KOKEITA KURSSI Kirjoita potenssimerkintдnд a) b) ( 4) ( 4) ( 4) c)
|
|
- Kristiina Saaristo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 KOKEITA KURSSI MATEMATIIKAN KOE KURSSI (A). Kirjoita potenssimerkintдnд a) b) ( ) ( ) ( ) c) d) luvun 8 neliц e) luvun kuution vastaluku. 77 kpl. Laske lausekkeen a b arvo, kun a) a = ja b = b) a =, ja b =, c) a saa arvon 0,. Pддttele, millд b:n arvolla lauseke saa tдllцin arvon 0.. Laske. a) b) c) 6. Laske. a) (8 ) : b) [ ( ) ( ) ]. Sievennд. a) x x x b) a 6 : a c) x x : (x 0 x ) 6. Merkitse ja laske neliцn pinta-ala, kun sivun pituus on a) cm b) 0 dm. d) + 7. Perheen karkaileville lammaskoirille pддtettiin tehdд neliцn muotoinen, 9 aarin kokoinen tarha. a) Kuinka paljon verkkoa pitдд ostaa aitaa varten? (Porttia ei tarvitse huomioida.) b) Kuinka monta kiinnitystolppaa tarvitaan, kun ne tulevat, m vдlein? 8. Kirjoita lukuna. a),7 0 b),0 0 c),9 0 Kirjoita kymmenpotenssimuodossa. d) e) 0, f) Mikд luku sopii a:n paikalle niin, ettд lause on tosi? a) 7 = a b) 9 a c) a =, 0. Laske. Merkitse ainakin yksi vдlivaihe nдkyviin. a) 6 6 b) c) 9. Mitkд luvuista ; 9 ;,...; ;,6; ;,9... kuuluvat a) kokonaislukuihin b) rationaalilukuihin c) irrationaalilukuihin d) reaalilukuihin?. Sievennд. a) f f b) r 7p + r + p c) a a 7a + 8a d) 0x 0x + 0x 0x
2 KOKEITA KURSSI MATEMATIIKAN KOE KURSSI (B). Merkitse ja laske a) luvusta 9 vдhennetддn lukujen ja tulo b) lukujen 6 ja erotuksen neliц c) luvun kuutio.. Laske lausekkeen arvo, kun x =. a) x b) x + c) x x. Laske. a). Laske. b) (9 ) c) a) b) ( ) : [ ( ) ( ) ] d). Sievennд. a) (x x ) b) x : x c) [( t ) ] : t 6 6. Minkд lausekkeen neliц on a) 9m b) 9x y c) 0,8z? 7. a) Piirrд neliц, jonka pinta-ala on 9,0 cm. b) Neliцnmuotoisen mansikkamaan pinta-ala on 9 aaria. Kuinka monta metriд piikkilankaa tarvitaan, kun ympдrille rakennetaan kaksinkertainen aita? (Kulkuaukkoa ei tarvitse huomioida.) 8. a) Kirjoita lukuna 7 0 ja 0. b) Kirjoita kymmenpotenssimuodossa ja 0, c) Laske ( 0 ) ( 0 7 ). 9. Merkitse ja laske neliцjuuren arvo, kun juurrettava on 7 a) b) ( 7) c) 0, Laske. Merkitse ainakin yksi vдlivaihe nдkyviin. a). Mikд on polynomin a + a a + 8 a) asteluku b) vakiotermi c). termin kerroin d). termin kirjainosa? b) 7 c) 9 6. Sievennд. a) p 7p b) p + r p + 8r c) x 7x + x + 7 d) 0a a + 0 0a + 6
3 KOKEITA KURSSI MATEMATIIKAN KOE KURSSI (C). Mikд on polynomin 7x 8 + x 6x + x a) asteluku b) neljдs termi c) vakiotermi?. Laske. a) 6 b) 6 c) 0, 0 d) 9 0 e) f). a) Kirjoita 0 desimaali- tai kokonaislukuna. b) Muunna mg kilogrammoiksi. c) Kuinka monta metriд on 9,8 m?. Kirjoita luku kymmenpotenssimuodossa yhden desimaalin tarkkuudella. a) b) 0,0098 c),. a) Merkitse ja sievennд potenssi, jossa kantalukuna on x ja eksponenttina. b) Laske lausekkeen 6a 8b arvo, kun a = ja b =. 6. Sievennд. a) 90x + x 0x b) 8y + + y c) 6x + x 6x + x Piirrд joukkokaavio ja sijoita siihen seuraavat luvut ,6 0 0, Sievennд. a) x 6 x 8 x b) (a b) c) 9. Kirjoita esimerkki trinomista, jonka muuttujakirjain on x ja asteluku on. Polynomin arvo on enintддn, kun x =. x 0 R Q Z N d) [( y ) ]
4 KOKEITA KURSSI 0. Laske ( : 0) + (7,9 8,0).
5 KOKEITA KURSSI MATEMATIIKAN KOE KURSSI (D). Laske. a) b) 8 c) ( 7) d). Laske. e) a) ( 7) : b) 9 + ( 0) : [( ) + ]. Sievennд. a) x x 8 b) a : a c). Laske. 0 m : m : m m m f) luvun 0,6 neliц m a) 8 b) c) d) 0, 6 e) 9 f). Piirrд joukkoviivakaavio koepaperiisi ja merkitse luvut oikeille paikoilleen kaavioon. 6 ; 7 ;,8 ; 0,7 ; 0 ; ; 0 ; ; 0, ; 6 6. Mitkд sanat puuttuvat tekstistд? a) Merkinnдssд 9 luku 9 on. b) Merkinnдssд luku on. c) Kun negatiivinen luku korotetaan parilliseen potenssiin, tulos on aina. Onko lause tosi vai epдtosi? d) Etuliite mikro (μ) tarkoittaa miljoonasosaa. e) a voi olla negatiivinen. f) Polynomi a + b on trinomi. 7. a) Kirjoita kymmenpotenssimuodossa 0, b) Kirjoita lukuna 6, 0. c) Muunna 0, Mg grammoiksi. d) Laske 0, 0. Ilmoita tulos yhden desimaalin tarkkuudella. N Z Q R
6 KOKEITA KURSSI 8. Pддttele, millд muuttujan x positiivisilla kokonaislukuarvolla/-arvoilla vдite on tosi. a) x = 6 b) x = c) x 0 = d) x x = 6 e) x = 9 f) 7 x = 7 9. Mikд on polynomin a 7 + 6a 0a a + a) termien lukumддrд b) kolmas termi c) neljдnnen termin kerroin d) toisen termin kirjainosa e) vakiotermi f) asteluku? 0. Sievennд. a) x 7x b) 0a + a a c) m k 8m + 7k
7 KOKEITA KURSSI MATEMATIIKAN KOE KURSSI (E). Laske. a) 0 b) 00 c) d). Laske. e) ( 6) f) a) 0, b) 6 c). Laske. a) b) 9 7 c) d). Sievennд. a) c c c b) x 8 : x 6 c) (a ) d) x 0 : x x. Kirjoita kymmenpotenssimuodossa. 6. Laske. a) d) a) 00 b) 0,000 c),0 km millimetreinд Laske laskimella. d), e) 0, f) 0 b) c) 0, e) f) 9 7,7,9, 6, : 0, 7. Maapallolta on matkaa lдhimpддn tдhteen likimain, valovuotta. Laske matka kilometreissд, kun valon nopeus tyhjiцssд on, m/s. Ilmoita tulos kymmenpotenssimuodossa. 6
8 KOKEITA KURSSI 8. Merkitse, mihin lukujoukkoihin luku kuuluu. Luku N Z Q R, Laske lausekkeen x z tarkka arvo, kun x = ja z =.
9 KOKEITA KURSSI KOKEIDEN VASTAUKSET Versio A. a) 9 b) ( ) c) 7 77 d) ( 8) e) ( ). a) 0 b) c) b =. a) 6 b) c) 8 d). a) b) 77. a) x 0 b) a c) x 6. a) ( cm) = 9 cm b) (0 dm) = 900 dm = 9 m 7. a) 0 m b) a) 0, b) c) 0,000 9 d), 0 e), 0 6 f) a) b) c), 0. a) b) c). a), 9 b), 9,,...,,6 c),,9... d) muut paitsi. a) 8f b) 8r + p c) a + a d) 0x 0x Versio B. a) 9 = b) (6 ) = 9 c) ( ) = 6. a) b) 0 c) 6. a) c) 9. a) b) 8. a) x 6 b) x 6 c) t 6 6. a) m b) 7xy c) 0,9z 7. a) b) 60 m 8. a) ja 0,000 b),7 0 7 ja 0 c) a) b) 0. a) 7 = 9 7 = 7 c) 0,00009 = 0,007 b) 7 = 9 c). a) b) 8 c) d) a. a) p b) p + r c) x x + 7 d) 00a 0 Versio C,0 cm. a) 8 b) x c). a) 8 b) 6 c) 0, d) e) ei ole f) 8. a) 0,000 0 b) 0,7 kg c) 9,8 0 6 m. a) 6, 0 b), 0 c), 0. a) (x) = x b) a) 8x b) y c) x ,6 0 R Q Z N 8,0 cm 0,
10 KOKEITA KURSSI 8. a) x b) a b x c) 00 d) y 9. esim. x + x 0. 7,0 Versio D. a) 7 b) 6 c) 9 7 d) 9 e) f) 0,6. a) b). a) x b) a 8 c) m. a) 9 b) 00 c) ei ole d) 0,8 e) 7 f). 0, 0 0,7 6 Z Q R 6. a) eksponentti b) juurrettava c) positiivinen d) tosi e) epдtosi f) epдtosi 7. a),9 0 0 b) c) 7, a) x = b) kaikilla c) x = d) x = 8 e) x = 7 9. a) b) 0a c) d) a e) f) 7 0. a) x b) 0a c) k m N 7 Versio E. a) b) c) 9 d) e) 7 f). a) 0,008 b) 6 c) 8. a) b) 8 c) d) 6. a) c 9 b) x c) 7a 6 d) x. a), 0 b), 0 c),0 0 6 km d),7 e) 7,6 0 9 f),7 6. a) 0 b) c) 0,6 d) e) 00 f) ei ole 7. n., km 8. Luku N Z Q R X X X X X X X, X X X X 0 X 9. 6
KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01
KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan
Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.
13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin
2.2 Neliöjuuri ja sitä koskevat laskusäännöt
. Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri
Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku
Pasi Leppäniemi OuLUMA, sivu 1 POLYNOMIPELI Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Luokkataso: 8-9 lk Välineet: pelilauta, polynomikortit, monomikortit, tuloskortit,
PERUSKOULUSTA PITKÄLLE
Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS
Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä
61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o
Laskentaa kirjaimilla
MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien
1.1. RATIONAALILUVUN NELIÖ
1.1. RATIONAALILUVUN NELIÖ 1. Käyttäen tietoa a = a a laske: a) 8 b) ) c) 0, d) ) 1 e) 1) f) +,) g) 7 h) ) i). Laske näiden lukujen neliöt: 17 9 1,6 1. Laske: ) a) ) b). Laske a, kun 5) 1 ) 11 11 81. j)
1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
LAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
jakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
Mittaustarkkuus ja likiarvolaskennan säännöt
Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina
Kertaustehtävien ratkaisut
Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0
matematiikkaa maahanmuuttajille Eeva Rinne
matematiikkaa maahanmuuttajille Eeva Rinne 1 Turun kristillisen opiston oppimateriaaleja -sarja Tekijä: Eeva Rinne Julkaisija: Turun kristillisen opiston säätiö, Lustokatu 7, 20380 Turku. www.tk-opisto.fi
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan
4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
4 TOISEN ASTEEN YHTÄLÖ
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
1 Numeroista lukuja 1.
1 1 Numeroista lukuja Mitä lukuyksikköä edustaa numero a) 4 luvussa 5 469 satoja b) 7 luvussa 35,271 sadasosia c) 1 luvussa 0,5281? kymmenestuhannesosia Kirjoita lukuyksiköiden mukaisena summalausekkeena.
KORJAUSMATIIKKA 3, TEHTÄVÄT
1 SISÄLTÖ KORJAUSMATIIKKA, TEHTÄVÄT 1) Potenssi 2) Juuri ) Polynomit ) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa ja toisen asteen yhtälön ratkaisukaava TEHTÄVÄT: Käythän
KORJAUSMATIIKKA 3, MATERIAALI
1 SISÄLTÖ KORJAUSMATIIKKA, MATERIAALI 1) Potenssi ) Juuri ) Polynomit 4) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa (tehtävissä esitellään myös. asteen yhtälön ratkaisu)
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 28.9.2016 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 5 4 = Yleisesti.
x 3 = x x x Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 4 = Yleisesti a n = a a a n kappaletta a n eksponentti kuvaa tuloa, jossa a kerrotaan
Reaaliluvut 1/7 Sisältö ESITIEDOT:
Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:
PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
3 Yleinen toisen asteen yhtälö ja epäyhtälö
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen
Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.
MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Lämpötila maanpinnalla nähdään suoran ja y-akselin leikkauspisteen y- koordinaatista, joka on noin 10. Kun syvyys on 15 km, nähdään suoralta, että lämpötila
MAA 2 - POLYNOMIFUNKTIOT
MAA MAA - POLYNOMIFUNKTIOT 1 On annettu muuttujan x polynomi P(x) = x + x + Mitkä ovat sen termien kertoimet, luettele kaikki neljä (?) Mitä astelukua polynomi on? Mikä on polynomin arvo, kun x = 0 Entä
MABK1 Kurssimateriaali. Eiran aikuislukio 2005
MABK1 Kurssimateriaali Eiran aikuislukio 2005 Sisältö 1 Sanasto 1 2 Luvut ja laskutoimitukset 5 2.1 Lukujoukot................................ 5 2.2 Peruslaskutoimitukset.......................... 6 2.3
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Ma9 Lausekkeita ja yhtälöitä II
Ma9 Lausekkeita ja yhtälöitä II H Potenssit, juuret ja prosentit. Onko potenssin arvo positiivinen vai negatiivinen, jos potenssin kantaluku on negatiivinen ja eksponentti on parillinen pariton?. Kirjoita
OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO
OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka
Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp
Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa
1.1. YHDISTETTY FUNKTIO
1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Harjoituskokeiden ratkaisut Painoon mennyt versio.
Harjoituskokeiden ratkaisut 8.6.7 Painoon mennyt versio. PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ RATKAISUT, HARJOITUSKOE SIVU.7.7 Koe a) i) =,, = kpl ii) 9,876 =,9876,99 = 9,9 iii),66,66 =,7 =,7
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Vastaukset. 1. a) 5 b) 4 c) 3 d) a) x + 3 = 8 b) x - 2 = -6 c) 1 - x = 4 d) 10 - x = a) 4 b) 3 c) 15 d) a) 2x. c) 5 3.
Vastaukset. a) 5 b) 4 c) d) -. a) x + = 8 b) x - = -6 c) - x = 4 d) 0 - x =. a) 4 b) c) 5 d) 8 4. a) x 8 b) 5x 5 x c) 5 x d) 6 5. a) kyllä b) ei c) kyllä d) ei 6. a) x x x b) x x x 0 0 0 x c) x x x x 00
MAA7 HARJOITUSTEHTÄVIÄ
MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan
2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
Muunnokset ja mittayksiköt
Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?
PERUSASIOITA ALGEBRASTA
PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen
k-kantaisen eksponenttifunktion ominaisuuksia
3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.
Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =
Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?
Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun
Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen
Matemaattisten menetelmien hallinnan tason testi.
Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys
Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) E Nouseva suora. b) A 5. asteen polynomifunktio, pariton funktio Laskettu piste f() = 5 =, joten piste (, ) on kuvaajalla. c) D Paraabelin mallinen, alaspäin aukeava. Laskettu piste f() =
Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:
4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x
Ratkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
Aritmeettinen lukujono
Aritmeettinen lukujono 315. Aritmeettisen lukujonon kolme ensimmäistä jäsentä ovat 1, 4 ja 7. a) Mikä on jonon peräkkäisten jäsenten erotus d? b) Mitkä ovat jonon kolme seuraavaa jäsentä? a) d = 7 4 =
Vastaukset. 2. Ottamalla kaapista 4 kenkää ja 3 sukkaa.
Vastaukset. -. Ottamalla kaapista kenkää ja sukkaa.. Asetetaan vaakaan kummallekin puolelle aluksi sormusta ja punnitaan. Kolmas kolmen ryhmä on vaa'an ulkopuolella. Rihkamasormus kuuluu punnittavista
A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.
MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,
Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.
3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7
1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ
NELIÖJUURI. Neliöjuuren laskusääntöjä
NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin
2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus
YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein
MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.
AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka
Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.
10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein
matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
3 Eksponentiaalinen malli
Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,
ALGEBRA I. Antti Majaniemi. 1 1 A x2 y2 1. x x y y. x x y y ISBN 978-952-93-5799-4
ALGEBRA I Antti Majaniemi x y A x y x y x x y y x x y y 05 ISBN 978-95-9-5799-4 Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen 40 Kansainvälinen -lisenssillä Tarkastele lisenssiä osoitteessa
1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.
Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen
Negatiiviset luvut ja laskutoimitukset
7.lk matematiikka Negatiiviset luvut ja laskutoimitukset Hatanpään koulu Syksy 2017 Janne Koponen Negatiiviset luvut ja laskutoimitukset 2 Negatiiviset luvut ja laskutoimitukset Sisällys 1. Negatiiviset
Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!
MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 12.11.2015 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut
Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi
Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt
MAA2.3 Koontitehtävät 2/2, ratkaisut
MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x
LIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
Kokonaisluvut. eivät ole kokonaislukuja!
Luvut Lähdetään liikkeelle kertaamalla mitä tiedämme luvuista. Mitä erilaiset luvut kuvaavat ja millaisia ominaisuuksia niillä on? Mikä voisi olla luonnollisin luku aloittaa? Luonnolliset luvut Luonnolliset
Tehtävät 1/10. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)
1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Tehtävien
Matematiikan pohjatietokurssi
Matematiikan pohjatietokurssi Demonstraatio 3, 15.9.014 1. Mitkä seuraavista voisivat olla funktion kuvaajia ja mitkä eivät? Miksi? (a) (b) (c) (d) Vastaus: Kuvaajat b ja c esittävät funktioita. Huomaa,
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13
Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen
Tekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen