Estynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ)
|
|
- Pirjo Aaltonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 J Virtamo Jonoteoria / Engsetin järjestelmä 1 Äärellinen lähdepopulaatio: M/M/s/s/n-järjestelmä Tarkastellaan estojärjestelmää (ei odotuspaikkoja) tapauksessa, jossa saapumiset tulevat äärellisestä lähdepopulaatiosta: asiakkaiden kokonaismäärä on n Asiakkaan malli n asiakasta j j palvelinta käytössä Ajatellaan konkreettisuuden vuoksi, että asiakkaat ovat esim puhelimen käyttäjiä Oletetaan, että aika seuraavaan puheluyritykseen eli asiakkaan ns miettimisaika noudattaa jakaumaa Exp(γ) Estynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ) Merkitään â = γ/µ
2 J Virtamo Jonoteoria / Engsetin järjestelmä 2 Yksittäisen lähteen käyttäytyminen Tapaus s = (s n) Jokaiselle asiakkaalle on oma palvelin Systeemissä ei ole estoa; kaikki puheluyritykset onnistuvat Asiakas käyttäytyy kuvan kaksitilaisen (0,1)-mallin mukaisesti Exp(µ)-kestoinen aktiivitila (1) ja Exp(γ)-kestoinen miettimistila (0) vuorottelevat p 0 = 1/γ 1/γ + 1/µ = â, p 1 = 1/µ 1/γ + 1/µ = â 1 + â 1 0 Exp( ) Exp( ) Täyden syklin (miettimisjakso + aktiivijakso) keskimääräinen kesto on 1/γ + 1/µ Puheluiden saapumisnopeus (yksi per sykli) on 1 1/γ + 1/µ = 1/γ 1/γ + 1/µ γ = p 0γ saapumisnopeus miettimistilassa γ miettimistilan todennäköisyys p 0 Tarjottu kuorma = välitetty kuorma (per lähde) a = p 1 = â ns tarkoitettu kuorma per lähde (ei estoa) 1 + â
3 J Virtamo Jonoteoria / Engsetin järjestelmä 3 Yksittäisen lähteen käytäytyminen (jatkoa) Tapaus s = 0: Ei yhtään palvelinta Kaikki puheluyritykset estyvät Puheluyrityksiä tulee frekvenssillä γ, joka on suurempi kuin tapauksessa s = (p 0 γ), koska nyt asiakas on koko ajan miettimistilassa Exp( ) esto Tapaus 0 s n: Varsinainen tutkittava tilanne Asiakas vuorottelee Exp(µ)-kestoisen aktiivitilan ja yhdestä tai useammasta Exp(γ)-kestoisesta jaksosta muodostuvan miettimistilan välillä esto Exp( ) Exp( ) Exp( )
4 J Virtamo Jonoteoria / Engsetin järjestelmä 4 Järjestelmän analyysi syntymä-kuolema-prosessina Otetaan tilamuuttujaksi järjestelmässä sisällä olevien asiakkaiden (käynnissä olevien puheluiden) lukumäärä N t N t muodostaa syntymä-kuolema-tyyppisen Markovin prosessin Tilamuuttuja N t määrää (riippumatta menneisyydestä) todennäköisyydet uuden puhelun tulemiselle tai käynnissäolevan päättymiselle aikayksikköä kohden (eksponettijakaumat!) Tilassa N t = j n j lähdettä vapaana miettimistilassa aika seuraavan puhelun generointiin Exp((n j)γ) todennäköisyys aikayksikköä kohden siirtyä yhtä suurempaan miehitystilaan λ j = (n j)γ (tilariippuva saapumisnopeus) tilassa s kaikki palvelimet ovat käytössä, joten λ s = 0 j puhelua käynnissä aika seuraavan päättymiseen Exp(jµ) µ j = jµ (tilariippuva päättymisnopeus)
5 J Virtamo Jonoteoria / Engsetin järjestelmä 5 Tasapainotodennäköisyydet Syntymä-kuolema-prosessia kuvaa seuraava tilakaavio 0 n 1 (n-1) 2 (n-2) (n-j+2) (j-1) j-1 (n-j+1) j j (n-j) (j+1) (n-s+1) s s Merkitsemällä todennäköisyysvirrat leikkauksen yli yhtäsuuriksi, saadaan rekursio (n j + 1)γ π j 1 = jµπ j, j = 1, 2,, s jonka avulla kaikki todennäköisyydet voidaan palauttaa π 0 :aan, π j = n j + 1 j n j + 2 j 1 Sovelletaan normiehtoa s j=0 π j = 1 n 1 2 n 1 (γ ) j π0 = µ n â j π 0 j π j [n] = s n â j j n k â k j = 0, 1,, s lähteiden lukumäärä n merkitty eksplisiittisesti näkyviin, π j [n]
6 J Virtamo Jonoteoria / Engsetin järjestelmä 6 Tasapainotodennäköisyydet (jatkoa) Merkitään p = p 1 = a, lähteen päälläolotodennäköisyys estottomassa tapauksessa p = â 1 + â â = p 1 p Tämän avulla tilatodennäköisyyden lauseke voidaan kirjoittaa muotoon π j [n] = s n p j (1 p) n j j n p k (1 p) n k k j = 0, 1,, s (0 muulloin) Katkaistu binomijakauma (kun s < n) Binomijakauma, kun s n (estoton tapaus, kukin lähde muista riippumatta päällä todennäköisyydellä p) Insensitiivisyys: Samalla tavalla kuin tavallisessa estojärjestelmässä tulos on insensitiivi pitoajan jakauman suhteen (vaikka nyt tehty johto nojautuikin pitoajan eksponentiaaliseksi oletettuun jakaumaan)
7 J Virtamo Jonoteoria / Engsetin järjestelmä 7 Aika- ja kutsuestot Aikaesto: aikaosuus, jonka systeemi viettää tilassa s; tilan s tasapainotodennäköisyys π s E n (s, â) = s n â s s n k â k Kutsuesto: todennäköisyys, jolla saapuva kutsu estyy Tilariippuvasta saapumisnopeudesta johtuen tuloprosessi ei ole poissoninen Kutsuesto aikaesto Yleensäkin π j[n] π j [n], missä πj [n] = P{kutsun saapuessa järjestelmä on tilassa j} π j [n] = P{järjestelmä on tilassa j satunnaisella ajanhetkellä}
8 J Virtamo Jonoteoria / Engsetin järjestelmä 8 Saapuvan kutsun näkemä tilatodennäköisyys π j [n] = s λ jπ j [n] λ k π k [n] Perustelu: Tarkastellaan pitkää ajanjaksoa T Systeemi viettää keskimäärin ajan π j [n]t tilassa j Tänä aikana saapuu keskimäärin λ j π j [n]t kutsua (näkevät systeemin tilassa j) Kaiken kaikkiaan ajassa T saapuu keskimäärin T s λ k π k [n] kutsua Niiden kutsujen osuus, jotka näkevät systeemin tilassa j, on lausekkeen mukainen Sijoittamalla ylläolevaan lausekkeesen λ j = (n j)γ nähdään (todistus harjoitustehtävänä) π j [n] = π j[n 1] Saapuvan asiakkaan näkemä tilajakauma on sama kuin tasapainojakauma systeemissä, jossa asiakkaita on yksi vähemmän Saapuva asiakas on ikään kuin ulkopuolinen tarkkailija Kutsuesto: (Engsetin kaava) B n (s, â) = π s [n] = π s[n 1] = s n 1 â s s n 1 â k k
9 J Virtamo Jonoteoria / Engsetin järjestelmä 9 Toteutunut tarjottu ja välitetty kuorma Merkitään kutsuestoa lyhyesti B:llä Tarkastellaan yhtä sykliä, joka sisältää Miettimisjakson (keskipituus 1/γ) Palvelujakson, joka todennäköisyydellä 1 B on todellinen aktiivijakso (keskipituus 1/µ) todennäköisyydellä B on surkastunut 0-kestoiseksi estotapahtumaksi 1/ 1/ 0 1/ Syklin keskipituus on 1/γ + (1 B) 1/µ + B 0 = 1/γ + (1 B) 1/µ Todennäköisyys, että lähde on miettimisvaiheessa on 1/γ 1/γ + (1 B) 1/µ = (1 B)â Kukin n:stä lähteestä miettimisvaiheessa ollessaan generoi uusia kutsuja nopeudella γ Tarjottu liikenneintensiteetti a on kutsujen saapumisnopeus kertaa yhteyden pitoaika 1/µ a = â 1 + (1 B)â n Välitetty liikenneintensiteetti a c = (1 B)a = (1 B)â 1 + (1 B)â n = s k π k
10 J Virtamo Jonoteoria / Engsetin järjestelmä 10 Esimerkki Äärellisen populaation järjestelmä: keskitin n n s s n käyttäjää, joista kukin on yhdistetty omalla johdollaan keskittimen tulopuolelle s < n lähtöä; liikenne on keskitetty pienempään määrään johtoja, koska on epätodennäköistä, että kaikki käyttäjät olisivat aktiivisia samanaikaisesti Samanaikainen käyttö on kuitenkin mahdollista; keskityksen määrä on mitoitettava siten, että todennäköisyys estolle on riittävän pieni Esto voidaan laskea annetulla kutsueston kaavalla (Engsetin kaava)
Estojärjestelmä (loss system, menetysjärjestelmä)
J. Virtamo 38.3143 Jonoteoria / Estojärjestelmä 1 Estojärjestelmä (loss system, menetysjärjestelmä) Tarkastellaan perinteistä puhdasta estojärjestelmää, jossa on annettu n = johtojen (varattavien elementtien)
Demonstraatiot Luento 7 D7/1 D7/2 D7/3
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 7 7.2.2008 D7/ Tarkastellaan piirikytkentäisen järjestelmän n-kanavaista
Syntymä-kuolema-prosessit
J. Virtamo 38.343 Jonoteoria / SK-prosessit Syntymä-kuolema-prosessit Yleistä Syntymä-kuolema-prosessiksi (SK-prosessi) kutsutaan Markov-prosessia, jonka - tila-avaruus on iskreetti - tilat voiaan järjestää
Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi
J. Virtamo 38.3143 Jonoteoria / Littlen tulos 1 Littlen tulos Littlen lause Littlen tuloksena tai Littlen lauseena tunnettu tulos on hyvin yksinkertainen relaatio järjestelmään tulevan asiakasvirran, keskimäärin
Syntymä-kuolema-prosessit
J. Virtamo Liikenneteoria ja liikenteenhallinta / SK-prosessit Syntymä-kuolema-prosessit Yleistä Syntymä-kuolema-prosessiksi (SK-prosessi) kutsutaan Markov-prosessia, jonka - tila-avaruus on iskreetti
J. Virtamo Jonoteoria / Jonoverkot 1
J. Virtamo 38.3143 Jonoteoria / Jonoverkot 1 JONOVERKOT Useasta jonosta muodostuva verkko Queueing network Network of queues Esimerkiksi Asiakkaita siirtyy postin, pankin, kaupan jonoista toiseen Datapaketteja
Odotusjärjestelmät. Aluksi esitellään allaolevan kuvan mukaisen yhden palvelimen jonoon liittyvät perussuureet.
J. Virtamo 38.3143 Jonoteoria / M/M/ /-jonot 1 Odotusjärjestelmät Siirrytään tarkastelemaan odotusjärjestelmiä. Nämä ovat aitoja jonojärjestelmiä siinä mielessä, että niissä on odotuspaikkoja ja asiakkat
J. Virtamo Liikenneteoria ja liikenteenhallinta / Jonoverkot 1
J. Virtamo Liikenneteoria ja liikenteenhallinta / Jonoverkot JONOVERKOT Useasta jonosta muodostuva verkko Queueing network Network of queues Esimerkiksi Asiakkaita siirtyy postin, pankin, kaupan jonoista
Liikenneongelmien aikaskaalahierarkia
J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon
J. Virtamo Jonoteoria / Prioriteettijonot 1
J. Virtamo 38.3143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot Tarkastellaan M/G/1-jonojärjestelmää, jossa asiakkaat on jaettu K:hon prioriteettiluokkaan, k = 1,..., K: - luokalla 1 on korkein prioriteetti
käännetty prosessi. Tarkastellaan pelkistymätöntä stationaarista stokastista prosessia X t.
J. Virtamo 38.3143 Jonoteoria / Ajan kääntö 1 AJAN KÄÄNTÖ JA KÄÄNTYVÄT PROSESSIT Käännetty prosessi Tarkastellaan pelkistymätöntä stationaarista stokastista prosessia X t. Tähän prosessiin voidaan liittää
3. Esimerkkejä luento03.ppt S Liikenneteorian perusteet - Kevät
luento03.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö Puhelinliikenteen malli Pakettitason malli dataliikenteelle Vuotason malli elastiselle dataliikenteelle Vuotason malli virtaavalle
J. Virtamo Jonoteoria / Prioriteettijonot 1
J. Virtamo 38.143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot TarkastellaanM/G/1-jonojärjestelmää, jossaasiakkaaton jaettu K:hon prioriteettiluokkaan, k =1,...,K: - luokalla 1 on korkein prioriteetti
Demonstraatiot Luento
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 8 Demonstraatiot Luento 8..8 D/ Tarkastellaan seuraavaa yksinkertaista piirikytkentäistä (runko)verkkoa.
3. Esimerkkejä. Sisältö. Klassinen puhelinliikenteen malli (1) Klassinen puhelinliikenteen malli (2)
Sisältö Puhelinliikenteen malli Pakettitason malli dataliikenteelle Vuotason malli elastiselle dataliikenteelle Vuotason malli virtaavalle dataliikenteelle luento03.ppt S-38.45 - Liikenneteorian perusteet
Markov-ketjut pitkällä aikavälillä
2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin
Markov-ketjut pitkällä aikavälillä
MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;
Jatkuva-aikaisten Markov-prosessien aikakehitys
5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.
Vuonohjaus: ikkunamekanismi
J. Virtamo 38.3141 Teleliikenneteoria / Ikkunointiin perustuva vuonohjaus 1 Vuonohjaus: ikkunamekanismi Kuittaamattomina liikkeellä olevien segmenttien (data unit) lkm W (ikkuna) Lähetyslupien kokonaismäärä
Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä
Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa
Liikenneteoriaa (vasta-alkajille)
Liikenneteoriaa (vasta-alkajille) samuli.aalto@hut.fi liikteor.ppt S-38.8 - Teletekniikan perusteet - Syksy 000 Sisältö Liikenneteorian tehtävä Verkot ja välitysperiaatteet Puhelinliikenteen mallinnus
Yleistä. Esimerkki. Yhden palvelimen jono. palvelin. saapuvat asiakkaat. poistuvat asiakkaat. odotushuone, jonotuspaikat
J. Virtamo 38.3143 Jonoteoria / Jonojärjestelmät 1 JONOJÄRJESTELMÄT Yleistä Jonojärjestelmät muodostavat keskeisen mallinnuksen välineen mm. tietoliikenne- ja tietokonejärjestelmien suorituskyvyn analysoinnissa.
ATM-VERKON KUTSUTASON ESTO
J. Virtamo 38.3141 Teleliikenneteoria / Kutsutason esto 1 ATM-VERKON KUTSUTASON ESTO Kutsutasolla tehtävän resurssivarauksen kannalta vaihtuvanopeuksinenkin lähde näyttää vakionopeuslähteeltä. Sen nopeus
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
Järjestelmässä olevien asiakkaiden lukumäärä N(t) ei muodosta enää Markov-prosessia.
J. Virtamo 38.143 Jonoteoria / M/G/1/-jono 1 M/G/1-jono M (memoryless): Poisson-saapumisprosessi, intensiteetti λ G (general): yleinen palveluaikajakautuma, keskiarvo S =1/µ 1 : yksi palvelin, kuorma ρ
J. Virtamo Jonoteoria / M/G/1/-jono 1
J. Virtamo 38.3143 Jonoteoria / M/G/1/-jono 1 M/G/1-jono M (memoryless): Poisson-saapumisprosessi, intensiteetti λ G (general): yleinen palveluaikajakautuma, keskiarvo S = 1/µ 1 : yksi palvelin, kuorma
T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi
T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 15. maaliskuuta 2004 T-79.179: Stokastinen analyysi 8-1 Mihin tarvitaan stokastista analyysiä? Saavutettavuusanalyysissä
Ylivuoto puskurillisessa systeemissä: nestejonot
J. Virtamo 38.3141 Teleliikenneteoria / Pursketaso 1 Ylivuoto puskurillisessa systeemissä: nestejonot Jos muodostuvat jonot ovat pitkiä (paljon asiakkaita jonossa), jonon yleiskäyttäytymisen kannalta saapuvan
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
1 p p P (X 0 = 0) P (X 0 = 1) =
Mat-2.3 Stokastiset rosessit Syksy 2007 Laskuharjoitustehtävät 3 Poroudas/Kokkala. Tarkastellaan Markov-ketjua, jonka tilajoukko on {0, } ja tilansiirtotodennäköisyysmatriisi P Olkoon alkujakauma α 0 a
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
Jatkuva-aikaisia Markov-prosesseja
5B Jatkuva-aikaisia Markov-prosesseja Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tasapainojakaumia. Laskuharjoitukseen kannattaa
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi
T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 12. maaliskuuta 2002 T-79.179: Stokastinen analyysi 8-1 Stokastinen analyysi, miksi? Tavallinen Petri-verkkojen saavutettavuusanalyysi
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
1. Johdanto luento01.ppt S Liikenneteorian perusteet - Kevät
luento01.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2005 1 Sisältö Tietoliikenneverkot ja välitysperiaatteet Liikenneteorian tehtävä Liikenneteoreettiset mallit Littlen kaava 2 Tietoliikenneverkot
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Olkoon S = {s 1,s 2,...,s n } äärellinen otosavaruus. Oletetaan, että Pr(s i ) = 1, kaikille i = 1, 2,...,n n Tällöin alkeistapahtumat
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio Sisältö Peruskäsitteitä Poisson-prosessi Luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2005 2 Stokastiset prosessit () Stokastiset prosessit
5. Stokastiset prosessit (1)
luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2006 Sisältö Peruskäsitteitä Poisson-prosessi 2 Stokastiset prosessit () Tarkastellaan jotakin (liikenneteorian kannalta tai sitten muuten) kiinnostavaa
f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2
BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa
Liikenneintensiteetti
J. Virtamo 38.3141Teleliikenneteoria / Liikenne 1 Liikenneintensiteetti a = λ T missä λ = kuljetettujen yhteyksien lukumäärä aikayksikössä (saapumisnopeus, kutsunopeus) T = yhteyden keskimääräinen kesto
Jonojen matematiikkaa
Lectio praecursoria Jonojen matematiikkaa Samuli Aalto luento.ppt 1 Sisältö Johdanto Joukkopalveltu jono (batch service queue) Nestevarastomalli (fluid flow storage model) 2 Reaalimaailman ilmiö... ÿþýüûr.u.p.t.
9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko
9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Tiedonvälitystekniikka II KK -95 1
KK -95 1 JOHDANTO Tämä opintojakson Tiedonvälitystekniikka 2 liikenneteoreettinen osuus pyrkii sisältämään melko laajan katsauksen televerkkojen liikenneteoreettisiin käytännön ongelmiin ja niiden ratkaisumenetelmiin.
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
STOKASTISET PROSESSIT Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Stokastiset prosessit 1 STOKASTISET PROSESSIT Peruskäsitteitä Usein tarkasteltava järjestelmä kehittyy ajan mukana ja meitä kiinnostaa sen dynaaminen, yleensä satunnaisuutta
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta
Teoria. Prosessin realisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Tapahtumapohjaisen simuloinnin periaatteet Esimerkki: M/M/1 jonon simulointi Simulointiohjelman geneeriset komponentit
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
Batch means -menetelmä
S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
D ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Suurkanoninen joukko
Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia
Laskuharjoitus 2 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti
T Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Simulointi. Tapahtumapohjainen
Simulointi Tapahtumapohjainen Diskreettiaikainen simulointi 1 Tarkastellaan systeemejä, joissa on äärellisen monta komponenttia. Jokaisella komponentilla äärellisen monta tilaa. Komponentit vaikuttavat
Prosessin reaalisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 20/09/2004
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
Generoivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
4. Stokastiset prosessit. lect4.tex 1. Sisältö. Peruskäsitteitä. Poisson-prosessi. Markov-prosessit. Syntymä-kuolema-prosessit
4. Stokastiset prosessit lect4.tex 1 Sisältö Peruskäsitteitä Poisson-prosessi Markov-prosessit Syntymä-kuolema-prosessit 2 Stokastinen prosessi Tarkasteltavana oleva järjestelmä kehittyy ajan mukana ja
Erilaisia Markov-ketjuja
MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka
ABTEKNILLINEN KORKEAKOULU
ATEKNILLINEN KORKEAKOULU. Johdanto Tietoverkkolaboratorio Sisältö. Johdanto Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen
ABTEKNILLINEN KORKEAKOULU
ATEKNILLINEN KORKEAKOULU. Johdanto Tietoverkkolaboratorio Sisältö. Johdanto Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto