Tieteenfilosofia 2/4. Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia
|
|
- Aila Helena Heikkilä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tieteenfilosofia 2/4 Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia 1
2 Viisauden sanoja Aristoteleelta Aristoteles (De int. 1.): Ääneen puhutut sanat ovat sielullisten vaikutusten symboleja ja kirjoitetut sanat puhuttujen. Kuten kirjaimet eivät ole kaikilla samat, niin eivät äänteetkään ole. Mutta alkuperäiset sielulliset vaikutukset, joiden merkkejä ne ovat, ovat kaikilla samat; ja asiat, joiden jäljitelmiä nämä vuorostaan ovat, ovat varsinkin samat. (1) Kielen ja kielellisten merkkien sopimuksenvaraisuus (2) Kolmiosainen erottelu: (a) KIELI (b) MIELI (c) MAAILMA ääneen puhutut/kirjoitetut sanat sielulliset vaikutukset asiat (oliot) 2
3 Semanttinen / semioottinen kolmio MIELI käsitteet / merkitykset R 2 R 3 merkin muoto / tyyppi KIELI R 1 MAAILMA referentti / entiteetti Voimme erottaa kolme erilaista suhdetta kielen, mielen ja maailman välillä: R 1 : kieli maailma R 2 : kieli mieli R 3 : mieli maailma semanttinen ekspressiivinen kognitiivinen 3
4 Kielen taso Yksilötermit erisnimet: Kuuno, määr. kuvaukset: otus, joka söi hillon, indeksikaalit: tämä vompatti Yleistermit predikaatit: x on pörröinen, x on y:n sylissä Lauseet: Tämä vompatti on pörröinen. Modaalioperaattorit: on mahdollista / välttämätöntä että Vrt. mielen ja maailman taso 4
5 Edellä esitettyjä kielellisiä elementtejä vastaavat maailman tasolla seuraavat rakenteet: (Formaalissa semantiikassa ominaisuudet korvataan tyypillisesti joukoilla ja asiaintilat totuusarvoilla) 4. modaliteetit 3. asiaintilat de dicto de re 2. ominaisuudet (ja relaatiot) 1. yksilöt 5
6 Mielen käsitteellinen taso Käsitteet, väitteet ja päätelmät näyttelevät keskeistä osaa tieteen järjestelmällisyydessä ja järkiperäisyydessä (vrt. luento 1). Tieteenharjoitus on intellektuaalista tai kognitiivista toimintaa. Mieli operoi käsitteillä, väitteillä ja päätelmillä. 1. Jokaisen tieteenalan opiskelussa on käytettävä aikaa kyseisen alan peruskäsitteiden omaksumiseen ja hallintaan. 2. Muodollisten opintojen päätteeksi puolustetaan jotakin väitettä (tai sellaisten joukkoa). 3. Tieteelliset opinnot ja tutkimus edellyttävät molemmat erilaisten päätelmä- tai argumentaatiotyyppien hahmottamista. Nämä liittyvät usein johonkin tiettyyn menetelmään tai metodiin. 6
7 Käsitteet, väitteet ja päätelmät Käsitteet ovat sanojen ajatussisältöjä. Väitteet ovat lauseiden ilmaisemia ajatuksia. Väitteet koostuvat käsitteistä, jotka on järjestetty sellaisen mielekkään kokonaisuuden muotoon, joka voi olla tosi tai epätosi. Väitteitä voidaan liittää toisiinsa monin eri tavoin. Päätelmissä väitteet järjestetään siten, että viimeisenä esiintyvä väite esitetään johtopäätöksenä muista väitteistä. Vrt. esim. P 1 ensimmäinen premissi P 2 P 3 toinen premissi johtopäätös 7
8 Kieli, mieli ja käännökset Toisikseen käännettävät sanat ilmaisevat yhden ja saman käsitteen. esim. KISSA käsite ekspressio R 2 R 2 korrektiuden kriteeri (englannin sana) cat kissa (suomen sana) käännös Samanlainen viitekehys pätee käsitteiden ohella myös väitteisiin ja päätelmiin. 8
9 Merkitys: intensiot ja ekstensiot Filosofiassa, kielitieteessä ja kognitiotieteessä tehdään usein erottelu kielellisten ilmausten intensioiden (merkitysten) ja ekstensioiden (referenttien tai viittauskohteiden) välillä. Yksinkertaisin semanttinen suhde vallitsee nimen ja objektin (johon nimi viittaa) välillä. Intensio (merkitys) ja ekstensio (referenssi) suhtautuvat käsitteiden osalta toisiinsa siten, että intension rikastuessa ekstensio pienenee ja ekstension laajetessa intensio köyhtyy. Esimerkiksi eläimen käsite sisältyy vompatin käsitteeseen, ja vompatin käsite on siten runsassisältöisempi kuin eläimen käsite. Sen sijaan vompattien joukko on eläinten joukon osajoukko. Intensiot ovat ekstensioita vahvempia : intensiot määräävät ekstensiot, mutta ei päinvastoin. 9
10 Käsitteiden määrittelemisestä Kun kieltä käytetään tieteellisessä viitekehyksessä, vaaditaan käsitteellistä täsmällisyyttä, tarkkuutta ja selkeyttä. Epäselvien käsitteiden merkityksiä voidaan täsmentää määrittelemällä ne eksplisiittisesti: = df definiendum (määriteltävä käsite) definiens (muita käsitteitä, jotka ovat jo käytössä) Merkityspostulaateiksi kutsutaan käsitteiden välisiä suhteita koskevia oletuksia, esim. Poikamies on naimaton mies. Käsitteelliset viitekehykset muodostuvat joukosta käsitteitä sekä merkityspostulaateista, jotka kytkevät ne toisiinsa. 10
11 Määritelmistä Perinteinen aristoteelinen määritelmien teoria, vrt. esim: Ihminen = df rationaalinen eläin species differentia genus Tämänkaltaisten määritelmien ajateltiin antavan määriteltävän olemuksen tai essentian Aristoteelinen essentialismi Myöhäisfilosofiassaan Ludwig Wittgenstein kritisoi tällaista essentialistista näkemystä perheyhtäläisyyden ajatuksen kautta: A---B---C vrt. esim. peli, taideteos, 11
12 Joitain määritelmille asetettuja vaatimuksia (a) Määritelmä ei saa sisältää kehää primitiiviset termit otetaan annettuina : niitä ei enää pyritä määrittelemään (b) Määritelmiä ei saa ilmaista epäselvällä eikä kuvaannollisella kielellä (c) Mieluiten positiivisin termein ilmaistu Minkään tieteenalan piirissä ei voida eksplisiittisesti määritellä kaikkia siinä käytettäviä termejä. Osa näistä termeistä täytyy valita primitiivisiksi termeiksi, joiden avulla kaikki muut termit voidaan pyrkiä määrittelemään. Pyrittäessä systematisoimaan jonkin tieteenalan kokonaisuutta valitaan mahdollisimman harvoja mutta systemaattiselta voimaltaan suuria primitiivisiä termejä, jotka ovat toisistaan riippumattomia. 12
13 Mahdollisia keskustelunaiheita Millaisia ovat oman tieteenalasi ja tutkimusaiheesi keskeiset käsitteet? Millä tavoin ja kuinka täsmällisesti kyseiset käsitteet ovat tyypillisesti määriteltyjä tai ylipäätään määriteltävissä? Kuinka luonnehtisit oman tieteenalasi ja tutkimusaiheesi menetelmien suhdetta päättelemiseen tai argumentaatioon? 13
FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:
LOGIIKKA 1 Mitä logiikka on? päättelyn tiede o oppi muodollisesti pätevästä päättelystä 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: sisältö, merkitys: onko jokin premissi
LisätiedotKieli merkitys ja logiikka
Luento 8 Kieli merkitys ja logiikka Luento 8: Merkitys ja logiikka Luku 10: Luennon 7 kertaus: propositiologiikka predikaattilogiikka Kvanttorit ja looginen muoto Määritelmät, analyyttisyys ja synteettisyys
LisätiedotPerinnöllinen informaatio ja geneettinen koodi.
Tehtävä A1 Kirjoita essee aiheesta: Perinnöllinen informaatio ja geneettinen koodi. Vastaa esseemuotoisesti, älä käytä ranskalaisia viivoja. Piirroksia voi käyttää. Vastauksessa luetaan ansioksi selkeä
LisätiedotLAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,
LisätiedotTieteenfilosofia 3/4. Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia
Tieteenfilosofia 3/4 Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia 1 Keskeisiä peruskäsitteitä Päättely on sellaista ajattelutoimintaa, joka etenee premisseistä eli oletuksista johtopäätökseen
LisätiedotLogiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.
TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste
LisätiedotKieli merkitys ja logiikka
Luento 9 Kieli merkitys ja logiikka Luento 9: Merkitys ja logiikka, kertaus Luku 10 loppuun (ei kausatiiveja) Ekstensio, intensio ja käsitteet Primitiivisten ilmaisujen merkitys Käsitteellis-intentionaaliset
LisätiedotTietoteoria. Tiedon käsite ja logiikan perusteita. Monday, January 12, 15
Tietoteoria Tiedon käsite ja logiikan perusteita Tietoteoria etsii vastauksia kysymyksiin Mitä tieto on? Miten tietoa hankitaan? Mitä on totuus? Minkälaiseen tietoon voi luottaa? Mitä voi tietää? Tieto?
LisätiedotTieteenfilosofia 4/4. Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia
Tieteenfilosofia 4/4 Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia 1 Tieteellinen selittäminen Tieteellisen tutkimuksen perustehtävä on maailmaa koskevan uuden ja totuudenmukaisen
Lisätiedotb) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
LisätiedotPredikaattilogiikkaa
Predikaattilogiikkaa UKUTEORIA JA TO- DISTAMINEN, MAA11 Kertausta ogiikan tehtävä: ogiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat
LisätiedotTieteenfilosofia 1/4. Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia
Tieteenfilosofia 1/4 Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia 1 Tästä kurssista Molempina päivinä ohjelma on rakenteeltaan samanlainen: 1. luento-osio 9:15 10:40 keskusteluosio
LisätiedotPikapaketti logiikkaan
Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös
LisätiedotLOGIIKKA johdantoa
LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt
LisätiedotKäyttöliittymä. Ihmisen ja tuotteen välinen rajapinta. ei rajoitu pelkästään tietokoneisiin
Käyttöliittymä Ihmisen ja tuotteen välinen rajapinta ei rajoitu pelkästään tietokoneisiin Tasot: 1. Teknis-fysiologis-ergonimen 2. Käsitteellis-havainnoillinen 3. Toiminnallis-kontekstuaalinen, käyttötilanne
LisätiedotKieli merkitys ja logiikka. Luento 6: Merkitys ja kieli
Kieli merkitys ja logiikka Luento 6: Merkitys ja kieli Merkitys ja kieli Merkitys ja kieli Sanat ja käsitteet Kompositionaalisuus Propositiologiikka Kysymykset Merkityksen luonne Miten ihminen hahmottaa
LisätiedotLoogiset konnektiivit
Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi
LisätiedotFILOSOFIAN KUOHUVAT VUODET KATSAUS 1900-LUVUN ALUN FILOSOFIAAN SIRKKU IKONEN
FILOSOFIAN KUOHUVAT VUODET KATSAUS 1900-LUVUN ALUN FILOSOFIAAN SIRKKU IKONEN 27.10. Miten tietoisuus rakentuu? Husserlin fenomenologiaa 3.11. Elämänfilosofian nousu ja tuho 10.11. Mitä on inhimillinen
LisätiedotTodistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
LisätiedotPropositioista. Lause ja propositio. Sisältö/merkitys. väite, väittämä arvostelma propositio ajatus. lause merkkijonona
Propositioista Tutkittaessa argumenttien ja päätelmien pätevyyttä ja selvitettäessä ajatusten sekä käsitteiden merkityksiä on argumentit, ajatukset ja käsitteet yleensä ilmaistava kielellisesti. Semantiikassa
Lisätiedot4. Luokan testaus ja käyttö olion kautta 4.1
4. Luokan testaus ja käyttö olion kautta 4.1 Olion luominen luokasta Java-kielessä olio määritellään joko luokan edustajaksi tai taulukoksi. Olio on joukko keskusmuistissa olevia tietoja. Oliota käsitellään
Lisätiedot4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
LisätiedotKäsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti
Käsitteistä Reliabiliteetti, validiteetti ja yleistäminen KE 62 Ilpo Koskinen 28.11.05 empiirisessä tutkimuksessa puhutaan peruskurssien jälkeen harvoin "todesta" ja "väärästä" tiedosta (tai näiden modernimmista
LisätiedotRuma merkitys. Tommi Nieminen. XLII Kielitieteen päivät. Kielitieteen epäilyttävin välttämätön käsite. tommi.nieminen@uef.fi. Itä-Suomen yliopisto ...
Ruma merkitys Kielitieteen epäilyttävin välttämätön käsite Tommi Nieminen tomminieminen@ueffi Itä-Suomen yliopisto XLII Kielitieteen päivät 21 23 toukokuuta 2015, Vaasa Merkitys, subst lingvistisen merkityksen
Lisätiedot2. Olio-ohjelmoinnin perusteita 2.1
2. Olio-ohjelmoinnin perusteita 2.1 Sisällys Luokat ja oliot. Käsitteet, luokat ja oliot. Attribuutit, olion tila ja identiteetti. Metodit ja viestit. 2.2 Luokat ja oliot Olio-ohjelmoinnin keskeisimpiä
LisätiedotVerbin valenssi määrää, minkälaisia argumentteja ja komplementteja verbi odottaa saavansa millaisissa lauseissa verbi voi esiintyä.
Valenssista Valenssi saksalaisessa ja venäläisessä kieliopintutkimuksessa käytetty nimitys, joka tavallisesti tarkoittaa verbin ominaisuutta: sitä, kuinka monta ja millaisia nomineja obligatorisesti ja
LisätiedotEnsimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
LisätiedotTeoreettisen viitekehyksen rakentaminen
Teoreettisen viitekehyksen rakentaminen Eeva Willberg Pro seminaari ja kandidaatin opinnäytetyö 26.1.09 Tutkimuksen teoreettinen viitekehys Tarkoittaa tutkimusilmiöön keskeisesti liittyvän tutkimuksen
LisätiedotSäännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
Lisätiedot2. Olio-ohjelmoinnin perusteita 2.1
2. Olio-ohjelmoinnin perusteita 2.1 Sisällys Esitellään peruskäsitteitä yleisellä tasolla: Luokat ja oliot. Käsitteet, luokat ja oliot. Attribuutit, olion tila ja identiteetti. Metodit ja viestit. Olioperustainen
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
LisätiedotEnsimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
LisätiedotFORMAALI SYSTEEMI (in Nutshell): aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus
FORMAALI SYSTEEMI (in Nutshell): Formaali kieli: aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus esim. SSM:n tai EBNF:n avulla Semantiikka:
Lisätiedot8. Kieliopit ja kielet
8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti
Lisätiedot-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi
-Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei
LisätiedotKieli merkitys ja logiikka
Luento 7 Kieli merkitys ja logiikka Luennot 7 ja 8: sivut 237-274 Luento 7: Merkitys ja kieli Merkitys ja kieli Merkitys ja kieli Kompositionaalisuus Propositiologiikka Kieli ja tulkinta Predikaattilogiikka
LisätiedotLisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi
Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi LUKUTEORIA JA TODISTAMINEN, MAA11 Esimerkki a) Lauseen Kaikki johtajat ovat miehiä negaatio ei
LisätiedotLaajennettu tiedonkäsitys ja tiedon erilaiset muodot
Laajennettu tiedonkäsitys ja tiedon erilaiset muodot Totuudesta väitellään Perinteinen käsitys Tutkimuksella tavoitellaan a. On kuitenkin erilaisia käsityksiä. Klassinen tiedon määritelmä esitetään Platonin
LisätiedotIlpo Halonen 2005 LISÄÄ KIRJALLISUUTTA. 11. Tieteenfilosofia ja argumentaatio LISÄÄ KIRJALLISUUTTA. Tieteenfilosofia.
11. Tieteenfilosofia ja argumentaatio KIRJALLISUUTTA: Aristoteles, Kategoriat. Tulkinnasta. Ensimmäinen analytiikka. Toinen analytiikka, Teokset I, Gaudeamus 1994. Aristoteles, Topiikka. Sofistiset kumoamiset.
LisätiedotJohdatus modaalilogiikkaan
Johdatus modaalilogiikkaan harjoitustehtävien ratkaisuja Vastausten laatimiseen ovat osallistuneet Jukka Ilmonen, Aatu Koskensilta, Renne Pesonen, Ari Virtanen ja Veikko Rantala. 1. Vastaavasti: A ei ole
LisätiedotMahdollisten maailmojen semantiikan synty ja kehitys
Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen to klo 12-14 S20A sh 303 2. luento 27.1.2005 Aikataulu (luennot: 10 x 2 t) (aiheet alustavia) 20.1. Luento 1 (johdanto)
LisätiedotIlpo Halonen 2005. 1.3 Päätelmistä ja niiden pätevyydestä. Luonnehdintoja logiikasta 1. Johdatus logiikkaan. Luonnehdintoja logiikasta 2
uonnehdintoja logiikasta 1 Johdatus logiikkaan Ilpo Halonen Syksy 2005 ilpo.halonen@helsinki.fi Filosofian laitos Humanistinen tiedekunta "ogiikka on itse asiassa tiede, johon sisältyy runsaasti mielenkiintoisia
LisätiedotMatematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
LisätiedotNimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...
2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen
Lisätiedotsemantiikan ja pragmatiikan pk / um
Sanasto l. leksikko Lekseemien merkityksen kuvaus on sanojen välisten merkityssuhteiden kuvaamiseen Kielen sanat muodostavat yhdessä leksikaalisia kenttiä eli merkityskenttiä Sanan merkitys voidaan kuvata
LisätiedotT kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut
T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun juureen
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
LisätiedotChalmers, semantiikka ja välttämättömyys
Ilmestynyt teoksessa: Niiniluoto, Tuomas & Toppinen (toim.) Mahdollisuus, 2016. Chalmers, semantiikka ja välttämättömyys Panu Raatikainen Tampereen yliopisto Kielifilosofiassa on 2000-luvulla saanut paljon
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
LisätiedotAutomaatit. Muodolliset kielet
Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten
Lisätiedot815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava
LisätiedotTekstien ääniä. Tommi Nieminen Itä-Suomen yliopisto
Tekstien ääniä Tommi Nieminen Itä-Suomen yliopisto 39. Kielitieteen päivät, Tallinna 16. 18.5.2012 Mitä väliä? teoreettinen ja metodologinen tarve? teksti ääni suhde työkaluajatteluun ei ääniä > monologinen
LisätiedotPSYKOLOGIAN VALINTAKOE MALLIVASTAUKSET
PSYKOLOGIAN VALINTAKOE 7.6.2010 MALLIVASTAUKSET Mallivastauksissa lueteltujen tietojen hallitsemisen lisäksi arvostelussa on otettu huomioon esseen selkeys ja LAAJA ESSEEKYSYMYS (yhdistele ja erittele
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotPredikaattilogiikan malli-teoreettinen semantiikka
Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia
LisätiedotDFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
LisätiedotTYÖPOHJAT ALUSTAN VIESTINNÄN RAKENTAMISEKSI
TYÖPOHJAT ALUSTAN VIESTINNÄN RAKENTAMISEKSI Näillä työpohjilla pystyt systemaattisesti rakentamaan alustaviestinnässä tarvittavat elementit. Kun viestin elementit ovat selkeät, on helppo muodostaa niiden
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotLisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa
LisätiedotApprobatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotT-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003
T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R
Lisätiedot3. Predikaattilogiikka
3. Predikaattilogiikka Muuttuja mukana lauseessa. Ei yksikäsitteistä totuusarvoa. Muuttujan kiinnittäminen määrän ilmaisulla voi antaa yksikäsitteisen totuusarvon. Esimerkki. Lauseella x 3 8 = 0 ei ole
LisätiedotOntologiat merkitysten mallintamisessa: OWL. Eeva Ahonen
Ontologiat merkitysten mallintamisessa: OWL Eeva Ahonen 1.11.2004 Semanttinen tieto käsitemallit ihmisillä sisäiset mallit maailmantieto tarvitaan tekstin tulkitsemiseen tietokoneelle esim. sanat vain
LisätiedotTäydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
LisätiedotInsidenssifunktioiden teoriaa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Rauno Soppi Insidenssifunktioiden teoriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2011 2 Tampereen yliopisto Informaatiotieteiden yksikkö SOPPI, RAUNO:
LisätiedotRekursiiviset palautukset [HMU 9.3.1]
Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle
LisätiedotMuodolliset kieliopit
Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.
LisätiedotLuento 12: XML ja metatieto
Luento 12: XML ja metatieto AS-0.110 XML-kuvauskielten perusteet Janne Kalliola XML ja metatieto Metatieto rakenne sanasto Resource Description Framework graafikuvaus XML Semanttinen Web agentit 2 1 Metatieto
LisätiedotMikä on tieteenfilosofinen positioni ja miten se vaikuttaa tutkimukseeni?
Mikä on tieteenfilosofinen positioni ja miten se vaikuttaa tutkimukseeni? Jyväskylä 31.5.2017 Petteri Niemi Relativismi ja Sosiaalinen konstruktivismi Relativismi (Swoyer 2010) Relativismi on näkemysten
LisätiedotJohdatus rakenteisiin dokumentteihin
-RKGDWXVUDNHQWHLVLLQGRNXPHQWWHLKLQ 5DNHQWHLQHQGRNXPHQWWL= rakenteellinen dokumentti dokumentti, jossa erotetaan toisistaan dokumentin 1)VLVlOW, 2) UDNHQQHja 3) XONRDVX(tai esitystapa) jotakin systemaattista
LisätiedotIdentiteetti identifikaatio - ja valinta
Heikki Mäki-Kulmala (Tay) Identiteetti identifikaatio - ja valinta Kenneth Burken mukaan Uuden retoriikan edustajia Stephen Toulmin 1922-2009 CHAIM PERELMAN (1912-1984) Kenneth Burke 1897-1993 Aristoteles
LisätiedotTehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi
LisätiedotAineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin
Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:
LisätiedotInsinöörimatematiikka A
Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,
Lisätiedoton rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
LisätiedotTeoria tieteessä ja arkikielessä. Teoriat ja havainnot. Teorian käsitteitk. sitteitä. Looginen positivismi ja tieteen kielen kaksitasoteoria (1)
Teoria tieteessä ja arkikielessä Teoriat ja havainnot Johdatus yhteiskuntatieteiden filosofiaan 2. Luento 18.1. Arkikielessä sanaa teoria käytetään usein synonyyminä hypoteesille (olettamukselle) tai idealisoidulle
LisätiedotTalousmatematiikan perusteet ORMS.1030
kevät 2014 Talousmatematiikan perusteet Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/
LisätiedotLause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat
jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
LisätiedotDiskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
LisätiedotYhteentoimivuusalusta: Miten saadaan ihmiset ja koneet ymmärtämään toisiaan paremmin?
Yhteentoimivuusalusta: Miten saadaan ihmiset ja koneet ymmärtämään toisiaan paremmin? Avoin verkkoalusta ihmisen ja koneen ymmärtämien tietomääritysten tekemiseen Riitta Alkula 20.3.2019 Esityksen sisältö
LisätiedotMitä on Filosofia? Informaatioverkostojen koulutusohjelman filosofiankurssin ensimmäinen luento
Mitä on Filosofia? Informaatioverkostojen koulutusohjelman filosofiankurssin ensimmäinen luento Filosofian kurssi 2008 Tavoitteet Havaita filosofian läsnäolo arjessa Haastaa nykyinen maailmankuva Saada
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
LisätiedotTalousmatematiikan perusteet ORMS.1030
orms.1030 Vaasan avoin yliopisto / kevät 2013 1 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi
LisätiedotTUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen
1 FYSIIKKA Fysiikan päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta fysiikan opiskeluun T2 ohjata
LisätiedotPong-peli, vaihe Koordinaatistosta. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana
Muilla kielillä: English Suomi Pong-peli, vaihe 2 Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana Laitetaan pallo liikkeelle Tehdään kentälle reunat Vaihdetaan kentän taustaväri Zoomataan
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
LisätiedotVastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
LisätiedotYhdyssana suomen kielessä ja puheessa
Yhdyssana suomen kielessä ja puheessa Tommi Nieminen Jyväskylän yliopisto Anna Lantee Tampereen yliopisto 37. Kielitieteen päivät Helsingissä 20. 22.5.2010 Yhdyssanan ortografian historia yhdyssanan käsite
LisätiedotJohdatus matematiikkaan Tero Kilpeläinen
Tero Kilpeläinen Syksy 2011 Mitä matematiikka on? Tällä kurssilla jutellaan, mitä sattuu mieleen tulemaan. Kurssin suoritusta (ja muuta oppimista) varten on syytä tutustua Petri Juutisen kirjoittamaan
LisätiedotDialoginen ohjaus ja sen työvälineet
Johdatus dialogiseen hahmotustapaan Toimijuuden tuki hanke 15.5.2014-12.2. 2015 Mikael Leiman, Emeritusprofessori Laudito Oy Dialoginen ohjaus ja sen työvälineet Ohjauksen perusedellytykset Kannattelevan
LisätiedotJohdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195
Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava
LisätiedotPsyykkinen toimintakyky
Psyykkinen toimintakyky Toimintakyky = ihmisen ominaisuuksien ja ympäristön suhde : kun ympäristö vastaa yksilön ominaisuuksia, ihminen kykenee toimimaan jos ihmisellä ei ole fyysisiä tai psykososiaalisia
LisätiedotTalousmatematiikan perusteet ORMS.1030
s16 Talousmatematiikan perusteet ORMS.1030 Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/ mla/ puh. 044 344 2757
Lisätiedot