Mat Dynaaminen optimointi, mallivastaukset, kierros 11
|
|
- Joonas Väänänen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat-.148 Dynaaminen optimointi, mallivastaukset, kierros Olkoon tehtaan tuotanto x(t) ajan hetkellä t ja investoitava osuus tuotannosta u(t). Tehdasta kuvaa systeemiyhtälö ẋ(t) = u(t)x(t) x() = c > u(t) 1, t [, T ], T kiinteä, ja tavoite on maksimoida tuotto Hamiltonin funktio on T [1 u(t)]x(t) dt. H (x, u, p) = (1 u)x + pux = (p 1)ux + x. Koska x() > niin x(t) > kaikilla t. Silloin Hamiltonin funktion maksimoiva ohjaus on { 1, p > 1 u(t) =, p < 1. Liittotilayhtälö on ṗ(t) = (p(t) 1)u(t) 1, p(t ) =. (1) Jos p = 1 niin ohjauksella voi olla singulaariväli. Kytkentäfunktio on ja σ(t) = [p(t) 1]x(t) σ(t) = ṗ(t)x(t) + [p(t) 1]ẋ(t) = [p(t) 1]u(t)x(t) x(t) + [p(t) 1]u(t)x(t) = x(t), joten singulaarivälejä ei voi olla. Koska p(t ) =, niin jostakin ajan hetkestä t s eteenpäin p(t) < 1, u(t) = t (t s, T ]. Tällöin liittotilayhtälön ratkaisu välillä (t s, T ] on p(t) = T t, t (t s, T ] () 1
2 ja tuotannolle pätee x(t) = x(t s ), t (t s, T ]. Kytkentäajanhetki saadaan yhtälöstä () asettamalla p(t s ) = 1: t s = T 1, mikäli pätee T 1. Aikavälillä [, t s ) ei kytkentää voi tapahtua, koska silloin yhtälöstä (1) p(t) = e T t 1, ja tämä on vähenevä funktio. Jos taas T < 1, ei kytkentää myöskään tapahdu, vaan käytetään koko ajan nollaohjausta. Ratkaisut ovat siis seuraavat: (a) Jos T 1, niin myydään kaikki tuotanto koko suunnitteluvälin ajan, u =. (b) Jos T > 1, niin investoidaan kaikki, u = 1, ajan hetkeen t = T 1 asti, jonka jälkeen myydään kaikki, u =. Kyseessä on bang-bangohjaus.. Uusiutuvan luonnovaran yhtälö: missä ẋ(t) = F [x(t)] h(t), x() = x, x(t) varannon koko ajan hetkellä t F (x) kasvufunktio, konkaavi ja kasvava h(t) sadonkorjuunopeus ajan hetkellä t c(x) yksikkökorjuukustannus, c (x) < p(t) tuotteen hinta ajan hetkellä t δ diskonttauskerroin. Yritetään maksimoida tuottovirtaa rajoitteilla T e δt [p(t) c(x)]h(t) dt h(t) h.
3 Hamiltonin funktio: H = e δt [p c(x)]h + λ[f (x) h]. Hamiltonin funktio on lineaarinen ohjauksen suhteen. Kytkentäfunktio: Etsitään singulaariset kaaret: σ(t) = e δt [p(t) c(x)] λ(t). σ(t) = λ(t) = e δt [p(t) c(x)] (3) σ = λ = e δt [ṗ c (x)ẋ + δc δp]. (4) Toisaalta liittotilayhtälön mukaan λ(t) = e δt c (x)h(t) λ(t)f (x) (5) ja yhdistämällä yhtälöt (3), (4) ja (5) ja sieventämällä saadaan liittotila eliminoitua: F (x) c (x)f (x) p(t) c(x) = δ ṗ(t) p(t) c(x). Tämä on siis yhtälö, joka singulaarisen ratkaisun x (t) tulee toteuttaa. Oletetaan lisäksi, että markkinahinta p on vakio. Silloin yhtälö redusoituu muotoon F (x) c (x)f (x) p c(x) = δ. Koska F ja c eivät eksplisiittisesti riipu ajasta, oletetaan että on olemassa optimaalinen tasapainovaranto x s joka toteuttaa tämän yhtälön. Koska tehtävän loppuaika on kiinteä mutta lopputila vapaa, on voimassa transversaalisuusehto λ(t ) =. Tällöin siis p(t ) = c(x(t )), joten singulaarikaarelta täytyy poistua ennen ajan hetkeä T. Singulaarikaarelta päästään bang-bang-ohjauksella h = h kun t [t 1, T ]. Vastaavasti alussa tulee alkutilasta x ensin päästä singulaarikaarelle; jos x > x s niin ohjataan h = h ja mikäli x < x s niin ohjataan h = kunnes päästään singulaarikaarelle x. Saadaan ratkaisu, joka muistuttaa nopeimman lähestymisen polkua singulaarikaarelle, mutta ennen loppua singulaarikaarelta poistutaan. 3
4 3. Olkoon maaston korkeus y(s) derivoituva funktio ja etsitään tien pro- ilia x(s). Päätösmuuttuja on tien jyrkkyys u(s) dx ds = u(s), a u(s) a ja pyritään minimoimaan tien ja maaston korkeuden neliövirhettä min S [x(s) y(s)] ds, kun tien korkeus alussa x() ja lopussa x(s) ovat kummatkin vapaat. Jos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on ja liittotilayhtälö H = (x y) + pu ṗ(s) = [x(s) y(s)]. Vapaista alku- ja loppuehdoista seuraa transversaalisuusehdot Silloin ja p(s) = S p() = p(s) =. s [x(τ) y(τ)] dτ [x(τ) y(τ)] dτ =. Havaitaan kolmenlaisia ratkaisuvälejä: p(s) > : u(s) = a, p(s) = : u(s) = ẏ(s), p(s) < : u(s) = +a, Singulaariväleillä p(s) = siis ehto s s s [x(τ) y(τ)] dτ < ; [x(τ) y(τ)] dτ = ; [x(τ) y(τ)] dτ >. (x y) min! x(s) = y(s) kiinnittää ohjauksen, kun oletus y(s) derivoituva on voimassa. Tällöin edellä esitetty ratkaisu u(s):lle on yksikäsitteinen ja antaa minimin. 4
5 4. Kalapopulaation kasvua kuvaava systeemiyhtälö: Ṅ(t) = an(t) bn (t) c(t), a, b >. (6) Jos ei kalasteta (c = ), niin steady-state tila N s on = an s bn s N s = a/b = N(). Alussa siis populaatio on tasapainotilassa. Etsi kalastusnopeus c(t) s.e. hyödyn nykyarvo maksimoituu e rt U[c(t)] dt, Muistetaan aikaisem- missä U on konkaavi ja kasvava hyötyfunktio. mista laskareista nykyarvo-hamiltonin käsite: Ĥ = e rt H = U(c) + p [ an bn c ]. Välttämätön optimaalisuusehto on Ĥ c = U (c) p = p = U (c). Koska Ĥ = U (c) <, c on kyseessä maksimi. Nykyarvo-liittotilan yhtälöksi saadaan vastaavasti harjoituksen 9 tehtävässä 3 näytettiin, että eli Toisaalta p(t) = r p(t) Ĥ x, p(t) = r p(t) [ a bn(t) ] p(t). p(t) = U [c(t)], p(t) = U [c(t)]c (t), joten nykyarvoliittotila voidaan eliminoida ja päästään yhtälöön U [c(t)]c (t) = [ r a + bn(t) ] U [c(t)] eli c (t) = [ r a + bn(t) ] U [c(t)]. (7) U [c(t)] }{{} < 5
6 Yhdessä tilayhtälön (6) kanssa nämä muodostavat dierentiaaliyhtälösysteemin, joka kuvaa välttämättömiä ehtoja populaation muutokselle optimikalastuksella. Riippuen siitä, mistä alkutilasta (N(), c()) lähdetään liikkeelle, saadaan eri ratkaisuja. Näistä yksi (tai useampia) ovat optimiratkaisuja. Tarkastellaan optimisysteemiä vaihetasossa. Ensin tarvitaan systeemin tasapainopiste: ċ(t) = N s = a r b (a r)(a + r) Ṅ(t) = c s = 4b kun siis a > r. Nämä eivät ole siis samoja tasapainopisteitä kuin edellä, vaan esittävät systeemin ainoaa steady-state tilaa. Hypoteesi on, että optimiratkaisu on nimenomaan se ratkaisu, joka päätyy steady-state tilaan. Nyt tasapainopisteen laadun määrittämiseksi voitaisiin laskea Jakobin matriisin ominaisarvot tasapainopisteessä, mutta näistä tulee varsin monimutkainen juurilauseke, jossa esiintyy termiä U (c s ). Tyydytään siis tarkastelemaan isokliinejä sekä systeemin käyttäytymistä niiden rajaamissa alueissa. Paraabeli an bn = c jakaa tason kahtia, sen yläpuolella on dn < dt ja alapuolella dn >. Vastaavasti, kun valitaan U(c) = c, niin silloin suora N = (a r)/(b) jakaa tason kahtia, ja sen vasemmalla dt puolella dc dc > ja oikealla puolella <. Kuvassa 1 on esitetty systeemin isokliinit sekä gradienttikenttä, jota ratkaisutrajektorin tangentit dt dt pyrkivät noudattamaan. Alkutilassa ollaan kuvan oikeassa reunassa, N() = 15. Mikäli alussa kalastetaan jonkin verran nopeammin kuin tasapainotilassa, c() > c s, niin silloin on mahdollista päätyä lopulta optimaaliseen steady-state ratkaisuun, jossa sitten pysytään. 5. Osoitettava, että tehtävällä tilayhtälöllä e rt( u (t) + x(t)u(t) x (t)) dt, r > 1 ẋ(t) = u(t), x() = x ei ole optimaalista steady-state ratkaisua. Nykyarvo-Hamilton on Ĥ = u (t) + x(t)u(t) x (t) 6 + pu.
7 Kalastusnopeus c Kalapopulaatio N Kuva 1: Kalastustehtävän välttämättömät ehdot karakterisoivan yhtälön gradienttikenttä. Tehtävän optimitrajektori on se, jolla päädytään lopulta steady state -tasapainotilaan. Välttämätön ehto optimiohjaukselle on Ĥ u = u + x + p = u (t) = x(t) + p. Kuten aikaisemminkin, nykyarvoliittotilayhtälö on p(t) = r p(t) u(t) + x(t). Sijoittamalla saadaan ohjaus eliminoitua ja välttämättömät ehdot kirjoitettua systeeminä ẋ(t) = x(t) + p(t) (8) p(t) = (r 1) p(t). (9) Tämä on lineaarinen systeemi, jonka ominaisarvot ovat λ 1 = 1, λ = r 1. Jos nyt r > 1, niin tehtävän ominaisarvot ovat positiiviset ja kyseessä on epästabiili napa. Tällöin ei steady-state ratkaisua ole olemassa. 7
8 Ratkaisemalla yhtälöstä (9) saadaan p(t) = p e (r 1)t. Sijoittamalla optimiohjaus kustannusfunktionaalin saadaan 1 = 1 = 1 p e rt[ u(t) x(t) ] dt e rt p (t) dt e rt e (r 1)t dt, jonka arvo maksimoituu, kun p = (koska integraalin arvo on positiivinen). Silloin p(t), x(t) = x e t, u(t) = x e t. Tämä ei siis selvästikään lähesty mitään tasapainotilaa. 6. Olkoon c kulutus, c(t) ja kulutusta kuvaava yhtälö on k pääoma, k() = k, k(t) c(t) = f[k(t)] k(t), (1) missä f() =, f on kasvava ja konkaavi tuotantofunktio. Maksimoidaan hyödyn odotusarvoa e rt U [ f[k(t)] k(t) ] dt, missä hyötyfunktio U on kasvava ja konkaavi. Eulerin yhtälö: e rt U c f (k) + d dt[ e rt U c ] = eli U cc (c) ċ = r f (k). (11) U c (c) }{{} < 8
9 Optimaalinen ratkaisu toteuttaa nyt välttämättömät ehdot (1) ja (11). Ratkaistaan isokliinit vaihetasossa: ċ = f (k) = r. Olkoon f (k s ) = r. Jos nyt k > k s, niin koska f on vähenevä niin silloin ċ <. Vastaavasti jos k < k s, niin silloin ċ >. k = c = f(k). Tämä on siis jokin origon kautta kulkeva käyrä. Kun ollaan sen yläpuolella, niin k < ja jos ollaan sen alapuolella niin k >. Kuvaan on piirretty tuotantofunktion f(k) = k tilannetta esittävä vaihetason gradienttikenttä. Isokliinit jakavat vaihetason neljään "kvandranttiin". Alussa ollaan suoralla k = k. Mikäli k < k s tulee valita c() < c s sopivasti niin, että lopuksi trajektori päätyy steady state -tilaan. Vastaavasti jos k > k s tulee valita c() > c s. Joka tapauksessa steady state -tila on olemassa kaikilla alkuarvoilla k Kulutus c Pääoma k Kuva : Kulutustehtävän välttämättömät ehdot karakterisoivan yhtälön gradienttikenttä. Vain kaksi neljästä kvadrantista johtaa steady-state tasapainotilaan. 9
Jos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on. p(0) = p(s) = 0.
Mat-.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 1 1. Olkoon maaston korkeus y(s) derivoituva funktio ja etsitään tien profiilia x(s). Päätösmuuttuja on tien jyrkkyys
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 9 1. Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,..., N 1 alkuehdolla
LisätiedotMat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
Lisätiedot[xk r k ] T Q[x k r k ] + u T k Ru k. }.
Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään
LisätiedotDiskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
Lisätiedotk = 1,...,r. L(x 1 (t), x
Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun
Lisätiedot9 Singulaariset ratkaisut
9 Singulaariset ratkaisut Singulaarisuus tarkoittaa, että Hamiltonin funktion minimiehto ei ksikäsitteisesti määrää ohjausta Singulaarisuus liitt usein ohjauksen suhteen lineaarisiin ssteemeihin ja kohdefunktioihin
Lisätiedotmin x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros 1
Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä
Lisätiedotv AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =
Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB
LisätiedotHarjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
Lisätiedot6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros 3
Mat-2.48 Dynaaminen optimointi, mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: Kustannusfunktio: J = 2 xt NHx
Lisätiedot1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
Lisätiedot1 Perusteita lineaarisista differentiaaliyhtälöistä
1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
LisätiedotDynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Lisätiedot17. Differentiaaliyhtälösysteemien laadullista teoriaa.
99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu
LisätiedotAmazon.com: $130,00. Osia, jaetaan opetusmonisteissa
1 Kurssin käytännön järjestelyt Luennot (12 kpl) tiistaisin klo 9 12 luokassa Y313 Luennoitsija TkT Mitri Kitti Vastaanotto luentojen yhteydessä email: mitri.kitti@hse.fi Luentomoniste kurssin verkkosivuilla
LisätiedotHarjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Lisätiedot1 Rajoitettu optimointi I
Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
Lisätiedot1 UUSIUTUMATTOMAT LUONNONVARAT
1 UUSIUTUMATTOMAT LUONNONVARAT 1.1 Johdantoa optimiohjausteoriaan Kaikissa kurssilla esitetyissä malleissa oletetaan, että luonnonvaran tila (tilamuuttuja = state variable) muuttuu ajassa ennalta tiedetyllä
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
Lisätiedoty + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
Lisätiedot12 Jatkuva-aikaisten tehtävien numeerinen ratkaiseminen
12 Jatkuva-aikaisten tehtävien numeerinen ratkaiseminen Ratkaisumenetelmät jaetaan epäsuoriin ja suoriin menetelmiin Epäsuora menetelmä yrittää ratkaista Pontryaginin minimiperiaatteen mukaiset vättlämättömät
Lisätiedot(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa
LisätiedotLuento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista
LisätiedotLuento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin
LisätiedotY (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin
Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 3. harjoituksen ratkaisut. Vapaan vasteen löytämiseksi asetetaan ohjaukseksi u(t)
Lisätiedotax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
LisätiedotProjektin arvon aleneminen
Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
Lisätiedot2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede
YLE5 / YET-09 Luonnonvarataloustieteen jatkokurssi. Uusiutuvat luonnonvarat: alastuksen taloustiede Marko Lindroos & Maija Holma Uusiutuvat luonnonvarat alastuksen taloustiede: Luentoteemat.1 Johdanto.
LisätiedotSäätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla
Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
LisätiedotDifferentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
LisätiedotHaitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
LisätiedotMS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
LisätiedotTalousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta
Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:
LisätiedotOletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
LisätiedotProjektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
Lisätiedotx + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotHarjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
LisätiedotOsittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotOPTIMAALINEN INVESTOINTIPÄÄTÖS
OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo
Lisätiedot8. kierros. 1. Lähipäivä
8. kierros 1. Lähipäivä Viikon aihe Tilaestimointi Tilasäätö Saavutettavuus, ohjattavuus Tarkkailtavuus, havaittavuus Mitoitus Kontaktiopetusta: 8 tuntia Kotitehtäviä: 4 tuntia Tavoitteet: tietää Saavutettavuus
LisätiedotWiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
LisätiedotHarjoitus 6: Symbolinen laskenta II (Mathematica)
Harjoitus 6: Symbolinen laskenta II (Mathematica) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Differentiaaliyhtälöiden
LisätiedotHarjoitus 6: Symbolinen laskenta II (Mathematica)
Harjoitus 6: Symbolinen laskenta II (Mathematica) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Differentiaaliyhtälöiden ja differentiaaliyhtälösysteemien
Lisätiedotẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),
Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotDerivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
Lisätiedot12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
Lisätiedot(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut
BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti
LisätiedotHarjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1
Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotKKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
LisätiedotLaplace-muunnos: määritelmä
Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
Lisätiedot2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotVakiokertoiminen lineaarinen normaaliryhmä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen
Lisätiedot3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
Lisätiedotf (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2
BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
Lisätiedot1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina
Taloustieteen mat.menetelmät syksy27 materiaali II-2 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina. Tuotanto Yritys valmistaa yhtä tuotetta n:stä tuotannontekijästä/panoksesta
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
LisätiedotEi välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:
Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti
LisätiedotKulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus
Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
Lisätiedotx = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
Lisätiedot