Johdatus kvantti-informatiikkaan
|
|
- Lasse Alanen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Johdatus kvantti-informatiikkaan Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018
2 Johdanto Lukemistona esim. Nielsen & Chuang: Quantum Computation and Quantum Information Kvantti-informatiikka ja -laskenta = informaation prosessointia kvanttimekaanisten järjestelmien avulla Miten kvanttilaskenta ja klassinen laskenta eroavat toisistaan? Kvanttikryptografia: klassista informaatiota voidaan kryptata kvanttitietokoneella, lisäksi vastaanottaja tietää jos viesti on luettu matkalla Kryptauksen purku: kvanttitietokoneella voidaan purkaa salattuja viestejä Lomittuminen (entanglement): kahden kvanttimekaanisen systeemit tilat kytkeytyneet toisiinsa Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
3 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus
4 Qubitti ja Diracin notaatio Qubitti kvanttilaskennan bitti, systeemin tila Matemaattinen otus, joka voidaan toteuttaa fysikaalisesti monilla eri tavoilla Merkinnöissä käytetään ns. Diracin notaatiota: 1 ja 0 vastaavat klassisia bittejä 1 ja 0 Bra 1 ja Ket 1 kytkeytyvät toisiinsa 1 = ( 1 ) Toisaalta merkintä 1 0 tarkoittaa tilojen sisätuloa Hilbertin avaruudessa Fysikaalisesti 1 yhdistetään kvanttimekaaniseen (ominais)tilaan φ 1, jolloin a b = φ a φ b dx ja a Ĥ b = φ a Ĥ φ b dx Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
5 Qubiteistä ja lisää käsitteitä Toisin kuin klassinen bitti, qubitit ovat yleisesti tilassa ϕ = α 0 + β 1 Qubitti on ennen mittaamista tilassa ϕ = α 0 + β 1 Mittaustulosten esiintymistodennäköisyydet saadaan kertoimien itseisarvoista Tilat 0 ja 1 nimetty laskentakannaksi (computational basis) 0 ja 1 muodostavat ortonormaalin kannan vektoriavaruuteen { 1, i = j i j = δ ij, missä δ ij = 0, i j Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
6 Qubitti ja informaation määrä ϕ = α 0 + β 1 Koska α 2 + β 2 = 1, voidaan tila ϕ kirjoittaa ϕ = e iγ( cos θ eiφ sin θ 2 1 ), missä termi e iγ voidaan jättää pois. (Miksi?) Numerot θ ja φ kuvaa pistettä ympyrällä Periaatteessa yhteen qubittiin voitaisiin koodata valtavasti informaatiota! Sitä ei voida kuitenkaan mitata miksi? Mitä jos tätä informaatiota ei mitata...? Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
7 Useita qubittejä Lomittuminen (entanglement) ja Bellin tila Tarkastellaan kahden qubitin muodostamaa järjestelmää Niillä on neljä tilaa laskentakannassa: 00, 01, 10 ja 11, joten ϕ = α α α α Tämän erikoistapaus on ns. Bellin tila (Bell state / EPR pair): ϕ = Qubitit ovat lomittuneessa (engl. entangled) tilassa. Avainasemassa kvanttiteleportaatioon ja supertiheään koodaukseen? Mitä tapahtuu jos Bellin tilan toisen qubitin arvo mitataan?
8 Lomittuneet tilat Kahden eri kvanttimekaanisen systeemin tilojen välillä on korrelaatio Systeemit voidaan erottaa ja korrelaatio säilyy silti! Einstein, Podolsky ja Rosen kirjoittivat 1935 artikkelin (Phys. Rev., 47, 777, (1935), linkki mycoursesissa) lomittumisesta Piilomuuttujateoria (hidden variable theory) = millä tavoin systeemit kommunikoivat tilansa toisilleen? Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
9 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus
10 Kvanttipiirit ja kvanttilaskenta Muutokset qubittien kvanttitilassa = kvanttilaskenta Klassinen tietokone koostuu logiikkaporteista (logic gate) ja niitä yhdistävistä johdoista (= elektroniikkapiiri) Kvanttitietokone koostuu kvanttiporteista (quantum gate) ja johdoista (= kvanttipiiri [quantum circuit]) Tarkastellaan muutamaa yksinkertaista kvanttiporttia ja niistä muodostettua kvanttipiiriä sekä niiden sovelluksia Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
11 Yhden qubitin kvanttipiirit (X, Z ja H-portit) [ ] α Yhden qubitin tila: ϕ = α 0 + β 1 pystyvektori β Tilaa muuttava piiri kuvataan 2 2 matriisilla, jota kerrotaan pystyvektorilla Esim kvantti-not: [ 0 1 ] [ ] [ ] [ ] [ ] α 0 1 α β X = X = = = ϕ = β 0 + α β 1 0 β α Ainoa vaatimus kvanttipiireille on unitaarisuus joka huolehtii normalisaation säilymisestä Unitaarinen matriisi U: U U = I, missä tarkoittaa transpoosin ja kompleksikonjugoinnin yhdistelmäoperaatiota Muita tärkeitä kvanttipiirejä Z [ ] (Z-portti) H 1 2 [ ] (Hadamard-portti)
12 Yhden qubitin kvanttipiirit (X, Z ja H-portit) Hadamard kiertää käytettävää laskentakantaa: H 1 [ 1 1 ] H(α 0 + β 1 ) = α + β
13 Usean qubitin kvanttipiirejä Klassisten porttien prototyyppiportti on NAND-portti, josta voidaan konstruoida kaikki muut portit (AND, OR, XOR, NOR) Kvanttiporttien vastine sille on CNOT (controlled not), jonka toimintaa kuvataan matriisilla U CN (Controlled not -portti) Sen toinen qubiteista on ohjausqubitti ja toinen kohdequbitti ; ; ; Mikä tahansa usean qubitin portti voidaan rakentaa yhdistämällä CNOT-portti ja yhden qubitin portteja
14 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus
15 Kvanttitiedon kopioitavuus No-cloning theorem Yritetäään kopioida qubittiin koodattu klassinen bitti ϕ 1 = a 0 + b 1 (a ja b ennalta tuntemattomia) Käytetään CNOT-porttia, jossa tuntematon qubitti on ohjausqubittina ja kohde on alustettu tilaan ϕ 2 = 0, jolloin niiden yhteistila on ϕ 1 ϕ 2 = [ a 0 + b 1 ] 0 = a 00 + b 10 Kun tähän tilaan kohdistetaan CNOT-portti, lopputuloksena ϕ 2 tunnetaan, jos ja vain jos ϕ 1 tunnetaan
16 Kvanttitiedon kopioitavuus No-cloning theorem Sen sijaan jos tilaa ϕ 1 ei tunneta: ϕ 1 ϕ 2 = a ab 01 + ab 10 + b 2 11 Halutun kopioinnin tila a 00 + b 11 toteutuu vain jos ab = 0, mikä on ristiriidassa oletuksen kanssa että tuntematon tila on sekatila ϕ 1 = a 0 + b 1 Mielivaltaista kvanttitilaa ei pystytä kopioimaan Vain puhtaat tilat voi kopioida tila romahdutettu ja informaatiota hävitetty
17 Kvanttiteleportaatio Osoittautuu, että kvanttitietoa voidaan siirtää paikasta toiseen ilman varsinaista kvanttitilan siirtokanavaa! Sitä varten palataan Bellin tiloihin / EPR-pareihin (kahden qubitin systeemi) Otetaan kaksi qubittia, joista toinen qubitti ohjataan yhden qubitin Hadamardin porttiin, joka ohjaa kahden qubitin CNOT-porttia Toinen qubiteista on CNOT-portin kohdequbittina, jolloin saadaan tilat β ij : = β = β = β = β
18 Kvanttiteleportaatio
19 Kvanttiteleportaatio Alice ja Bob muodostavat yhdessä EPR-parin, jonka qubitit he jakavat puoliksi keskenään ja menevät omille teilleen Myöhemmin Alicen pitäisi siirtää qubitti ϕ Bobille seuraavin ehdoin: 1. Alice ei tunne tilaa ϕ mittaaminen tuhoaisi tilan ja informaatiota 2. Alice voi lähettää Bobille vain klassista informaatiota Toiminta: Alice yhdistää tilan ϕ omaan EPR-parin puolikkaaseensa ja mittaa molemmat qubitit Tulos on joku joukosta 00, 01, 10, 11 ja Alice lähettää tämän klassisen informaation Bobille Tuloksen perusteella Bob operoi omaan EPR-parin puolikkaaseensa, jolloin alkuperäinen tila ϕ saadaan takaisin Kvanttitila siirrettiin klassisen informaation ja EPR-parien avulla!
20 Kvanttiteleportaation yksityiskohdat Alkuperäinen tila ϕ = α 0 + β 1 yhdistetään EPR-pariin β 00, saadaan tila ϕ 0 ϕ 0 = ϕ β 00 = 1 ] [α 0 ( ) + β 1 ( ) 2 Vasemmalta laskien kaksi ensimmäistä qubittia on Alicella, kolmas (oikean puolimmaisin) on Bobilla NB! Kaksi oikeanpuolimmaisinta qubittia lomittuneet (entangled) keskenään EPR-parin muodostuessa Alice lähettää qubittinsä CNOT- ja Hadamard-porttien läpi sekä mittaa lopputuloksen ϕ 2 = 1 [ 00 (α 0 + β 1 ) + 01 (α 1 + β 0 ) 2 ] + 10 (α 0 β 1 ) + 11 (α 1 β 0 )
21 Kvanttiteleportaation yksityiskohdat Alice kertoo edellisen mittauksen tulos (00, 01, 10, 11) Bobille klassista informaatiokanavaa pitkin Bob palauttaa mittaustuloksen perusteella lähetetyn tilan kohdistamalla omaan EPR-parin puoliskoonsa sopivat kvanttiporttien operaatiot (00 ei mitään, 01 X, 10 Z, 11 ZX) Kysymyksiä 1. Voidaanko kvanttiteleportaatiolla välittää tietoa yli valonnopeudella? Miksi? 2. Rikkooko kvanttiteleportaatio kvanttitilan kloonauksen kieltävän säännön (no cloning theorem)? Miksi?
22 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus
23 Perusperiaatteet Kvanttitietokoneen perustoimintayksikkö on qubitti kaksitasojärjestelmä Toteuttamista varten tarvitaan vankka fyysinen toteutus qubitistä (=informaation esitystapa, representaatio) Lisäksi tarvitaan järjestelmä, jossa qubittien tila kehittyy (=miten laskenta tapahtuu) Lopuksi qubittien tila pitää pystyä valmistelemaan laskua varten, sekä mittaamaan ne jälkeenpäin Näitä perusvaatimuksia voidaan toteuttaa useimmiten vain osittain Kvanttitietokone pitää eristää ympäristöstään, jotta sen ominaisuudet säilyvät Toisaalta eristäminen estää qubittien tilan manipuloimisen ja mittaamisen Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
24 Kvanttitietokoneen hyvyysluvut Keskeinen hyvyysluku kvanttitietokone-ehdokassysteemissä on kvanttikohina/dekoherenssi, joka sekoittaa systeemin tilojen aikaevoluution Rajoittaa pisintä laskua, jonka kvanttitietokoneella voi laskea Saadaan koherenssiajan ja unitaarimuunnokseen vaadittavan ajan suhteena Operaatiomäärä vaihtelee (kvanttipiste) (ydinspin) välillä [Nielsen & Chuang] Ydinspin vaikuttaa hyvältä heikon vuorovaikutuksen takia kuitenkin tila vaikea preparoida ja määrittää Muita keskeisiä hyvyyslukuja ovat tilojen fideliteetti (fidelity), systeemin entropia sekä mittauksen signaalikohinasuhde (SNR)
25 Esimerkki: kvanttitietokone optisista fotoneista Qubitin esitystapa: yksittäisen fotonin sijainti kahden kaviteetin välillä tai fotonin polarisaatio Kvanttiporttien toteutus: yksittäiselle fotonille vaiheen siirto ja säteenjakajat, sekä kahdelle fotonille keskinäinen vuorovaikutus kolmannen kertaluvun epälineaarisuuden kautta (keskinäinen vaihemodulaatio, cross phase modulation) Alkutilojen preparointi: yksittäisten fotonien tuottaminen (esim lasersädettä vaimentamalla) Tilojen määritys: yksittäisten fotonien havaitseminen (valomonistinputkilla) Hankaluudet: keskinäisen vaihemodulaation tuottaminen hankalaa kun yhtäaikaa absorption on oltava vähäistä (liittyvät toisiinsa) Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
26 Muita esimerkkejä Optisen kaviteetin kvanttielektrodynamiikka (yksittäisen fotonin sijainti tai polarisaatio, vuorovaikutus optisessa kaviteetissa olevien atomien avulla) Ioniloukut (atomiytimen spin, vuorovaikutus värähtelytilojen/fononien avulla) Ydinmagneettinen resonanssi (atomiytimen spin, vuorovaikutus sidosten avulla) Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos
Johdatus kvantti-informatiikkaan
Johdatus kvantti-informatiikkaan Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Taustaa esim. Nielsen & Chuang: Quantum Computation and Quantum Information Kvantti-informatiikka
KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio
KVANTTITELEPORTAATIO Janne Tapiovaara Rauman Lyseon lukio BEAM ME UP SCOTTY! Teleportaatio eli kaukosiirto on scifi-kirjailijoiden luoma. Star Trekin luoja Gene Roddenberry: on huomattavasti halvempaa
Kvanttitietokoneet, kvanttilaskenta ja kvanttikryptografia. Kvanttimekaniikka. Kvanttimekaniikan perusperiaatteet. Kvanttimekaniikan sovelluksia
Tietotekniikan perusteet - Luento 3 Kvanttitietokoneet, kvanttilaskenta ja kvanttikrptograia Kvanttimekaniikka Kvanttimekaniikka: Aineen kättätmistä kuvaava siikan perusteoria. Mikroskooppisella tasolla
Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia
T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian
KVANTTILASKENTA. Klassinen laskettavuus vs. kvanttilaskenta (QC)
KVANTTILASKENTA Klassinen laskettavuus vs. kvanttilaskenta (QC) Algoritmin konemallit (Turingin kone, RAM-kone, rekisterikone, laskurikone jne.) [QC: Jonkinlaiset versiot on, eivät kovin käyttökelpoiset,
Kvanttiavainjakelu (Kvantnyckeldistribution, Quantum Key Distribution, QKD)
Kvanttiavainjakelu (Kvantnyckeldistribution, Quantum Key Distribution, ) Iikka Elonsalo Elektroniikan ja nanotekniikan laitos 4.5.2017 Sisältö Kryptografia Kvanttiavainjakelu 2/27 4.5.2017 Kryptografia
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
Kvanttilaskenta - 2. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 8, 05 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem The inner product of + and is. Edelleen false, kts. viikon tehtävä 6..
T Privacy amplification
T-79.4001 Privacy amplification Ari Nevalainen ajnevala@cc.hut.fi T-79.4001Privacy amplification 1/25 ALKUTILANNE Alkutilanne. Kaksi erikoistapausta. Yleinen tapaus. Yhteenveto. T-79.4001Privacy amplification
Aineen ja valon vuorovaikutukset
Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka
Kvanttimekaniikan tulkinta
Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät
D-Wave kvanttitietokone; mitä se tekee?
Lähde: D-Wave Systems Inc., https://www.dwavesys.com/ Taneli Juntunen, M.Sc. (Tech.) D-Wave kvanttitietokone; mitä se tekee? Kvantti-ilmiöt 4.5.2017 Aalto University School of Electrical Engineering Aalto
Etsintäongelman kvanttialgoritmi. Jari Tuominiemi
Etsintäongelman kvanttialgoritmi Jari Tuominiemi Helsinki 22.11.2004 Vaihtoehtoiset laskentaparadigmat -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos i Sisältö 1 Johdanto 1 2 Kvanttilaskennan
Tilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
LOMITTUMINEN ja KVANTTITELEPORTAATIO
LOMITTUMINEN ja KVANTTITELEPORTAATIO Vuonna 1993 tutkijat kehittivät kvanttifysiikan lakeihin perustuvan teoreettisen pohjan kvanttiteleportaatiolle. Kvanttiteleportaatio eli kaukosiirto on kvanttifysikaalinen
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuus ja Gisinin teoreema
Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuus ja Gisinin teoreema Kirjoittaja: Riku E. Järvinen Ohjaaja: Professori Jukka Maalampi Pro Gradu Fysiikan laitos Toukokuu 2018 Anybody who is
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Tieteen popularisointi Kvanttipiirit
Tieteen popularisointi Kvanttipiirit Esa Kivirinta esakiv (at) gmail.com Materiaali on tarkoitettu yläasteen fysiikan oppitunneille lisämateriaaliksi sekä yleisesti peruskoulun suorittaneille. Materiaalissa
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuudesta ja Gisinin teoreemasta
Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuudesta ja Gisinin teoreemasta Kirjoittaja: Riku E. Järvinen Ohjaaja: Professori Jukka Maalampi Pro Gradu Fysiikan laitos Helmikuu 2018 Anybody
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
Tekijöihinjaon kvanttialgoritmi
Tekijöihinjaon kvanttialgoritmi Vesa Kivistö Helsinki 14.11.2004 Vaihtoehtoiset laskentaparadigmat -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö 1 Johdanto... 3 2 Hadamard ja Walsh-Hadamard
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k)
ACKERMANNIN ALGORITMI Olkoon järjestelmä x(k+1) = Ax( + Bu( jossa x( = tilavektori (n x 1) u( = ohjaus (skalaari) A (n x n matriisi) B (n x 1 matriisi) Oletetaan, että ohjaus u( = Kx( on rajoittamaton.
Sisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori
Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena
Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä
Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien
Stanislav Rusak CASIMIRIN ILMIÖ
Stanislav Rusak 6.4.2009 CASIMIRIN ILMIÖ Johdanto Mistä on kyse? Mistä johtuu? Miten havaitaan? Sovelluksia Casimirin ilmiö Yksinkertaisimmillaan: Kahden tyhjiössä lähekkäin sijaitsevan metallilevyn välille
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Hilbertin avaruudet, 5op Hilbert spaces, 5 cr
Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Luku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Matemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
Kvanttimekaniikka II A/S. Jani Tuorila Fysiikan laitos Oulun yliopisto
Kvanttimekaniikka II 763313A/S Jani Tuorila Fysiikan laitos Oulun yliopisto 17 huhtikuuta 015 Sisältö 1 Tilavektori 1 11 Hilbertin avaruus 3 111 Lineaarinen vektoriavaruus 3 11 Sisätulo 4 1 Hilbertin avaruuden
Kvanttimekaniikka: Luento 4. Martikainen Jani- Petri
Kvanttimekaniikka: Luento 4 Martikainen Jani- Petri Viimeksi Ajasta riippuva Schrödingerin yhtälö Alkuarvo- ongelman ratkaisu Aaltofunktio Tänään Mittauspostulaatti Diracin merkintätapa. Hermiittiset operaattorit
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Tieteen popularisointi Kvanttipiirit
Tieteen popularisointi Kvanttipiirit Esa Kivirinta esakiv (at) gmail.com Materiaali on tarkoitettu lukion fysiikan sähkömagnetismin oppitunneille lisämateriaaliksi sekä yleisesti lukion suorittaneille.
Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.
Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Paavo Kyyrönen & Janne Raassina
Paavo Kyyrönen & Janne Raassina 1. Johdanto 2. Historia 3. David Deutsch 4. Kvanttilaskenta ja superpositio 5. Ongelmat 6. Tutkimus 7. Esimerkkejä käyttökohteista 8. Mistä näitä saa? 9. Potentiaali 10.
Kvanttiavaimen jakamiseen perustuvan salausmenetelmän (QKD) sovellukset
Kvanttiavaimen jakamiseen perustuvan salausmenetelmän () sovellukset Teemu Manninen Aalto-yliopisto Mikro- ja nanotekniikan laitos: Prof. Ilkka Tittonen, Teemu Manninen, Iikka Elonsalo Comnet: Prof. Olav
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto
LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena
Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen
Lineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
Teoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).
Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
Kvanttitietokoneen toiminnan simulointi ja emulointi
Janne Mäyrä Kvanttitietokoneen toiminnan simulointi ja emulointi Tietotekniikan kandidaatintutkielma 30. lokakuuta 2017 Jyväskylän yliopisto Informaatioteknologian tiedekunta Tekijä: Janne Mäyrä Yhteystiedot:
ELEC-C3220 KVANTTI-ILMIÖT
ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2017 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla
Paulin spinorit ja spinorioperaattorit
Paulin spinorit ja spinorioperaattorit Spinoreita on useita erilaisia. Esimerkiksi Paulin, Dirackin ja Weyelin spinorit. Yhteisenä piirteenä eri spinoreilla on se, että kukin liittyy tavallisesti johonkin
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LUKU 10. Yhdensuuntaissiirto
LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin
ELEC-C3220 KVANTTI-ILMIÖT
ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla
Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos
Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja
Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.
FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin
Matematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY
Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä
1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
Puolustusvoimien tutkimuslaitos Tutkimuskatsaus Kvanttilaskenta ja kyberturvallisuus
Kvanttilaskenta ja kyberturvallisuus Mika Helsingius Informaatiotekniikkaosasto Kvanttilaskenta kehittyy tällä hetkellä nopeasti. Kvanttitietokoneet, kvanttiverkot ja kvanttiturvalliset salausmenetelmät
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen
Otannasta ja mittaamisesta
Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,
Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
Perustilan fotonit. Taneli Tolppanen. LuK-tutkielma Fysiikan koulutusohjelma Teoreettinen fysiikka Oulun yliopisto 2019
Perustilan fotonit Taneli Tolppanen LuK-tutkielma Fysiikan koulutusohjelma Teoreettinen fysiikka Oulun yliopisto 019 Sisältö 1 Johdanto Kubitti ja harmoninen värähtelijä 3.1 Kubitti...............................
Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.