7. Arbitrage Pricing Theory
|
|
- Aki Ranta
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 7. Atg Pcg Thoy Cptl Asst Pcg odl CAP mll sovltms lttyy ust hstt. stmotv pmt määä ksv sotuskohtd lukumäää ksvss kohdtt odotusvo vss -/ kovss -/ stmotv pmt sm. 5 kohdtt 5 75 pmt. stmoss tvttv dt välttämättä käytttävssä kst vät ol smkks uus sotuskohtd oslt ttävä ptkä kovsst vovt ppu suhdtst must tköstä 3. Kt ottm odotusvoo vss os pälstst muutk tkät vkuttvt smkks psst toml t mttlls s suht Aht Slo / Pkk ld.3.7
2 . Yhd kto mll Sotuskoht tuotto slttää tkä cto vull tuotto kytktää sm. BKT: ksvuu t oskdks khtyks : koht tuotto slttää kvll oss ovt vkot o stusmuuttu o vhtm. CAP vod ähdä kostpuks oss sktö koko β -ko Oltuks:. Vhtm odotusvo. Vhtmt vät kolo : kss [ ] 3. sotuskohtd vhtmt vät kolo kskää 4. Vhtm vss tut smmä oltus ol ottv kosk ollst pokkv vh odotusvo vod stää vkoo. ud okllsuutt vod yksokosst tt. - -
3 Jos m. oltukst ptävät pkks cov cov / Odotusvo vss kovss lskmsks tvt ss v.. skä v yhtsä 3 pmt CAPss /- - 3-
4 Vkotm stmot Jos : : hstoll khtys tut pmtt vod stmod ksost stoll sd lst pmt vot sm. mh käts : : vot lttyvät? Odotusvo vss kovss stmtt sd kvost ˆ k ˆ ˆ k k k cov ˆ k ˆ ot ktomll ktomks tul ˆ k cov ˆ ˆ ˆ ˆ k Nätä ktom käyttä vod lopuks lsk ktomll vhtm vss. - 4-
5 - 5- Potolo yhd kto mllss Rkt :stä sotuskohtst potolo oss : koht po o. Jos : koht tuotto oudtt ktomll potolo tuotto o mssä Potolo pmtt sd yksttäst kohtd pmt potttu summ! dll [ ] [ ]
6 Kosk vhtmt vät kolo so. Jos kohtd vhtm vss o v s potolo vhtm vssks sd s potolo tuoto vssks tul oss ss älkmmä tm ku. s Vhtm lttyvä vss o ss dvsotvss ku ts tm vss vod dvsod: s ksvtt oslt ko. kohdtt ssältäv potolod tuoto vss. sm. Tkstll lää osktt od hstoll khtys tut vuod lt. Rkt yhd kto mll oss slttävää tkää o tollsuud htdks ks. x
7 - 7-. Us kto mllt Sotuskoht tuotto ppuu us most tkästä ollo stä vod pykä slttämää moktomllll. Jos tkötä o kks mllks sd oss o lkkuspst ovt ktokohtst ktomt lodg. Oltuks:. Vhtm odotusvo o so. Vhtmt ktot vät kolo kskää 3. kohtd vhtmt vät kolo kskää mutt ktot vovt s s kolod. Tuoto odotusvoks sd ot } { cov
8 Ktomt sd tuotto kto välsstä kovssst: cov { } cov Nämä kks yhtälöä vod tkst ktom suht. Us kto käyttö o pustltu os vhtm vss ää suuks yhtä slttävää tkää käytttässä os vhtm vss o sm suuuusluokk ku tuoto vss mll sltysvom o hkko slttäv ktod vlt kutk yksokost CAP:ää vttu pmt lukumäää o moktomllss kutk kohtuull hlpomm stmotvss uus ktot vod tuod tvttss - 8-
9 llä pustll ktot ktt vlt? yksokost t ok vstust ppuu stä mstä tköstä tuotto khtyks vll ppuv kokltv tstttv ust vhtohto. Ulkost tkät uttokstuott ksvu kulutthtdks suhdomt. Sotuskohtt kuvvt tuusluvut mkkpotolo tuotto toml ytyst kskmäää tuotto dllsstä dkshupust kulud päv lukumäää 3. Ytyst omsptt h lkvoto väl suhd ytyks ksvuopus lkvottovlktusuus ytyskohtsuus slttävä tkä ytyskoht ko c kkll yht cg - 9-
10 Yhd kto mll CAP CAP sd yhtä kostpuks yhd kto mllst ku sotuskoht tuotto slttää mkkpotolo tuotoll. koko ktä kttää huomo s yl svutttv tuottoh kktst suo sd tästä oltuksll Ott m. mllst odotusvo CAP muk lkkuspst α o oll vt. Js dks luto 6 Lskt - : kovss : kss β α β α cov cov β β β α
11 4. Atg Pcg Thoy APT APT o ktomll pohutuv to sotuskohtd hottluu vt. CAP. APT olt odotusvo vss suht thtävää optmot vt. thoks pt; s s s oltt ttä. sottt povt kokmp tuotto. sotuskohtd määä o suu. Id o ttä kutk kto vst ko ktoht ost sotuskoht tuoto odotusvo ppuu lsst. Fktoht sd vtmuksst ttä mkkoll ol tsmhdollsuuks > Atg Pcg Thoy. Atsvtmus kytk sotuskohtt toss. Tkstll yhd kto mll oss vhtohto o kks sotuskohdtt tässä vhss vhtmä: Sott kohts poll kohts poll - potolo tuotto o - -
12 - - Vlt po s.. ttä kto ko o Tällö potolo o sktö ot s tuoto täytyy oll sm ku sktö koko so. Ts. sotuskohtll m. suhd o ok vko c c
13 Sd ss Tulos o ylstttävssä usmmll ktoll. c c Ykskt APT: Jos sotuskoht tuotot määttyvät m:stä tkästä m < o olmss vkot m s.. Tässä o kto lttyvä sk ht ktoht o koht ltus ktoko kto Yl APT m K m K dllä ktot ol v yks kä vhtmä huomotu. Tkstll tpust oss : koht tuotto o m sh sott poll. - 3-
14 Potolo tuoto vhtm vss o tällö Oltt ttä. yksttäst kohtd vhtm vsst ovt otttu ollo ollk vkoll S.. mhkää kohts sott mkttäväst mpää ku muh W/ ollk W. Tällö S Ts. ku potoloo ssältyv sotuskohtd määä ksv vhtm vss läh oll us tkä ktomll t sltyks potolo tuotoll. W S W S Ylläolvst pustll vod päätllä ttä mkä ths hyv dvsodu potolo tuotto o m ot ykskts APT: oll tuoto odotusvo o m - 4-
15 Kosk hyv dvsotu potolot muodostt muuttmll sotuskohtd potuks vstv ppuvuus pät myös äd ssältäm kohtd odotttvss olv tuottoo so. m CAP: APT: väl yhtys Tkstll khd kto mll Lskt koht tuoto kovss mkkpotolo tuoto kss cov Kosk o suu vhtm kolto mkkpotolo kss vod ättää huomott vt. APT: ohto. cov. { cov cov cov } - 5-
16 Jt tämä mkkpotolo tuoto vssll β cov β β cov CAP:ss sotuskoht t o ko. koht tuotto slttäv ktod to summ kohtd tt ohtuvt d lsst ktoktomst ktoll tt kohtll v -ktomt 5. Pmt stmost ll käyttö dllyttää usd pmt stmot tyypllsst pust hstollst kst pod vlt vo os vkutt tuloks ätä kum tuusluku o vk stmod luotttvst sm. tuoto odotusvo Koht vuostuoto y vod tll muodostuv kuukustuotost y L - 6-
17 - 7-. Oltt ttä kuukustuotot ovt pä tos st tmt vod ättää huomott. Oltt ttä kuukustuotot ovt smo kutut tosst ppumttom Kuukud sst vod tkstll muuk ptus pod vuos vod k mlvlts mo pod ost kuk ptuus o p. Vuostsolt ohdttu ko. pod tuoto odotusvo vss koskvt stmtt ovt y y L L y y y p y p p
18 Huom! Ku pod p lyh kskho odotusvo suhd ksv mstä syystä lyhy kät tuotto o vk ust. os vuostsoll y % y 5% kuukustt % /sqt 5%433%. suv kuukud tuotto o ss o 66% todäkösyydllä välllä ± 433% ok o vs so luottmusväl. Yhd pod tuotto-odotusstmtt o vk pt stmoss käytttävää ks pdtämällä. olkoo lähtökoht o : kuukud mtt sto oss ku kuk kk: tuoto odotusvo o kskhot o. stmtt vod lsk kvst ˆ tämä o hhto sllä ˆ. - 8-
19 stmt vss kskhot ovt ˆ [ ] ˆ ˆ Kosk pod ptuus o löuu mttäässä stmt kskhot p htst stmoss käytty ks pdtyssä. olkoo kk-tsoll % 433% os käytttävssä o kk mt sto ˆ 4 33% 5% ott stmt hot ols o % tuotto-odotuks todllsst vost ks tuls oll ptuudlt pät 56 vuott sllä ˆ 4 33% %
Kirkkonummen kunta Yhdyskuntatekniikan toimiala Pöyry Finland Oy / Veikko Urmas 13.5.2015
rkkoumm kut dyskuttkk tom öyry Fd y / kko rms M - D M yrkv j oktty strbyt, strbykr, oktyt, oktytörmä, oktyoku jk-t, ysäkötut tuuokk strbyt o v mt, jok muuttuu kduks o yrkv j okty kv-u ääktu j v myös joukkokttä
S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että
TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij
Kohina. Mittaustekniikan perusteet / luento 8. Kohina. Kohina. Kohinan mittaaminen
Mttutkk prutt / luto 8 Koh Koh mttm Koh lttyvää trmolog Kohtyypt Mttuvhvt Kohll trkott lktro järjtlmää pot fluktutot, jok hutuu jok ltt, kompot t mtrl fykt Ku mtt pä glj, mttuk lrj (pmmä mtttv gl) määrää
PUTKIKAKSOISNIPPA MUSTA
Takorauta Tuote LVI-numero Pikakoodi 0753007 RU33 KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS DN 65 KESKIRASKAS 0 KESKIRASKAS 0 KESKIRASKAS SK/UK SK/UK
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
Koulutoimen henkilöstörakenne
Koulutoimen henkilöstörakenne 11.11.2016 Virka/toimi Toimen/viran nimike Toimisto V 1 koulutusjohtaja T 2 toimistosihteeri T 3 toimistosihteeri V0033 4 koulukuraattori T 5 koulupsykologi Yhtenäiskoulu,
SOVELLUSOHJELMAT HARJOITUSTYÖ
SOVELLUSOHJELMAT HARJOITUSTYÖ 5.2.2006 Tejät: Mtt Näsä (000000) Rmo Vomsto (0000001) Ssäysetteo 1.Johdto...1 2.Mtä tttt?...3 3.Johtoäätöset...4 4.Lähteet...4 1.Johdto Työssä tttt 16 32 eöste stoje htoj
Viime kerralta: Puheentuotto (vokaalit)
Vme elt: Puheetuotto volt Solle glottheäte Äätöväylä Suodtue tuloe ytyvä ää Vme elt: Kelly-Lochbum yhtälöt Mllet äätöväylää tuje ute vull: 3 Vme elt: Rtooetee ll ole -uod Kelly-Lochbum yhtälöde mue toetee
A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15
A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60
Sähköstaattinen potentiaalienergia lasketaan jatkuville varausjakaumille käyttäen energiatiheyden
Jkso 4. Sähkösttkst muut Tämän oson lskuj e tvtse nättää. Tämän jkson tehtävät ovt sllsltt el tähän on ksttu kkk ne sähkösttkn st, jot e kästelt edellsssä jksoss. Se e tkot, että nämä st evät ols täketä.
1 Tarkastelun lähtökohdat
Mo M Hj () Av om pv vo v höohd mo o h K j o om v Av om mppm omv h m- j md omv Av m po K (v) j po o om v oh o d mp (fco O) o od p vo, o mö hvo o j Av om mv vv mhdo K ö o homo pv - oh jom vo j od o v v Vh
Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.
S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn
VANTAAN KAUPUNKI Maankäytön, rakentamisen ja ympäristön toimiala Kuntatekniikan keskus / Geotekniikka
Mnäytön, rntmsn j ympärstön toml Kunttnn sus / Gotn HÄMEENAARA TONTIT K/- JA K/- Mprä Tontll on thty ylsprtnn pohjtumus, jon yhtydssä on thty pnorus Muutmst tumuspststä on otttu lsäs mnäytttä säs lult
Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on
4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void
JARRUDYNAMOMETRIN LASKENTAOHJELIITE
LIITE JARRUDYNAMOMETRIN LASKENTAOHJELIITE Jrruje surtuskyvy määrtys jrrudymmetrllä Määräksktsstuksess rsk kurm-ut j erävuu jrrujärjestelmä surtuskyky määrtetää jrrudymmetrmttuksll. Jrrujärjestelmä mttussuurede
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
6. Capital Asset Pricing Model
6. Captal Asset cg odel Ivestotpäätökset edustavat use seuaava ogelmatyyppejä:. te sjotuspotolo kaattaa aketaa? vt. kassavtoje täsmääme ks. lueto 3. kä o sjotuskohtee okea hta? vt. abtaasvapaus jvk-hottelu
Tasapainojen määrittäminen tasapainovakiomenetelmällä
Luento 6: sutspnot eskvkko 3.1. klo 8-1 771 - Termodynmset tspnot (Syksy 18) http://www.oulu.f/pyomet/771/ Tspnojen määrttämnen tspnovkomenetelmällä Trkstel homogeenst ksufsrektot. Esm.: (g) + (g) = (g)
NUMMELAN CITYMARKETIN LAAJENNUKSEN LIIKENTEELLISET VAIKUTUKSET
T UMM TYMKT UKS KTST VKUTUKST ähtöohdat uelan ityaret laajenee noin errosneliöetrin uudella liietilalla aajennus johtaa uutosiin pysäöinnin järjestelyissä Uusia pysäöintipaioja ei uitenaan tule uin yenunta
10.5 Jaksolliset suoritukset
4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e
MATRIISILASKENNAN PERUSTEET. Timo Mäkelä
MTRIISILSKENNN PERUSTEET Tmo Mäkelä Mtrslske perusteet SISÄLLYS:. PERUSSIOIT.... MÄÄRITELMIÄ.... MTRIISITYYPPEJÄ.... LSKUTOIMITUKSET.... MTRIISIN KERTOMINEN LUVULL.... YHTEEN- J VÄHENNYSLSKU.... KERTOLSKU....
Muuttujien välisten riippuvuuksien analysointi
Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus
Luento 6 Luotettavuus ja vikaantumisprosessit
Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,
Kristuksen syntymän kalanda kreikaksi
Krstuks syntymän klnd krekk 1 F G7 7 G7 K ln es pe Hrs tu n th Hrsts j n U r n rn, n r hn des, j n n rn gl ln de n n he, p, V, r, n ne rs n p strhn Vthem he r ks ms k p ss, ss. l, 9 7. 8. F G7 7 G7 En
SAMMONKATU SAMMONKATU JAAKON- SARVI- KATU SARVIJAAKONKATU 1: Kalevanrinteen katujen yleissuunnitelma, Liite 3 Asemapiirros 1/4
KTOS L:\PROJEKTT_2012\1510001046 KLEVRTEE KTUJE YS\14_TULOKSET\3.KTUJE YLESSUUTELM\DWG\KLEVRE YS.DWG Tulostettu: 26.6.2013 n- JO KELLR- SR- JKO- KTU SMMOKTU PYSÄKÖT KORTTEL 4 +100,60 KSPHT 1/2 BUS (varaus)
KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET
KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä
'.: RAKEN NUSTYÖKONEI DEN LYHENNEMERKINNÄT. TIE-JA VESIRAKENNUSHALLITUS Järjestelytoimisto 1972 TVH A
RAKEN NUSTYÖKONEI DEN LYHENNEMERKINNÄT LOKOMO - 2O = r ': -- - # - 4 TIE-JA VESIRAKENNUSHALLITUS Järjestelytoimisto 1972 TVH 3728 A5 3000 1172 110000 7 / ( 41 -1- RAKENNUSKONEIDEN RYHMITTELYT JA LYHENTEET
Polynomien laskutoimitukset
Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää
Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen
Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa
YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA
YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S
7. Menetysjärjestelmät
Ssältö Kertust: ykskerte lkeeteoreette mll Posso-mll (skkt, plvelot ) Sovellus vrtv dtlketee mlltmsee vuotsoll Erlg-mll (skkt, plvelot < ) Sovellus puhellketee mlltmsee rukoverkoss Bommll (skkt k
II.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
SIJAINTIKARTTA. JOENSUUN KAUPUNKI Kaupunkirakennepalvelut Yhdyskuntatekniikka. 9. Siihtala, 10. Mutala
JOENSUUN AUPUNI prplvlt Yhdyst SIJAINTIARTTA ÄITIE RANTA-UTALAN ALIULUÄYTÄVÄ ATUSUUNNITELA LIIENTEENOHJAUSSUUNNITELA VALAISTUSSUUNNITELA rtss Oy hlm 9 lls To t ov sj j. As Tlt pol P Hlr SIRALA o t tpol
NIKKILÄN SYDÄMEN LAAJENTAMINEN VAIHE 2 MAANTASOKERROS 1/ / ARK - house
tk, J e, hu p rr, Ä, 9,,, Ä Ä Ä 9,, 9 h vut tk k D uk, C lut, kpk C tr, rv tr C9, y e yv tt t rv lkr tl lut e pll t-k-hu kek u v pt + C C tr C9 tr lut C, C C, yp + phu te kt kpl bet uur rv gr ttpe t +
Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3
Kertusos. ) Edullisemm hit 480, = 64 Klliimm tukkuhit, 480 = 576 Klliimm myytihit, 576 = 748,80 b) 748,80 64 = 0,666... = 6,66% 7% 748,80. Liittymä puhelimell mks khde vuode ik 4 8,50 = 684. Liittymä ilm
Käyttövedenlämmitin. KÄYTTÖVEDENLÄMMITIN HAATO HK-15 1/3KW SEINÄ/VAAKA LVI-numero PIKA OD38
Käyttövedenlämmitin HK-15 1/3KW SEINÄ/VAAKA 5253010 OD38 HK-35 2KW SEINÄ/VAAKA 5253015 RS52 HK-55 2KW SEINÄ/VAAKA 5253020 DE35 HK-100 2KW SEINÄ/VAAKA 5253022 VL77 HM-150 2/3KW SAUNA 5253045 UH93 HM-230
-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08.
Maanmttauslats Page 1 f 1 -d;'$ d{ee lr a ;{*.v {:; rtl } dr r/ r ) a 4 a p ;,.r.1 l s, Karttatulste Tulstettu 22.08.2014 Tulsteen keskpsteen krdnaatt (ETRS-TM3SFlN): N: 6998249 E: 379849 Tulse e le mttatarkka.
Mat. tukikurssi 27.3.
Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.
Hannes. Pyöräkatu. Kultasepänk. Niiralankatu. Valkeisenkatu. Rinnt nek. Lapinlinnankuja. i adan ie. Valkeisenkatu. Urh. ei uk. Lastent.
Pöääsm Jävsmp. vm. Rhhd Rv p Rm Hs 1 Kpm. mh L Msm m.. H H. Mss K. vh m. mp p P S M s s sm Lhm Jä K Hmäs. M s K K Kv. S vh. d h. h Kv Lv. m K v P. P L Lhd Ss K. Am. sd. ö R y s Sä Väö. S Smmpp Väö m Vs
Venymälle isotermisessä tilanmuutoksessa saadaan AE AE
S-11435, Fyskka III (ES) Tntt 75 1 Stsmän tunnstttavssa olvaa hukkasta on jakautunut kahdll nrgatasoll Ylm taso on dgnrotumaton ja sn nrga on 1, mv korkam kun almman tason, joka uolstaan on dgnrotunut
10. VAKIOLÄMPÖTILASSA JA VAKIOPAINEESSA TAPAHTUVAN PROSESSIN MINIMI- JA MAKSIMI-TYÖMÄÄRÄ
32 0. VAKIOLÄMPÖTILASSA JA VAKIOPAINEESSA TAPAHTUVAN PROSESSIN MINIMI- JA MAKSIMI-TYÖMÄÄRÄ 0. M- j kstyö Trkstell vkoläpötlss j vkopeess tphtuv prosess P:A f B. Terodyk esäe pääsäätö o D U = Q(P) - W(P),
= e on Schrödingerin yhtälön ratkaisu. ) on redusoitu massa. Aaltofunktio ψ
S-46, FYSIIKKA IV (EST Kvät, LH4 Rtkisut / LH4- Osoit, ttä vyn ltofunktio ψ = on Schöingin yhtälön tkisu Rtkisu: Schöingin yhtälö llokoointiss on ψ ψ ψ sin θ V ψ Eψ + + =, µ µ sin θ θ θ sin θ φ missä µ
t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A
K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E
Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla
OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn
Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys
Ylestä Teäsakenteden ltokset (EC3-1-8, EC3-1-8-NA) Teäsakenteden lttämsessä tosnsa vodaan käyttää seuaava menetelmä: uuv-, ntt- ja nveltappltokset htsausltokset lmaltokset Ltos ja knntys Ltosta asttavan
Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä
Suomen metsäkeskus Zonton j luonnonhodon lueellnen suunnttelu ykstysmetsssä Johtv luonnonhodon sntuntj Mtt Seppälä METSO j Zonton semnr Ksvu j vkuttvuutt METSO luonnonhotoon 2014-2016 Zonton kehttämsen
Matriisien ja vektoreiden derivointi
H 004 @ccu ttt tloustd II Jväslä losto trs vtord drvot trs drvoll trott säs tos t or st osttsdrvtto uodostst vtord trs sut utost t utost ot o uodostttu trs vull trs vull uodosttut utot ovt tuttu s luu
138,9 138,6 139,2 138,8 138,8 139,0 138,6 138,4 138,5 139,3 138,8 137,8 139,0 138,8 138,9 139, ,9 139,6 139,9 140,4 140,5 141,4.
, TTYNN UPUNRNTSN pv j p, l slss o o hooo yss pyöäly dllyys ohsplvld pysäö j hollo sh. Jls l ssällä o hlppo l vhysllä ssäpholl j ll o sjv söä j pääos pyöäsä o jllyhyd ss lähplvlh (Hv ss, TTY, hll, jäähll,
2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI
37 INTEGRAALILASKENTAA.1 MÄÄRÄTTY INTEGRAALI Trstell ploitti jtuv j rjoitettu (siis ei ääretötä) futiot f ( ) välillä [, ] (s. uv) Jet väli [, ] :ää h-levyisee os h j meritää h, missä 0,1,,..., Joo liittyvä
Jäykän kappaleen tasokinetiikka harjoitustehtäviä
ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.
Aluevarausmerkinnät: T/kem Maakuntakaava
kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12
i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto
i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a
Usko, toivo ja rakkaus
Makku Lulli-Seppälä sko toivo a akkaus 1. Ko. 1 baitoille viululle alttoviululle a uuille op. kummityttöi Päivi vihkiäisii 9.8.1986 iulu a alttoviulu osuude voi soittaa sama soittaa. Tavittaessa alttoviulu
6 NUMEERINEN INTEGROINTI
Elemettmeetelmä peusteet 6. 6 NUMEERINEN INEGROINI 6. Johdto Elemet jäykkyysmts [ k ] j ekvvlette solmukuomtusvekto { } ovt [ ] = [ B] [ E][ B] k dv (6. v e {} = [ B] { 0} dv + [ N] {} f dv + [ N] { p}
MDSATIHO L I K I P I T U I S E N K 0 I V U K U I T U P U U N H A K K U U N
MDSATIHO Rauhankatu 5 7 fflsinki 7 Puhln 9 SE LOS TE 5/9 L I K I P I T U I S E N K I V U K U I T U P U U N H A K K U U N P A L K K A P E R U S T E I D E N T A R K I S T U S T U T K I M U S T u t k m u
Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y
Diffrntiaaliyhtälöt, Syksy 215 Harjoitus 2, Ratkaisut 1.11.215 1. Ratkais sparoituvat diffrntiaaliyhtälöt a) y = y 3, b) y = 1 + y 2 y 2. y Ratkaisu. a): Yhtälö y = 3 on hyvin määritlty kun 3. Lisäksi
VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2
/ ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,
LVI-numero Hitsattu teräsputki P235 TR1 / EN ;Suojamaalattu / Korro E
Hitsattu putki PUTKI P235TR1 PUN 21,3X2,0 0404058 punainen;hitsauskerroin V=1,0;Todistukset EN10204:2004/3.1;Toimituspituus 6 m; TM42 PUTKI P235TR1 PUN 26,9X2,3 0404094 punainen;hitsauskerroin V=1,0;Todistukset
ART HOUSE C M Y CM MY CY CMY K. Harjoitus tekee mestarin. Suomen kielen syventäviä harjoituksia maahanmuuttajille. Marja-Liisa Saunela
J K T K j j I A-S A A L J A j-bjö M Sb V Hj 3: j j j j j j j Kj j j j j j K j j M j j j j S - j - j ö Hj 3 j j j j T ö j j ö - j TITOSANOMA Mj-L S Hj 3 S j j ART HOUS Hj C M Y CM MY CY CMY K Oj j K S L
b g / / / / H G I K J =. S Fysiikka (ES) Tentti
S4.35 Fyskka (ES) Tntt 4.9. 3 6. Sälö, jonka tlavuus on,5 m, ssältää haa, jonka an on,5 Pa ja lämötla C. (a) Montako moola haa sälössä on? (b) Montako klogrammaa? (c) Mtn an muuttuu, jos lämötla kasvaa
Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]
Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord
Harjoitus 2 ( )
Harjoitus 2 (27.3.214) Tehtävä 1 7 4 8 1 1 3 1 2 3 3 2 4 1 1 6 9 1 Kuva 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[] = v[p] d[p] l. max i p 1 {v[i] + a i (i, p) E} = v[l] +
Raskan Sanomat. N:o 2, perjantaina 5. lokakuuta 2018 KARAN TALON ASIAKASLEHTI
R S N: 2, pj 5. l 2018 KARAN TALON ASIAKASLEHTI www.l. Ol ll K: K Jp K Tl O p, j j l pl 1990-lll. Y pl ll ll d l j lj. Alp l l pö j ll p jl Rll Hlg Kpl d. Vll ll j pll l ö. S l pllj j ö j. K Tl O R l lljöö
Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).
Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
Kertojien ikä ja sukupuoli
SANASOPUKKAA TAULUKOINA Keromuks yheesä 16; 1 kuouuj, 9 oms, 6 meleerveyslll yöskeelevää Keromukse kerä 17.11.11-1.12.12 22 verlu 1 er pkkkull Suomess Keroje kä pou mehssä ku sssk käryhmää - 63- vuo. Keroje
Voiman momentti. Momentin yksikkö on [M] = [F] [r] = 1 Nm (newtonmetri) Voiman F vaikutussuora
Voa oett Moett o oa ja oa ae tulo Täsällse ääteltä oa F oett (aksel A suhtee) o M A = F, ssä o oa akutussuoa (kohtsuoa) etäss akselsta A Voa ae sjasta odaa kättää ös oa akutuspstee ja akselpstee lhtä etästtä,
S FYSIIKKA III (ES) Syksy 2004, LH 10. Ratkaisut
S-4 FYSIIKKA III (ES) Syksy 004, LH 0 Rtksut LH0-* Jäähdytyskneen tmv Crnt n kne luvutt 0,0 kj lämöä hunelmn smll, kun kneen mttr tekee työtä 0,0 J Hunelmn lämötl n C () Kunk ljn lämöä kne tt lemmst lämösälöstä?
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
Digipalvelujen ja tiedonhallinnan sääntely , Kuntamarkkinat neuvotteleva virkamies Tomi Voutilainen, valtiovarainministeriö
Dgplveluje j tedohll säätely 11.9.2019, Kutmrkkt euvottelev vrkmes Tom Voutle, vltovrmsterö Keskee säätely Tedohlltlk: tedohllt j tetoturvllsuus Lk sähkösestä sost vromstom ss: sähköse so meettelyt Tetosuojlsäädätö
Toiminta- ja taloussuunnitelma 2010-2012 sekä talousarvio vuodelle 2010 KHALL 532
V 167 02122009 K 532 07122009 V 193 16122009 T- 2010-2012 2010 KHALL 532 V 02122009 168, 169, 170 171 : YLEISHALLINTO /, (H 2122009 /ö 168 ) V *,, * - S * ö, öö 2010 *, ö, * M ö * L- L T Höö M K L ; -
omakotitontit omakotitontit Saaristokaupungin Pirttiniemessä
KUOPON KAUPUNK Maaoaisuuden hallintapalvelut Tarjousten Tarjousten perusteella perusteella yytävät yytävät oakotitontit oakotitontit Saaristokaupungin Pirttinieessä Tarjousten Tarjousten jättöaika jättöaika
Lukujärjestys vko 41 5.10. - 9.10.2015
1 (5) AmmattitaitoinenSihteeri 7.10.2015 8:00 7.10.2015 3:00 MaL Mikro 2 AvustajanaArjessa 5.10.2015 8:00 5.10.2015 3:00 Ulkop. kouluttaja / AvustajanaArjessa 6.10.2015 8:00 6.10.2015 3:00 Ulkop. kouluttaja
YLIOPISTONKATU 4 PERUSKORJAUS JA LAAJENNUS
PRUSTUSLUTTLO SMPRUSTUS POHJPRUSTUS KRROS POHJPRUSTUS KRROS POHJPRUSTUS 3 KRROS POHJPRUSTUS KRROS POHJPRUSTUS 5 KRROS POHJPRUSTUS 6 KRROS POHJPRUSTUS K KRROS POHJPRUSTUS K KRROS POHJPRUSTUS K3 KRROS POHJPRUSTUS
LJH+KJH 36 m² SPK 16,5 JAKA SOS. TILAT (C-Talo) suihku, wc, pukuh. 52 m² Käytävä JAKA. 9.5 m². SIIV. 14m². SPK.
8 Liiker 9 8.7 6 Liiker 9 6 6 7 7 7 7 0 4 0 9-7.8 VR 40 LKR K 4 KR K 8 VR 40 6 4 6 4 6 6 ar ad an T ad an 6 8 0 9 8 u 7 7 ur - P LU St ts k Py sä en St ur en t LU 7 9 ts k 7 9 ilm ilm all kö Pyint säi
TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen
---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma
r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille
Phingin osayliskaava 27.10.2014 Kysly alun asukkaill ja maanomistajill Arvoisa vastaanottaja, Raahn kaupunginhallitus on päättänyt aloittaa Phingin osayliskaavan ajaasaistamistyön. Phingin osayliskaava
y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista
9 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Esimmäis krtluvu diffrtilihtälörhmät Diffrtilihtälörhmiä trvit usiss sovlluksiss. Näistä usimmt void mllit simmäis krtluvu diffrtilihtälörhmi vull. Esimmäis krtluvu diffrtilihtälörhmä
tehtävän n yleinen muoto
t-.474 tettste lgorte ohelot Sple-eetel eetelä lsellset tet. lueto: P-tehtävä ylee uoto S ysteelyys bortoro Telle oreoulu tettste lgorte ohelot Kevät 008 / P-teht tehtävä ylee uoto Stdrduoto selle uoto
Ovieritelmä käyntiovet D024 Suomussalmen hoitokoti
Ovieritelmä käyntiovet VAIN URAKKALASKENTAA VARTEN Muutos K.osa/Kylä Pvm Muutetut ovet / muutoksen aihe Kortteli/Tila Tontti/Rn:o Kirkonkylä 1214/Sairaala 4/95183 Rakennuskohteen nimi ja osoite, Välskärinkuja
Ajorata Rata-alue 5. Ajorata Pyörätie LR 101. Pys Pys LR LR Pys LR Pys. Nyk
ö Höy h kj ähg ä Hg j l Yhklk Bkvy, : kv vlk bkv : kv h kv Bl/kvy, vl h : kv h kv Sl Rl, kv / L + B + N ky vhl/ä Rdähköylvä yöä y j B lylvä d yky kk + d, h välllä hd l lk l j l j Mlj / OR ORTTU TSOOORDINTISTO:
F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg)
SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA ltl ka ppa leiden (vetovoima) m ja lxz välinen gavitaatiovoima Fon F_l/ mlmz 2 kappaleiden massat ovat m ja mz (kg) on kappaleiden keskipisteiden välinen etäisyys
-Jotta maailma olisi parempi paikka wappuna. RAKENNUSINSINÖÖRIKILLAN VIRALLINEN KILTALEHTI JO VUODESTA 1963 2/2012
-J w. RAKENNUSINSINÖÖRIKILLAN VIRALLINEN KILTALEHTI JO VUODESTA 1963 2/2012 JOS ET NÄE LUKEA ALLAOLEVAA PIILOTETTUA TEKSTIÄ, JUO LISÄÄ SKUMPPAA, SILLÄ STEREOGRAMMIEN NÄKEMINEN ONNISTUU VAIN SILMÄT KILLISSÄ.
16-300mm 50 EURON CASHBACK! Ehdot PARAS KOLMESTA MAAILMASTA. www.tamron.fi. F/3.5-6.3 Di II VC PZD Macro
Ehdot 3. Mksu suoritet se m vluutss, mistä objektiivi o ostettu. Mksu suoritet 4 viiko kuluess cshbck-dokumettie spumisest. 4. Objektiivi tulee oll Focus Nordici mhtuom j se tulee oll ostettu virllise
Jarmo Kuusela PL 467 65101 VAASA 20.10.2009 MAAPERÄTUTKIMUS LAKEUDEN ANKKURI, SEINÄJOKI
YT Rkes Oy Jrmo Ksel P 6 MAAPERÄTUTKMUS 6 VAASA MAAPERÄTUTKMUS AKEUDEN ANKKUR, SENÄJOK Ylesä YT Rkes Oy: (Jrmo Ksel) omeksos o KS-Geokosl sor ohjkmkse es mlle kede Akkrll Seäjoell Aleell eh okrks seessä,
Harjoitus 2 ( )
Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
tutuiks k äy t tö ö n kilpailuvu
SAKU : d h 012 1 / 2 d : SAKU g 4 jj 10 U ö ö 14 K d v S Sg 4 Pj 3 SAKU : g 4 Kv d v 6 SAKU jjj 8 U jj 10 SAKU 11 Kv 6 Hvv h 12 K 14 H 16 T 18 V 20 Jjj 8 Khd 21 T 22 Yhd 23 ACTION! SAKU : dh Jj: S - j
Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet
Mtlmä sgaal/koha-suht paratamsks Vahvstt pädaalsuudt Atur kohasovtus vahvstm Suodatus Chopprvahvstmt Lock- vahvst (Vahhrkkävahvst, PSD) Kskarvostus (Auto- ja rstkorrlaato) Ptr Kärhä 0/0/009 Luto 4: Mtlmä
Palloventtiilit Hitsattu rakenne
Iteret_escrpto ellskoot P Läpötl-lue Mterl 10-400 25-10 ºC - + 200 ºC Teräs Käyttökohteet Sulkuvettll läpälle j kuulle vedelle sekä pellle j ksulle. Lduvrstus Täyttää Ruots vroste vtukset kukoläpö j -kylä
Eduskunnalle nyt annettava esitys nuorten työssä olevia nuoria työntekijöitä.
H Ed ö Ed ö N ö d- p» d - hd ph ö ö h - hd Ed Ed ö - ö h ö T dö - ö h h h p Ed ö öö ö p N öö d 1966 ö h öö E p Y öh S ö höd h ^ d h p h 1929 (260/ d h p29) p - ^ö- ph ph ö Kpp- ödö h - d ö 2A d d p 1919
Kattoläpiviennit KATTOLÄPIVIENTISARJA VILPE. Tuote LVI-numero Pikakoodi SOLAR TIILI MUSTA TM85 SOLAR TIILI RUSKEA AD58
Kattoläpiviennit Tuote LVI-numero Pikakoodi 5289200 WF99 SOLAR TIILI MUSTA 75602 SOLAR TIILI RUSKEA 75604 SOLAR TIILI HARMAA 75607 SOLAR TIILI TIILENPUN. 75609 SOLAR PELTIMUSTA 75612 SOLAR CLASSIC MUSTA
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
sim.exe DLL DLL ISO 639 sim.exe DLL ISO 639
DLL sim.exe DLL DLL ISO 639 sim.exe DLL ISO 639 *************************** ISO 639 *************************** () ab aa af sq am ar hy as ay az ba eu bn dz bh bi br bg my be 299 ( ) ( ) () () km ca zh
ESIMERKKI 2 Harri Laine
ESIMERKKI 2 H L Lähöoh v Kmpmo Käää o hlmää ll vplvl. A öyvä jäjlmää mmä v yhydä. Röyll ll. A ll jäjlmää poj, m, oo j phlmo. Lä ll l h lyvä oj h, p, vä, ym. Tjoll olv plvl o olm ho. Ho o plvl ol ph j po.