Johdatus matematiikkaan Tero Kilpeläinen
|
|
- Tuulikki Katajakoski
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tero Kilpeläinen Syksy 2011
2 Mitä matematiikka on? Tällä kurssilla jutellaan, mitä sattuu mieleen tulemaan. Kurssin suoritusta (ja muuta oppimista) varten on syytä tutustua Petri Juutisen kirjoittamaan monisteeseen, jonka voi ladata sivulta PJ.pdf Helposti lähestyttävä todistamisen alkeisoppikirja on Richard Hammackin BOOK OF PROOF, joka on ilmaiseksi ladattavissa sivulta rhammack/bookofproof/index.html
3 Mitä matematiikka on? Tämän kurssin tarkoituksena on houkutella kuulijoita sukeltamaan matematiikan ihmeelliseen maailmaan. Tällä kurssilla annetaan näytteitä matemaattisesta päättelystä; jotkut periaatteet ovat opittavissa, mutta tärkeintä on saada jonkinlainen kosketus matemaattiseen ajattelumaailmaan. Matematiikkaa on vaikeaa määritellä, mutta jotain sen luonteesta voidaan sanoa: M on H M on H Matematiikka on Hyödyllistä! Matematiikka on Hauskaa!
4 Mitä matematiikka on? Matematiikka on deduktiivinen tiede, jossa tosista premisseistä eli lähtökohdista tai ehdoista seuraa tosi johtopäätös. Koulumatematiikassa opitaan lähinnä keinoja laskea sitä tai tätä sekä (mahdollisesti) soveltamaan annettuja kaavoja tms. Kun tekniikat monimutkaistuvat, tulee tarpeelliseksi ymmärtää niiden takana olevia käsitteitä ja periaatteita. Matematiikan opinnoissa tarkoitus on oppia ymmärtämään laajemmin matemaattisia rakenteita ja ymmärtämään, miksi ne ovat tosia. Samalla opitaan myös tieteessä käytettävä täsmällinen argumentointitapa. Toisaalta matematiikan opintojen aikana on tarkoitus tutustua eräsiiin (mm. sovellusten kannalta) keskeisiin matematiikan teorioihin, jolta pohjalta tulee mahdolliseksi luoda uutta tietoa. (Tähän katsaus opintoihin?)
5 Matematiikan rakenne Matematiikka on olemukseltaan teoreettista, vaikka monet kysymyksenasettelut lähtevät käytännöllistä (tai muiden tieteiden esiinnostamista) ongelmista. Matematiikka sovelletaan lukuisissa eri kohteissa emmekä yleensä ajattele, että monet arkipäiväset laitteet jne toimivat, koska on kehitetty tiettyjä matematiikan teorioita. Ennen kunnollista soveltamista on ymmärrettävä itse matematiikkaa. Matematiikan voi ajatella olevan eräänlainen kieli. Opintojen alussa menee yleensä jonkinverran aikaa, ennenkuin uuden kielen käyttö omaksutaan.
6 Matematiikan rakenne Matematiikan ainesosasia ovat käsitteet, oletukset, väitteet ja päättely. Muita nimityksiä näille: Aksiooma Aksiooma (perusoletus, selviö) on jotain, jonka oletetaan olevan totta, tai joka on ilmiselvästi totta. Aksiooma on siis senkaltainen perusoletus, jota ei kyseenalaisteta. Näiden määrä on syytä olla vähäinen eivätkä ne saa olla keskenään ristiriitaisia. Tällä kurssilla ei juurikaan puututa aksioomajärjestelmiin. Määritelmä Määritelmät ovat yksi tärkeimmistä matemaattisen kielen osista. Ne on syytä omaksua kirjaimellisesti! Määritelmä antaa ylensä lyhyen tavan ilmaista käsitteen sisältö antamalla sille nimi; usein määritelmässä annetaan myös sisältö symbolille.
7 Matematiikan rakenne Esimerkkimääritelmä Reaaliluvun x itseisarvo on luku { x, jos x 0, x = x, jos x < 0. Määriteltyjen käsitteiden avulla voidaan muodostaa teoreemoja, väitelauseita, mutta aina käsitten määrittelyn yhteydessä on hyvä ensin pysähtyä analysoimaan määritelmää, antaa siitä esimerkkejä (ja vastaesimerkkejä eli esimerkkejä tapauksista, joissa määritelmä ei toteudu). Lause Lauseissa yleensä pyritään ilmaisemaan yleinen tosiseikka. Lauseet ovat yleensä muotoa sen ja sen oletuksen ollessa voimassa tämä ja tuo on myös totta.
8 Matematiikan rakenne Esimerkkilause (Kolmioepäyhtälö) Kaikille reaaliluvuille a ja b pätee: a + b a + b. Varsinaisia lauseita (teoreemia) vähäarvoisempia tuloksia kutsutaan usein propositioiksi tai tylysti väitteiksi. Lemma on apulause, joka on tarpeellinen helpottamaan päättelyn seuraamista, mutta useinkaan lemmat eivät ole yleisemmin mielenkiintoisia (poikkeuksiakin toki on!). Lemma Kaikille reaaliluvuille x pätee : x x.
9 Matematiikan rakenne Todistus Todistus on lauseen yksityiskohtainen johto tai perustelu lähtien aksioomista käyttämällä logiikan päättelysääntöjä sekä tunnettuja (se on todistettuja!) lauseita. Käytännössä todistus on sellainen väitteen perustelu, joka sisältää rittävästi yksityiskohtia, jotta lukija/kuulija voi vakuuttautua väitteen totuudellisuudesta. Todistukset ovat matematiikan keskeisin osa, samalla vaikein ja mielenkiintoisin osa. Sellaisia asioita voit pitää itsestäänselvinä, joille osaat antaa todistuksen milloin vain.
10 Esimerkkitodistus lemmalle Aloitetaan apulauseen todistuksella Lemma Kaikille reaaliluvuille x pätee : x x. Lemman todistus. Tapaus 1. x 0. Tällöin väite on selvä, sillä ei-negatiivisille x: x = x x. Tapaus 2. x < 0. Tällöin x = x, ja siis x < 0 < x = x, joten väite x x on tosi kaikilla reaaliluvuilla x.
11 Esimerkkitodistus kolmioepäyhtälölle Esimerkkilause (Kolmioepäyhtälö) Kaikille reaaliluvuille a ja b pätee: a + b a + b. Seuraavaksi pyrimme todistamaan tämän lauseen, so. vakuuttamaan itsemme ja muut, että väite on tosi. Todistuksen keksimistä varten on usein hyvä tehdä esimerkkejä ja koittaa niiden avulla keksiä todistusta ja selvittää olisiko väite ilmeisesti väärin. Esimerkki. Jos a = 2, b = 7, niin a + b = = 9 = 9 = = a + b eli ok. Jos a = 2, b = 7, niin a + b = 2 7 = 5 = 5 < 9 = = a + b eli ok.
12 Esimerkkitodistus kolmioepäyhtälölle Toinen tapa yrittää keksiä todistusta on muiden todistusten miettiminen ja matkiminen, josko niistä löytyisi ideoita tähän tilanteeseen. Voimme yrittää jakaa käsittelyn eri tapauksiin kuten teimme äsken todistamassamme lemmassa: 1 a 0 ja b 0. 2 a 0, b < 0 ja a + b 0. 3 a 0, b < 0 ja a + b < 0. 4 a < 0, b 0 ja a + b 0. 5 a < 0, b 0 ja a + b < 0. 6 a < 0 ja b < 0. Näin voitaisiin edetä ja saada aikaiseksi (tylsä) todistus kolmioepäyhtälölle. Osoittautuu, että käyttämällä edeltävää lemmaa, saamme lyhyen todistuksen jakamalla käsittelyn kahteen osaan, tapauksiin a + b 0 ja a + b < 0.
13 Esimerkkitodistus kolmioepäyhtälölle Esimerkkitodistus kolmioepäyhtälölle. Tapaus 1. a + b 0. Tällöin a + b = a + b, joten lemman avulla a + b = a + b a + b a + b. Tapaus 2. a + b < 0. Tällöin a + b = (a + b) > 0, joten lemman nojalla a + b = a b a + b = a + b.
14 Geometrian todistus Pythagoraan lause lienee eräs tunnetuimmista matematiikan lauseista; sille on yli 400 todistusta, joista seuraavassa yksi. Pythagoraan lause Jos suorakulmaisen kolmion kateettien pituudet ovat a ja b ja hypotenuusan pituus on c, niin a 2 + b 2 = c 2. Todistus. Isomman neliön ala on pienemmän (sinisen) neliön ala + 4 kertaa (vihreiden) kolmioiden alat eli (a + b) 2 = c 2 + 4( 1 ab) eli 2 a 2 + 2ab + b 2 = c 2 + 2ab a 2 + 2ab + b 2 = c 2 + 2ab Johdatus 2 matematiikkaan 2 2 eli
15 Kuva voi valehdella! Pythagoraan lauseen todistus perustui paljolti havaintokuvaan. Kuvista on usein apua, mutta ei aina! Mikä yllä olevissa kuvissa menee pieleen? (Ellet keksi, voit etsiskellä hakusanalla curry triangle.)
16 Kultainen leikkaus Kultainen leikkaus on luku, joka on kiehtonut ihmisiä, niin matemaatikoja kuin muitakin, vuosisatoja. Kultainen leikkaus määritellään sellaisen suorakulmion sivujen pituuksien suhteeksi, jolla on seuraava ominaisuus: jos leikkaat suorakulmiosta pienemmän sivun kokoisen neliön pois, jäljelle jää alkuperäisen suorakulmion kanssa yhdenmuotoinen suorakulmio.
17 Kultainen leikkaus Kultaisen leikkauksen olemassaolo on helppo havaita kasvattamalla neliötä yhdestä sivusta isommaksi suorakaiteeksi. Aluksi neliön päätyyn lisättävä suorakaide on liian ohut ollakseen alkuperäisen muotoinen; kun saavutetaan kahden neliön kokoinen suorakaide, on lisätty suorakulmio liian paksu. Siis jossain välissä on kultaisen leikkauksen suhteet omaava suorakulmio (punainen).
18 Kultainen leikkaus Kultainen leikkaus on sellaisen suorakulmion sivujen pituuksien suhteeksi, jolla on ominaisuus, että jos leikkaat suorakulmiosta pienemmän sivun kokoisen neliön pois, jäljelle jää alkuperäisen suorakulmion kanssa yhdenmuotoinen suorakulmio. Toinen tapa on laskea kultaisen leikkauksen arvo: olkoon x pidempi kultaisen leikkauksen suhteessa olevan suorakaiteen sivuista, ja toisen pituus olkoon 1. Yhdenmuotoisuudesta saadaan x = x 1 = 1 x 1, josta x(x 1) = 1 eli x 2 x 1 = 0. Tästä ratkaisemalla (ja ottamalla ei-negatiivinen ratkaisu) saadaan x = , 618.
19 Kultaisen leikkauksen irrationaalisuus Tarkastellaan seuraavaa prosessia: Leikataan kultaisen leikkauksen suhteet omaavasta suorakulmiosta neliö pois, jolloin jää yhdenmuotoinen suorakaide. Tehdään sille sama neliön poisleikkaus jälleen jää alkuperäisen suorakaiteen muotoinen suorakaide. Näin voidaan jatkaa loputtomiin ja aina jäljellä on alkuperäisen suorakaiteen muotoinen suorakaide.
20 Kultaisen leikkauksen irrationaalisuus q p q p p q Tehdään sama prosessi suorakaiteelle jonka sivut ovat kokonaislukuja p ja q (tämä tarkastelu kattaa kaikki suorakulmiot, joiden sivujen pituuksien suhteet ovat rationaalisia) : Leikaamalla suorakulmiosta q q neliö pois (p q) jää suorakaide, jonka sivut ovat p ja p q. Tätä prosessia ei voida jatkaa loputtomiin, korkeintaan p q kertaa, koska kaikkiein poisotettavien neliöiden sivut ovat kokonaislukuja ja alkuperäisessä suorakulmiossa on vain p q pikkuneliötä. Prosessi siis päättyy.
21 Kultaisen leikkauksen irrationaalisuus Yhteenveto: Jos suorakulmiolla sivuilla on kultaisen leikkauksen suhde, ositusprosessi jatkuu loputtomiin. Jos suorakulmiolla sivujen suhde on rationaaliluku, ositusprosessi päättyy äärellisen monen askeleen jälkeen. Siis kultainen leikkaus (ja siten myös 5 miksi?) on irrationaaliluku.
22 Todistuksen rakenne Kultaisen leikkauksen irrationaalisuustodistuksen rakenne on seuraava: P = L Q = L eli L = Q Siis P = Q Tässä: olkoon x suorakulmion S sivujen suhde. P x on kultainen leikkaus L Suorakulmion ositusprosessi jatkuu loputtomiin. Q x on rationaaliluku.
Johdatus matematiikkaan Tero Kilpeläinen
Tero Kilpeläinen Syksy 2014 Mitä matematiikka on? Tällä kurssilla jutellaan, mitä sattuu mieleen tulemaan. Kurssin suoritusta (ja muuta oppimista) varten on syytä tutustua Petri Juutisen kirjoittamaan
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
Todistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 2 Mikko Salo 31.8.2017 Sisältö 1. Matemaattisen tekstin osia 2. Ongelmanratkaisua 3. Matematiikan rakenteesta Matemaattinen teksti Pitkä matematiikka Yliopiston luentomoniste
Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 1 Mikko Salo 30.8.2017 Sisältö 1. Kurssista ja matematiikan opiskelusta 2. Matemaattinen päättely 3. Matematiikka tieteenalana Kurssista Johdatus matematiikkaan kurssin tavoitteita:
b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
Logiikka 1/5 Sisältö ESITIEDOT:
Logiikka 1/5 Sisältö Formaali logiikka Luonnollinen logiikka muodostaa perustan arkielämän päättelyille. Sen käyttö on intuitiivista ja usein tiedostamatonta. Mikäli logiikka halutaan täsmällistää esimerkiksi
-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi
-Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei
Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
Predikaattilogiikkaa
Predikaattilogiikkaa UKUTEORIA JA TO- DISTAMINEN, MAA11 Kertausta ogiikan tehtävä: ogiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
2.2 Neliöjuuri ja sitä koskevat laskusäännöt
. Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri
Luonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
JOHDATUS MATEMATIIKKAAN
JOHDATUS MATEMATIIKKAAN Toitteko minulle ihmisen, joka ei osaa laskea sormiaan? Kuolleiden kirja JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Alkusanat Tämä tiivistelmä on allekirjoittaneen
Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
Cantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
Johdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
Vastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
Matemaattisten työvälineiden täydentäviä muistiinpanoja
Matemaattisten työvälineiden täydentäviä muistiinpanoja Antti-Juhani Kaijanaho 7 maaliskuuta 0 Deduktiivinen ja induktiivinen päättely Deduktiivisessa päättelyssä johtopäätös seuraa aukottomasti premisseistä
DFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
1.1. RATIONAALILUVUN NELIÖ
1.1. RATIONAALILUVUN NELIÖ 1. Käyttäen tietoa a = a a laske: a) 8 b) ) c) 0, d) ) 1 e) 1) f) +,) g) 7 h) ) i). Laske näiden lukujen neliöt: 17 9 1,6 1. Laske: ) a) ) b). Laske a, kun 5) 1 ) 11 11 81. j)
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 5 Mikko Salo 5.9.2017 The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable.... It came
JOHDATUS MATEMATIIKKAAN
JOHDATUS MATEMATIIKKAAN JOUNI PARKKONEN 0. Lukijalle Tämä on syksyn 01 Johdatus matematiikkaan -kurssin teksti. Joitain asioita käsiteltiin luennolla enemmän kuin tässä tekstissä, samoin joistain asioista
Konvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen
a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset
Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet )
T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet 9.1 9.5) 30.11. 3.12.2004 1. Osoita lauselogiikan avulla oheisten ehtolausekkeiden ekvivalenssi. (a)!(a
Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.
5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
a b c d
1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on
(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
10 Matriisit ja yhtälöryhmät
10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän
Luonnollisen päättelyn luotettavuus
Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
LUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
Kokonaisluvut. eivät ole kokonaislukuja!
Luvut Lähdetään liikkeelle kertaamalla mitä tiedämme luvuista. Mitä erilaiset luvut kuvaavat ja millaisia ominaisuuksia niillä on? Mikä voisi olla luonnollisin luku aloittaa? Luonnolliset luvut Luonnolliset
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Ohjaus 1 / Ratkaisuehdotuksia (AK) alkavalle viikolle
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Ohjaus 1 / Ratkaisuehdotuksia (AK) 14.9.009 alkavalle viikolle Näissä ohjauksissa opetellaan laskusääntöjen ja epäyhtälöiden huolellista käyttöä. Ratkaisuissa
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä
Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,
Ominaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).
Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta
Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset 1. Päättele resoluutiolla seuraavista klausuulijoukoista: (a) {{p 0 }, {p 1 }, { p 0, p 2 },
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }
7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko
4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
15. Suorakulmaisen kolmion geometria
15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen
Loogiset konnektiivit
Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi
Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
Matematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m
MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista
Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta
Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen
reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,
Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.
LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015
PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske
Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)
Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p
Insinöörimatematiikka A
Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
1 Supremum ja infimum
Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,
Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi
Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi LUKUTEORIA JA TODISTAMINEN, MAA11 Esimerkki a) Lauseen Kaikki johtajat ovat miehiä negaatio ei
MS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun
Reaaliluvut 1/7 Sisältö ESITIEDOT:
Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:
Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...
2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen
1. Logiikan ja joukko-opin alkeet
1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista
Matemaattisen analyysin tukikurssi. 1. Kurssikerta ( )
Matemaattisen analyysin tukikurssi 1. Kurssikerta (16.9.2019) Yleistä Tukikurssista - 1. periodi: maanantaisin klo 14:15-15:45 huoneessa SH2 yht. 5 kertaa. Tenttiviikolla ei tukikurssia. 2. periodin ajat
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio