Demspter-Shafer -sovellus (ja Dempster-Shafer vs. Bayes)

Koko: px
Aloita esitys sivulta:

Download "Demspter-Shafer -sovellus (ja Dempster-Shafer vs. Bayes)"

Transkriptio

1 Mat-2.42 Optimointiopin seminaari, Syksy 999 Uskomusverkot a vaikutuskaaviot Referaatti Demspter-Shafer -sovellus (a Dempster-Shafer vs. Bayes) Jyri Mustaoki

2 . Johdanto Esitelmä perustuu artikkeliin A Target Identification Comparison of Bayesian and Dempster- Shafer Multisensor Fusion (Buede a Girard, 997). Artikkelissa vertailtiin Bayesilaisen a Dempster-Shafer -päättelyn antamien uskomusakaumien konvergoitumista, kun akaumia päivitettiin uusien havaintoen pohalta. Vertailussa käytettiin apuna esimerkkiä lentokoneen tunnistamiseksi, ossa erityyppiset sensorit antoivat tietoa kohteena olevan koneen ominaisuuksista, a näiden uusien tietoen avulla saatiin varmempaa tietoa konetyypistä. Käytännössä esimerkki toteutettiin simuloimalla erilaisten sensoreiden toimintaa. 2. Dempster-Shafer vs. Bayes Dempster-Shafer -päättely poikkeaa Bayesilaisesta päättelystä siten, että siinä voidaan antaa tapahtumatodennäköisyyksiä myös alkeistapausten oukoille. Lisäksi Dempster-Shaferissa akamaton todennäköisyysmassa annetaan oukolle, oka sisältää kaikki alkeistapaukset, kun taas Bayesilaisessa päättelyssä älelle äänyt todennäköisyysmassa aetaan tasan kaikkien muiden alkeistapausten kesken. Vaikka menetelmät eroavat toisistaan, on Dempster-Shafer päättelyssä houkutteleva ominaisuus eli kyseessä on sama mekanismi kuin Bayesilaisessa päättelyssä, os koko todennäköisyysmassa aetaan vain alkeistapausten kesken. Dempster- Shafer -päättelyn perusteet on esitetty seminaarin aikaisemmissa esitelmissä. 2. Dempster-Shafer -päivitysalgoritmit Paperissa esitettiin Dempster-Shafer -päättelylle päivitysalgoritmi, ossa uusien havaintoen pohalta päivitetään tämänhetkisiä uskomusakaumaa. Algoritmin avulla voidaan laskea uskomukset, b k (n), elementteihin k aanhetkillä n. Yksinkertaisuuden vuoksi oletetaan että vain yksi sensori antaa tasaisin väliaoin raportin, eli uskomukset eri elementteihin b k sekä akamattoman uskomusmassan u. Päivityskaava uskomuksille uuden tiedon valossa on bk ( n) = K k = b bk ( bk + u) + u = b k ( bk + u) + u u + = k, n, n =. () n > Valitettavasti päivitysalgoritmi ei näytä toimivan tapauksissa, oissa uusissa havainnoissa määritetään enemmän kuin yksi alkeistapaus eli uskomusmassaa voi olla useammilla elementeillä. Näyttää siltä, että päivitysalgoritmi ei ilmeisesti ota huomioon tyhien oukkoen osuutta. 2.2 Bayesilainen päivitys Bayesilaisessa päivityksessä sensorin antama raportti on likelihood-vektori, oka kertoo sen, millä todennäköisyydellä raportti antaa tutkittavan kohteen, os kyseessä onkin okin toinen kone. Vektorimuodossa todennäköisyyksien päivityskaava on

3 p( t) = i l ( t) p( t ) l ( t) p( t ), (2) i ossa i l (t) on uusi tietoa hetkellä, eli k alkiota sisältävä vektori oka sisältää likelihoodit, että raportti parhaiten tukee vektorin alkiota i. Vektorimuotoinen kaava (2) vastaa täysin perinteistä Bayesilaisen päättelyn päivityskaavaa P( B A) P( A) P( A B) =. (3) P( B) 3. Sovellus lentokoneen tunnistamiseksi Bayesilaisen a Dempster-Shafer-päättelyn vertailu suoritettiin siis esimerkin avulla. Esimerkkinä oli sovellus lentokoneen tunnistamiseksi. Tavoitteena on erityyppisten sensorien avulla saatuen havaintoen avulla tunnistaa lentokone oikeaksi ollakin halutulla varmuudella. Uutta tietoa saataessa, varmuus koneen tyypistä kasvaa konvergoiden lopulta kohti :stä eli täysin varmaa tunnistusta. Koneiden tunnistamisessa käytettiin kolmentyyppisiä sensoreita. ESM (Electronic Support Measure) -sensoria käytettiin konetyypin suorassa tunnistuksessa. IFF (Identification, Friend of Foe) -sensori pyrkii koneen lähettämien signaalien avulla määrittelemään onko kyseessä oma vai viholliskone. Tutkaa puolestaan käytettin koneluokan (hävittää, pommittaa tai siviili) tunnistamiseen koneen muodon avulla. Taulukko esittelee tunnistuksessa mukana olevat mahdolliset konetyypit. Taulukko Tyyppi Luokka Luonne F-5 Hävittää Oma F-6 Hävittää Oma ATF Hävittää Oma B-2 Pommittaa Oma MiG-27 Hävittää Vihollinen MiG-25 Hävittää Vihollinen MiG-29 Hävittää Vihollinen MiG-3 Hävittää Vihollinen Tu-26 Pommittaa Vihollinen Boeing 747 Siviili Neutraali Kuvassa on esimerkki vaikutuskaaviosta sensorien kuvaamiseen. Muuttuat x J ovat koneen ominaisuuksia todennäköisyysakaumina, otka riippuvat siis konetyypistä. Elementit e J ovat sensorien raporttea, otka puolestaan riippuvat koneen ostakin ominaisuudesta (esim. muoto). Elementti e t kuvaa koneen tyypistä suoraan riippuvaa sensoria eli ESM:ää. Lentokoneen tyyppi, t e t x x 2... x J e e 2 e J Kuva. Vaikutuskaavio sensorien raporteista.

4 3. Koeärestely Kokeessa tutkittiin konetyypin tunnistamisen luotettavuuden kasvua erityyppisiltä sensoreilta saatuen uusien havaintoen valossa. Koe suoritettiin simuloimalla, eli simuloitiin kunkin sensorin toimintaa erikseen. Sensoreilta saadut raportit yhdistettiin sekä Dempster-Shafer että Bayesilaisella päättelyllä, olloin pystyttiin vertailemaan konetyypin tunnistuksen luotettavuuden konvergoitumista menetelmien välillä. Satunnaisvaihtelun aikaansaamiseksi mukaan oli otettu kolme parametria, oiden arvoen muuteltiin eri simulointien välillä. Ensimmäinen parametri diagnostisuus kertoo suhteen koneen oikeaksi tunnistamisen a vääräksi tunnistamisen todennäköisyyksien välillä. Muut muuttuvat parametrit olivat todennäköisyys sille, että tunnistetaan väärä kone, a todennäköisyys sille, että sensori ei anna ollenkaan raporttia. 3.2 Monte Carlo -simulaatio Itse simuloinnisti suoritettiin antamalla alkuparametrit a tunnistettava konetyyppi. Konetyyppina käytettiin kaikissa simuloinneissa F-5:sta. Alkuparametreina kokeiltiin diagnostisuuden arvoa 6,8 a 0, ei raporttia -todennäisyyksiä väliltä 0 50% a väärintunnistustodennäköisyyksiä väliltä 0 40%. Eri diagnostisuuksien arvoilla saatiin Bayesilaista päättelyä varten sensoreille ns. sekaannusmatriisit, oissa on kutakin konetyyppiä tai ominaisuutta kohden todennäköisyys tunnistaa okin toinen konetyyppi tai ominaisuus. Esimerkiksi diagnostisuudella 0 suoran konetyypin tunnistuksessa koneen oikeintunnistuksen todennäköisyys on 0.53 a todennäköisyys tunnista konetyyppi oksikin muuksi kunkin muun yhdeksän vaihtoehdon kohdalla (diagnostisuus 0=0.53/0.053). Koneen luonteen tunnistuksessa diagnostisuudella 0 todennäköisyydet olivat 0.9 tunnistaa oma kone omaksi a 0.09 tunnistaa oma kone viholliseksi a koneluokan kohdalla vastaavat todennäköisyydet olivat 0.83 tunnistaa oikein a tunnistaa väärin (kaksi vaihtoehtoa tunnistaa väärin). Dempster-Shafer -päättelyssä väärintunnistuksen todennäköisyysmassaa ei aettu väärien konetyyppien kesken, vaan annettiin kaikkien alkeistapausten oukolle. Simuloinnin yhdessä iteraatiokierroksessa simuloitiin ensin saatua sensorihavaintoa a nämä yhdistettiin sekä Bayesilaisittain että Dempster-Shaferilla. Havaintoa kerättiin niin kauan, kunnes haluttu luottamustaso (0.95 tai 0.99) saavutettiin, onka älkeen kirattiin iteraatiokierrosten lukumäärä ylös. 3.3 Tulokset Tässä paperissa suoritetun koeärestelyn perusteella oikean konetyyppin todennäköisyys konvergoitui haluttuun luottamustasoon Bayesilaisella päättelyllä noin 20 45% nopeammin kuin Dempster-Shafer-päättelyllä. Sama ilmiö todettiin yleisesti kaikilla parametrien arvoilla. Ilmiö on kuitenkin hyvin tapauskohtainen. Kuvassa 2 on yksinkertainen esimerkki ilmiön havainnollistamiseksi. Kuvan 2 ensimmäisellä rivillä on Dempster-Shafer-päättelyllä suoritettu päivitys, ossa älelle äävä todennäköisyysmassa on annettu kaikkien alkeistapausten oukolle Θ. Tällöin ensimmäisen havaintokierroksen älkeen vaihtoehdon A uskomustaso on 0.9. Kahdella muulla rivillä on suoritettu päivitys Bayesilaisittain. Ensimmäisessä näistä on oikean vaihtoehdon rinnalla vain yksi mahdollinen väärä vaihtoehto, mutta toisessa kaksi väärää vaihtoehtoa. Ensimmäisen iteraatiokierroksen älkeen yhdellä väärällä vaihtoehdolla luottamus vaihtoehtoon A on (<0.9), kun taas kahdella väärällä vaihtoehdolla 0.96 (>0.9), eli tässä tapuksessa väärien vaihtoehtoen määrä vaikuttaa ratkaisevasti lopputulokseen. Lisäksi Dempster-Shafer-päättely todettiin laskennallisesti huomattavasti raskaammaksi kuin Bayesilainen päättely, sillä siinä oudutaan laskemaan todennäköisyysmassa aina kaikkien alkeistapausten kombinaatiolle, mitä ei Bayesilaisessa päättelyssä tarvitse tehdä.

5 A Q A Q A Q A Q A B A B A B A B A B C A B C A B C Kuva 2. Esimerkki päivityksistä Dempster-Shaferilla (. rivi) a Bayesilaisittain (2. a 3. rivi) 4. Yhteenveto Paperissa vertailtiin Bayesilaista a Dempster-Shafer-päättelyiden päivitystä uusien havaintoen pohalta. Vertailussa käytettiin apuna käytännön (simuloitua) esimerkkiä lentokoneiden tunnistamiseksi. Bayesilaisen päättelyn todettiin vastaavan Dempster-Shaferi-päättelyä ilman määrämätöntä todennäköisyyttä koko oukolle Θ, os todennäköisyyksiä annetaan vain alkeistapauksille. Tässä esimerkissä Bayesilainen päättely konvergoi nopeammin kuin Dempster-Shafer, mutta kuten edellä oleva esimerkki havainnollisti, päätelmää ei voida yleistää. Artikkelin kiroittaat vaikuttivat olevan selkeästi Bayesilaisen päättelyn kannalla, a tämä subektiivinen suhtautuminen asiaan tuntuu valitettavasti vaivaavan myös koko keskustelua Dempster- Shaferin a Bayesilaisen päättelyn eduista a haitoista. Esitelmää varten luin myös kaksi muuta artikkelia (Yang a Singh, 994; de Korvin a Shipley, 993), otka puolestaan totesivat Dempster-Shaferin soveltuvan erinomaisesti päätösongelmien ratkaisemiseen. Luultavasti molemmat näkökannat ovat osittain oikeassa, eli molemmista menetelmistä löytyvät sekä hyvät että huonot puolensa. Viitteet Buede, D.M. a Girard, P., A Target Identification Comparison of Bayesian and Dempster- Shafer Multisensor Fusion, IEEE Transactions on Systems, Man and Cybernetics, 27, 4, 997, pp de Korvin, A. a Shipley, M.F., A Dempster-Shafer-based Approach to Compromise Decision Making with Multiattributes Applied to Product Selection, IEEE Transactions on Engineering Managements, 40,, 993, pp Yang, J.-B. a Singh, M.G., An Evidential Reasoning Approach for Multiple-Attribute Decision Making with Uncertainty, IEEE Transactions on Systems, Man and Cybernetics, 24,, 994, pp. -8.

Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV

Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV Mat-.4 Optimointiopin seminaari, syksy 999 Referaatti 7.0.999 Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV JOHDATO Ross D. Shachter a C. Robert Kenley (989) esittelevät artikkelissaan Gaussian

Lisätiedot

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti 12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

1 Johdanto Uskomusverkko -jota kutsutaan myos Bayesilaiseksi verkoksi, vaikutus kaavioksi tai seuraamus verkko - on tapa esitaa informaatiota, siten e

1 Johdanto Uskomusverkko -jota kutsutaan myos Bayesilaiseksi verkoksi, vaikutus kaavioksi tai seuraamus verkko - on tapa esitaa informaatiota, siten e Optimointiopin semminaari Mat-2.142 Uskomusverkot Jari Mustonen 8.12.1999 1 Johdanto Uskomusverkko -jota kutsutaan myos Bayesilaiseksi verkoksi, vaikutus kaavioksi tai seuraamus verkko - on tapa esitaa

Lisätiedot

Dynaaminen ohjelmointi ja vaikutuskaaviot

Dynaaminen ohjelmointi ja vaikutuskaaviot Teknillinen Korkeakoulu / Ssteemianalsin laboratorio Mat-2.42 Optimointiopin seminaari / Referaatti esitelmästä Sami Mllmäki Dnaaminen ohjelmointi ja vaikutuskaaviot OHDANTO Dnaamiset ohjelmointitehtävät

Lisätiedot

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin ja monimuuttuja-analyysiin Loppuseminaari: Terveydenhuollon uudet analyysimenetelmät (TERANA) Aki Vehtari AB HELSINKI UNIVERSITY OF TECHNOLOGY Department of Biomedical Engineering and Computational Science

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä

Lisätiedot

Todennäköisyys. Antoine Gombaud, eli chevalier de Méré?.? Kirjailija ja matemaatikko

Todennäköisyys. Antoine Gombaud, eli chevalier de Méré?.? Kirjailija ja matemaatikko Todennäköisyys TOD.NÄK JA TILASTOT, MAA10 Todennäköisyyslaskennan juuret ovat ~1650-luvun uhkapeleissä. Kreivi de Mérén noppapelit: Jos noppaa heitetään 4 kertaa, niin kannattaako lyödä vetoa sen puolesta,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1.

T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1. T-61.281 Luonnollisen kielen tilastollinen käsittely astaukset 8, ti 16.3.2004, 8:30-10:00 Tilastolliset yhteydettömät kielioit, ersio 1.0 1. Jäsennysuun todennäköisyys lasketaan aloittelemalla se säännöstön

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

PID-sa a timen viritta minen Matlabilla ja simulinkilla

PID-sa a timen viritta minen Matlabilla ja simulinkilla PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.

Lisätiedot

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia

Lisätiedot

Uskottavuusperusteisten luottamusvälien korjaaminen bootstrap-menetelmällä Pro gradu -esitelmä

Uskottavuusperusteisten luottamusvälien korjaaminen bootstrap-menetelmällä Pro gradu -esitelmä Uskottavuusperusteisten luottamusvlien korjaaminen bootstrap-menetelmllpro gradu -esitelm p. 1/35 Uskottavuusperusteisten luottamusvälien korjaaminen bootstrap-menetelmällä Pro gradu -esitelmä 29.4.2009

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Dynaaminen ohjelmointi ja vaikutuskaaviot

Dynaaminen ohjelmointi ja vaikutuskaaviot Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Bayesiläinen tilastollinen vaihtelu

Bayesiläinen tilastollinen vaihtelu Bayesiläinen tilastollinen vaihtelu Janne Pitkäniemi FT, dos. (biometria), joht. til. tiet Suomen Syöpärekisteri Hjelt-instituutti /Helsingin yliopisto Periaatteet Tilastollinen vaihtelu koskee perusjoukon

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori. Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,

Lisätiedot

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia

Lisätiedot

Parametrien oppiminen

Parametrien oppiminen 38 Parametrie oppimie Tilastollise malli (Bayes-verkko rakee o kiiitetty, se umeeriste parametrie (ehdolliste todeäköisyyksie arvot pyritää määräämää Oletamme havaitoe oleva täydellisiä; s.o., okaise datapistee

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Mitä on bayesilainen päättely?

Mitä on bayesilainen päättely? Metodifestivaali 29.5.2009 Aki Vehtari AB TEKNILLINEN KORKEAKOULU Lääketieteellisen tekniikan ja laskennallisen tieteen laitos Esityksen sisältö Miksi? Epävarmuuden esittäminen Tietämyksen päivittäminen

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 7. Kombinatoriikka 7.1 Johdanto Kombinatoriikka tutkii seuraavan kaltaisia kysymyksiä: Kuinka monella tavalla jokin toiminto voidaan suorittaa? Kuinka monta tietynlaista

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tilastollinen päättely, 10 op, 4 ov

Tilastollinen päättely, 10 op, 4 ov Tilastollinen päättely, 0 op, 4 ov Arto Luoma Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede 3304 TAMPEREEN YLIOPISTO Syksy 2006 Kirjallisuutta Garthwaite, Jolliffe, Jones Statistical Inference,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analsin perusteet, kevät 007. luento: Kaksisuuntainen varianssianalsi Kai Virtanen Kaksisuuntaisen varianssianalsin perusasetelma aetaan perusoukko rhmiin kahden tekän A a B suhteen

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi Historiaa Bayesin kaavan hyödyntäminen BN-ohjelmistoja ollut ennenkin Tanskalaisten Hugin

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Haroitus 2 Ratkaisuehdotuksia 1. Työpaikalla ärestetään huumetesti. Testi on 99% varma. Toisin sanoen vain 1% huumeenkäyttäistä ää palastumatta

Lisätiedot

RAKE-vastaanotinsimulaatio. 1. Työn tarkoitus. 2. Teoriaa. 3. Kytkentä. Tietoliikennelaboratorio Versio

RAKE-vastaanotinsimulaatio. 1. Työn tarkoitus. 2. Teoriaa. 3. Kytkentä. Tietoliikennelaboratorio Versio OAMK / Tekniikan yksikkö LABORATORIOTYÖOHJE Tietoliikennelaboratorio Versio 15.10.2004 RAKE-vastaanotinsimulaatio 1. Työn tarkoitus Tämän harjoitustyön tarkoituksena on RadioLab-simulointiohjelman avulla

Lisätiedot

Uskomusverkot: Lääketieteelliset sovellukset

Uskomusverkot: Lääketieteelliset sovellukset Teknillinen korkeakoulu Systeemianalyysin laboratorio Mat-2.142 Optimointiopin seminaari Referaatti Uskomusverkot: Lääketieteelliset sovellukset Sami Nousiainen 44433N Tf V 2 1. JOHDANTO 3 2. YKSINKERTAINEN

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 4. Eulerin a Fermat'n lauseet à 4.1 Alkuluokka a Eulerin -funktio Yleensä olemme kiinnostuneita vain niistä äännösluokista

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

S-114.600 Bayesilaisen mallintamisen perusteet

S-114.600 Bayesilaisen mallintamisen perusteet S-114.600 Bayesilaisen mallintamisen perusteet Laajuus: 2 ov Opettajat: TkT Aki Vehtari, DI Toni Tamminen Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit

Lisätiedot

Oma nimesi Tehtävä (5)

Oma nimesi Tehtävä (5) Oma nimesi Tehtävä 3.1 1 (5) Taulukot ja niiden laatiminen Tilastotaulukko on perinteinen ja monikäyttöisin tapa järjestää numeerinen havaintoaineisto tiiviiseen ja helposti omaksuttavaan muotoon. Tilastoissa

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes Ohjaaja: TkT Arto Klami Valvoja: Prof.

Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes Ohjaaja: TkT Arto Klami Valvoja: Prof. Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes 11.06.2012 Ohjaaja: TkT Arto Klami Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä

Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Antti Penttinen Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Metodifestivaalit Jyväskylän yliopisto 21.5.2013 Suunnitelma

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

TEKNILLINEN KORKEAKOULU ERIKOISTYÖ. koulutusohjelma MUUTOSPISTEIDEN TUNNISTAMINEN BAYESILAISELLA ANALYYSILLA

TEKNILLINEN KORKEAKOULU ERIKOISTYÖ. koulutusohjelma MUUTOSPISTEIDEN TUNNISTAMINEN BAYESILAISELLA ANALYYSILLA TEKNILLINEN KORKEAKOULU ERIKOISTYÖ Teknillisen fysiikan Mat-2.108 Sovellettu matematiikka koulutusohjelma 11.7.2007 MUUTOSPISTEIDEN TUNNISTAMINEN BAYESILAISELLA ANALYYSILLA Pyry-Matti Hjalmar Niemelä 55448H

Lisätiedot

Otantajakauman käyttö päättelyssä

Otantajakauman käyttö päättelyssä Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus

Lisätiedot

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Multinomijakauman ja Dirichlet-jakauman käytöstä bayesilaisessa päättelyssä

Multinomijakauman ja Dirichlet-jakauman käytöstä bayesilaisessa päättelyssä Multinomijakauman ja Dirichlet-jakauman käytöstä bayesilaisessa päättelyssä Pro gradu -tutkielma Tiia Piipponen Matematiikan ja tilastotieteen laitos Helsingin yliopisto 28.3.2014 HELSINGIN YLIOPISTO HELSINGFORS

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

Moraalinen uhkapeli: perusmalli ja optimaalinen sopimus

Moraalinen uhkapeli: perusmalli ja optimaalinen sopimus Moraalinen uhkapeli: perusmalli a optimaalinen sopimus Mat-2.4142 Optimointiopin seminaari Mauno Taaamaa 18.02.2008 Esityksen rakenne Johdanto moraalisen uhkapelin käsite) Yksinkertaistettu tapaus a sen

Lisätiedot

Luottamuksen ja maineen rooli yhteisöjen rakentamisessa Jaana Diakite

Luottamuksen ja maineen rooli yhteisöjen rakentamisessa Jaana Diakite Luottamuksen ja maineen rooli yhteisöjen rakentamisessa 23.10.2007 Jaana Diakite Sisältö Luottamus & maine ja niiden ero Luottamuksen synty ja rakentuminen Turvallisuus ja luottamus Luottamus- ja mainejärjestelmät

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

3.2 Työstöratojen luonti

3.2 Työstöratojen luonti 3.2 Työstöratojen luonti Luodaan aluksi työstöradat kahdelle akselille. 3.2.1 Olakkeen sorvaus Piirretään aluksi yksinkertainen kappale, johon luodaan työstöradat. Kuva 3.2.1 Koneistettava kappale Kyseisen

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Laboratorioraportti 3

Laboratorioraportti 3 KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Laboratorioraportti 3 Laboratorioharjoitus 1B: Ruuvijohde Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Mittaustilanne Harjoituksessa

Lisätiedot

TILASTOLLINEN OPPIMINEN

TILASTOLLINEN OPPIMINEN 301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

Ilmastonmuutoksen vaikutus Suomen sisävesiin

Ilmastonmuutoksen vaikutus Suomen sisävesiin Mat-2.142 Optimointiopin seminaari, syksy 1999 9.11.1999 Referaatti, esitelmä 12 Matti Vesanen, 44467j Lähde: Kuikka, S. & Varis, O. 1997. Uncertainties of climatic change impacts in Finnish watersheds:

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot.. Tehtävä Edellinen tehtävä voidaan ratkaista mm. Bellman-Fordin, Floyd-Warshallin tai Dikstran algoritmilla. Kyseessä on syklitön suunnattu verkko, oten algoritmi. (lyhimmät tiet

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Liuenneen orgaanisen hiilen huuhtoutuminen ja kulkeutuminen - bayesilainen arviointi HENVI SCIENCE DAYS

Liuenneen orgaanisen hiilen huuhtoutuminen ja kulkeutuminen - bayesilainen arviointi HENVI SCIENCE DAYS Liuenneen orgaanisen hiilen huuhtoutuminen ja kulkeutuminen - bayesilainen arviointi HENVI SCIENCE DAYS 14.5.2014 Biotieteellinen tiedekunta / Mika Rahikainen www.helsinki.fi/yliopisto 15.5.2014 1 Esityksen

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa

Lisätiedot

Palokuolemien ehkäisykeinojen arviointiohjelma pilottina tulevaisuuteen. Palotutkimuksen päivät 2011

Palokuolemien ehkäisykeinojen arviointiohjelma pilottina tulevaisuuteen. Palotutkimuksen päivät 2011 Palokuolemien ehkäisykeinojen arviointiohjelma pilottina tulevaisuuteen Olavi Keski-Rahkonen, Teemu Karhula, Topi Sikanen ja Simo Hostikka Palotutkimuksen päivät 2011 Hanasaaren kulttuurikeskus, Espoo,

Lisätiedot