Solmu aktiivinen, jos sen oma tunniste on pienempi kuin naapureilla
20 Ahne väritys Solmu aktiivinen, jos sen oma tunniste on pienempi kuin naapureilla Aktiiviset solmut valitsevat ensimmäisen vapaan värin voidaan tehdä samanaikaisesti rinnakkain
21 Ahne väritys Solmu aktiivinen, jos sen oma tunniste on pienempi kuin naapureilla unohdetaan naapurit, jotka on jo väritetty
22 Ahne väritys Solmu aktiivinen, jos sen oma tunniste on pienempi kuin naapureilla Aktiiviset solmut valitsevat ensimmäisen vapaan värin
23 Ahne väritys Solmu aktiivinen, jos sen oma tunniste on pienempi kuin naapureilla unohdetaan naapurit, jotka on jo väritetty
24 Ahne väritys Solmu aktiivinen, jos sen oma tunniste on pienempi kuin naapureilla Aktiiviset solmut valitsevat ensimmäisen vapaan värin
25 Ahne väritys Löydetään aina kelvollinen väritys Esim. syklissä tarvitaan vain 3 väriä yleisemmin: enintään + 1 väriä, jossa = verkon maksimiasteluku
26 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä
27 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä
28 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä
29 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä
30 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä
31 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä jne
32 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä jne jne
33 Ahne väritys Ahne algoritmi on kuitenkin pahimmassa tapauksessa hyvin hidas esim. solmujen tunnisteet kasvavassa järjestyksessä pitkin sykliä valmistuihan se lopulta
34 Ahne väritys Vaaditaan pahimmillaan Θ(n) kommunikaatiokierrosta n-solmuisessa verkossa Onko mahdollista 12 4 nopeuttaa?
35 Nopea väritys Keskitytään yksinkertaiseen erikoistapaukseen sykli solmuilla uniikit nimet joukosta {1, 2,, n} kaaret suunnistettu: jokaisella solmulla yksi edeltäjä ja yksi seuraaja
36 Nopea väritys Tulkitaan solmujen nimet väritykseksi! kelvollinen väritys mutta hyvin suuri määrä värejä Ratkaistaan sitten värinvähennysongelma pienennetään värien määrää Toistetaan
37 Värinvähennys Annettu väritys, suuri väripaletti
38 Värinvähennys Verrataan omaa väriä edeltäjän väriin binäärilukuna
39 Värinvähennys Bitti numero 8 eroaa (8, 1)
40 Värinvähennys Bitti numero 8 eroaa (8, 0) (8, 1)
41 Värinvähennys Bitti numero 11 eroaa (11, 1) (8, 0) (8, 1)
42 Värinvähennys Uudet värit
43 Värinvähennys Kelvollinen väritys! (11, 1) eri bitti (8, 0) (8, 1) 17 43
44 Värinvähennys Kelvollinen väritys! (11, 1) eri bitti (8, 0) (8, 1) tai sama bitti, eri arvo 17 44
45 Värinvähennys Yhden kierroksen jälkeen
46 Värinvähennys Kahden kierroksen jälkeen 1 46
47 Värinvähennys Kolmen kierroksen jälkeen 1 47
48 Värinvähennys Väripaletin kokoa voidaan vähentää k väristä O(log k) väriin yhdessä kierroksessa Päästään hyvin nopeasti 6 väriin Esim.: Lopuksi ahneella algoritmilla 3 väriin 48
49 Värinvähennys Värien määrä vähennetty n 3 Yhteensä O(log* n) kierrosta log* x = montako kertaa pitää ottaa x:stä logaritmi, jotta tulos olisi alle 1 äärimmäisen hitaasti kasvava funktio! log* 10 = 3, log* = 4, log* = 5, 49
50 Yhteenveto Suunnatussa syklissä on mahdollista löytää 3-väritys erittäin nopeasti O(log* n) kommunikaatiokierrosta riittää Osoittautuu, että tämä algoritmi on myös asymptoottisesti nopein o(log* n) kommunikaatiokierrosta ei riitä lisää tästä IV periodin kurssilla! 50
Itsestabilointi: perusmääritelmiä ja klassisia tuloksia
Itsestabilointi: perusmääritelmiä ja klassisia tuloksia Jukka Suomela Hajautettujen algoritmien seminaari 12.10.2007 Hajautetut järjestelmät Ei enää voida lähteä oletuksesta, että kaikki toimii ja mikään
LisätiedotSeminaari: Hajautetut algoritmit syksy 2009
Seminaari: Hajautetut algoritmit syksy 2009 http://www.cs.helsinki.fi/u/josuomel/sem-2009s/ Jukka Suomela 10.9.2009 Seminaari: Hajautetut algoritmit syksy 2009 Seminaarin työmuodot 2 / 38 Aikataulu ja
LisätiedotDMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko
DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko Alkuviikon tuntitehtävä 1: Montako kahdeksaan yhtäsuureen sektoriin leikattua pitsaa voidaan tehdä kolmesta täytteestä siten, että kukin sektori
LisätiedotGraafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005
Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla
LisätiedotParinmuodostuksesta tietojenkäsittelytieteen silmin. Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto
Parinmuodostuksesta tietojenkäsittelytieteen silmin Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto Suomalainen Tiedeakatemia Nuorten Akatemiaklubi 18.10.2010 Sisältö Mitä tietojenkäsittelytieteessä
LisätiedotVerkon värittäminen ja riippumattomat joukot: johdantoa ja sovelluksia
hyväksymispäivä arvosana arvostelija Verkon värittäminen ja riippumattomat joukot: johdantoa ja sovelluksia Janne Korhonen Helsinki 8.12.2009 Seminaariraportti HELSINGIN YLIOPISTO Tietojenkäsittelytieteen
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
LisätiedotLuku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
LisätiedotAlgoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
LisätiedotAlgoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys
LisätiedotEsimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
LisätiedotV. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
LisätiedotInduktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
LisätiedotKurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.
LisätiedotKonsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
LisätiedotTKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
LisätiedotGraafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
LisätiedotAVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta
AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja
LisätiedotValitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.
Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016
LisätiedotLuku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
LisätiedotAlgoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
LisätiedotTietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
Lisätiedot58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 12.9.2018 ratkaisuja (Jyrki Kivinen) 1. [10 pistettä] Iso-O-merkintä. (a) Pitääkö paikkansa, että n 3 + 5 = O(n 3 )? Ratkaisu: Pitää paikkansa.
LisätiedotDatatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
LisätiedotAlgoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan
LisätiedotAlgoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 8.5.2018 Timo Männikkö Luento 13 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Kertaus ja tenttivinkit Algoritmit 2 Kevät
Lisätiedot58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
LisätiedotAlgoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
LisätiedotTietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
LisätiedotAlgoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
LisätiedotAlgoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
Lisätiedot6. Approksimointialgoritmit
6. Approksimointialgoritmit Tässä luvussa käsitellään lyhyesti approksimointiin liittyvät peruskäsitteet ja joitain keskeisiä approksimoituvuustuloksia. Tavoitteena on, että opiskelija näkee approksimointialgoritmien
LisätiedotT Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )
T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen
LisätiedotDiskreetit rakenteet
Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja
LisätiedotNeuroverkkojen soveltaminen vakuutusdatojen luokitteluun
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään
LisätiedotYleinen paikallinen vakautuva synkronointialgoritmi
Yleinen paikallinen vakautuva synkronointialgoritmi Panu Luosto 23. marraskuuta 2007 3 4 putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4 Lähdeartikkeli Boulinier, C., Petit, F. ja Villain, V., When graph
LisätiedotAlgoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
LisätiedotAlgoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Lisätiedot3SAT-ongelman NP-täydellisyys [HMU ]
3SAT-ongelman NP-täydellisyys [HMU 10.3.4] erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta
Lisätiedot10. Painotetut graafit
10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä
LisätiedotAlgoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Lisätiedot7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
LisätiedotTuringin koneen laajennuksia
Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k
LisätiedotAlgoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
Lisätiedot2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
LisätiedotDiskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10
Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.
LisätiedotAlgoritmit 2. Luento 14 To Timo Männikkö
Algoritmit 2 Luento 14 To 2.5.2019 Timo Männikkö Luento 14 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydelliset ongelmat Kertaus ja tenttivinkit Algoritmit
Lisätiedot7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy
212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa
LisätiedotTietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta
LisätiedotTehtävä 2: Tietoliikenneprotokolla
Tehtävä 2: Tietoliikenneprotokolla Johdanto Tarkastellaan tilannetta, jossa tietokone A lähettää datapaketteja tietokoneelle tiedonsiirtovirheille alttiin kanavan kautta. Datapaketit ovat biteistä eli
LisätiedotJukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2
S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)
LisätiedotOikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.
Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä
Lisätiedot811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto
811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien
Lisätiedot5. Luento: Rinnakkaisuus ja reaaliaika. Tommi Mikkonen, tommi.mikkonen@tut.fi
5. Luento: Rinnakkaisuus ja reaaliaika Tommi Mikkonen, tommi.mikkonen@tut.fi Agenda Perusongelmat Jako prosesseihin Reaaliaika Rinnakkaisuus Rinnakkaisuus tarkoittaa tässä yhteydessä useamman kuin yhden
LisätiedotAlgoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan
LisätiedotAlgoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
LisätiedotKielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }
135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren
LisätiedotD B. Levykön rakenne. pyöriviä levyjä ura. lohko. Hakuvarsi. sektori. luku-/kirjoituspää
Levyn rakenne Levykössä (disk drive) on useita samankeskisiä levyjä (disk) Levyissä on magneettinen pinta (disk surface) kummallakin puolella levyä Levyllä on osoitettavissa olevia uria (track), muutamasta
LisätiedotStabilointi. Marja Hassinen. p.1/48
Stabilointi Marja Hassinen marja.hassinen@cs.helsinki.fi p.1/48 Kertausta ja käsitteitä Sisältö Stabilointi Resynkroninen stabilointi Yleinen stabilointi Tarkkailu Alustus Kysymyksiä / kommentteja saa
Lisätiedot3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan
LisätiedotPARITUS KAKSIJAKOISESSA
PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos meillä
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 5 / vko 41
Diskreetin matematiikan perusteet Laskuharjoitus 5 / vko 4 Tuntitehtävät 4-42 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 45-46 loppuviikon harjoituksissa. Kotitehtävät 43-44 tarkastetaan loppuviikon
LisätiedotMS-A0401 Diskreetin matematiikan perusteet
MS-A0401 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos
LisätiedotAlgoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
Lisätiedotf(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
LisätiedotLaskennan vaativuus ja NP-täydelliset ongelmat
Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotJohdatus verkkoteoriaan 4. luento
Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot Ryhmät Permutaatiot
LisätiedotLuku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
LisätiedotStabiloivat synkronoijat ja nimeäminen
Stabiloivat synkronoijat ja nimeäminen Mikko Ajoviita 2.11.2007 Synkronoija Synkronoija on algoritmi, joka muuntaa synkronoidun algoritmin siten, että se voidaan suorittaa synkronoimattomassa järjestelmässä.
LisätiedotMaximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
LisätiedotAlgoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
LisätiedotHakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina
Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
Lisätiedotv 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.
Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 6: Verkkoteoria Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Verkkojen peruskäsitteitä Motivaatiota (...) networks may
LisätiedotKytkentäkentät, luento 2 - Kolmiportaiset kentät
Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull
LisätiedotTietorakenteet ja algoritmit syksy Laskuharjoitus 1
Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,
LisätiedotJohnson, A Theoretician's Guide to the Experimental Analysis of Algorithms.
Kokeellinen algoritmiikka (3 ov) syventäviä opintoja edeltävät opinnot: ainakin Tietorakenteet hyödyllisiä opintoja: ASA, Algoritmiohjelmointi suoritus harjoitustyöllä (ei tenttiä) Kirjallisuutta: Johnson,
LisätiedotIntegrointialgoritmit molekyylidynamiikassa
Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin
LisätiedotJohdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste
LisätiedotHarjoitus 1 (20.3.2014)
Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)
LisätiedotMS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II
MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä14.
LisätiedotAlgoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
LisätiedotKonsensusongelma hajautetuissa järjestelmissä
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki Helsinki 29.10.2007 Seminaarityö HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö i 1 Johdanto 1 2 Konsensusongelma 2 2.1 Ratkeamattomuustodistus........................
Lisätiedotj(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)
MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!
LisätiedotAlgoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
LisätiedotAlgoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
Lisätiedot