ICS-C2000 Tietojenkäsittelyteoria

Save this PDF as:

Koko: px
Aloita esitys sivulta:

Download "ICS-C2000 Tietojenkäsittelyteoria"

Transkriptio

1 ICS-C2000 Tietojenkäsittelyteoria Luento 2: Äärelliset automaatit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016

2 Kertausta: kielet ja automaatit Laskennallisen ongelman ratkaisevia tietokoneohjelmia ja -laitteita voidaan tarkastella automaatteina x = x = 5899 def isprime(x):.... return res true. false Aakkosto: äärellinen joukko symboleja, esim. Σ = {0,1,2,...,9} Kieli: joukko Σ:n merkkijonoja, esim {x Σ x on alkuluku} = {1,2,3,5,7,11,...} {x {0x00,0x01,...,0xFF} x on virusvapaa tietokoneohjelma} Millainen automaatti tarvitaan annetun ongelman ratkaisemiseen (eli kielen tunnistamiseen)? Voiko kaikki ongelmat ratkaista jollain automaatilla? 2/39

3 Alue ja aiheet Orposen prujun luvut (tai Sipserin kirjan luku 1.1) Äärellisen automaatin rakenne ja sen esitystapoja Äärellisen automaatin toiminta Semanttisten toimintojen liittäminen automaatteihin Äärellisten automaattien ja niiden toiminnan tarkka matemaattinen esitys eli formalisointi 3/39

4 Äärelliset automaatit 4/39

5 Tilakaaviot ja tilataulut Tarkastellaan aluksi tietojenkäsittelyjärjestelmiä, joilla on vain äärellisen monta mahdollista tilaa. Tällaisen järjestelmän toiminta voidaan kuvata äärellisenä automaattina t. äärellisenä tilakoneena (engl. finite automaton, finite state machine). Äärellisillä automaateilla on useita vaihtoehtoisia esitystapoja: tilakaaviot, tilataulut,... 5/39

6 Esimerkki: 20c 20c 10c 10c 10c 10c enough 20c 20c 10c 20c more than enough 10c 20c Em. tilakaavion esittämä automaatti ratkaisee päätösongelman riittävätkö annetut rahat kahvin ostamiseen? Äärellisiä automaatteja voidaan yleensäkin käyttää yksinkertaisten päätösongelmien ratkaisujen mallintamiseen. Automaattimallista on muitakin kuin binäärivasteisten järjestelmien kuvaamiseen tarkoitettuja versioita (ns. Moore- ja Mealy-automaatit), mutta niitä ei käsitellä tällä kurssilla. 6/39

7 Tilakaavioiden merkinnät: q Automaatin tila nimeltä q q 0 Alkutila q 0 q f q a 1 q 2 Lopputila q f : automaatti hyväksyy syötejonon, jos se jonon loppuessa on tällaisessa tilassa Syötemerkin a aikaansaama siirtymä tilasta q 1 tilaan q 2 Sekä lyhennysmerkintä: a q 1 a, b, c q 2 q 1 b c q 2 7/39

8 Esimerkki: C-kielen etumerkittömät liukuluvut. q 7 digit. digit digit digit. digit q 0 q 1 q 2 q 3 exp exp exp digit q 4 digit q 6 +,- digit q 5 Käytetyt lyhenteet: digit = {0,1,...,9}, exp = {E,e}. 8/39

9 Äärellisen automaatin esitys tilatauluna: automaatin uusi tila vanhan tilan ja syötemerkin funktiona. Esimerkki: Liukulukuautomaatin tilataulu: digit. exp + q 0 q 1 q 7 q 1 q 1 q 2 q 4 q 2 q 3 q 4 q 3 q 3 q 4 q 4 q 6 q 5 q 5 q 5 q 6 q 6 q 6 q 7 q 3 missä ilmaisee alkutilaa ja lopputilaa. 9/39

10 K: Mitä tilataulun tyhjät paikat tarkoittavat? V: Tilataulun tyhjät paikat, tai vastaavasti tilakaavion puuttuvat kaaret, kuvaavat automaatin virhetilanteita. Jos automaatti ohjautuu tällaiseen paikkaan, syötejono ei kuulu automaatin hyväksymään joukkoon. Muodollisesti automaatissa ajatellaan olevan erityinen virhetila, jota ei vain selkeyden vuoksi merkitä näkyviin. 10/39

11 Esimerkki: Liukulukuautomaatin täydellinen kaavioesitys olisi:. digit digit. q 0 q 1 exp, +,- error +,- digit, exp,.,+,- exp 11/39

12 ja liukulukuautomaatin täydellinen tauluesitys olisi: digit. exp + q 0 q 1 q 7 error error error q 1 q 1 q 2 q 4 error error.... q 6 q 6 error error error error error error error error error error... 12/39

13 2.2 Äärellisiin automaatteihin perustuva ohjelmointi Annetun äärellisen automaatin pohjalta on helppo laatia automaatin toimintaa vastaava ohjelma. 13/39

14 Esimerkki: Liukulukuautomaattiin perustuva syötejonon syntaksitestaus Pythonohjelmointikielellä: from sys import s t d i n q=0 f o r c i n s t d i n. r e a d l i n e ( ). s t r i p ( " \ n " ) : i f q==0: i f c. i s d i g i t ( ) : q=1 e l i f c== ". " : q=7 else : q=99 e l i f q==1: i f c. i s d i g i t ( ) : q=1 e l i f c== ". " : q=2 e l i f c== "E" or c== " e " : q=4 else : q=99... e l i f q==7: i f c. i s d i g i t ( ) : q=3 else : q=99 i f q i n [ 2, 3, 6 ] : p r i n t " I s a v a l i d f l o a t i n g p o i n t number " else : p r i n t " Not a f l o a t i n g p o i n t number " 14/39

15 Semanttisten toimintojen liittäminen äärellisiin automaatteihin Esimerkki: Kahdeksanjärjestelmän lukuja tunnistava automaatti ja siihen perustuva syöteluvun arvonmääritys ( muuttaminen kymmenjärjestelmään ). q +, 0 q d 1 q 2 d Lyhennysmerkintä d = {0,1,...,7}. d 15/39

16 Pelkän syntaksitestin toteutus: from sys import s t d i n q=0 f o r c i n s t d i n. r e a d l i n e ( ). s t r i p ( " \ n " ) : i f q==0: i f c== " + " or c== " " : q=1 e l i f c i n " " : q=2 else : q=99 e l i f q==1: i f c i n " " : q=2 else : q=99 e l i f q==2: i f c i n " " : q=2 else : q=99 i f q==2: p r i n t " Octal numeral " else : p r i n t " Not an o c t a l numeral " 16/39

17 Täydennys syöteluvun arvon laskevilla operaatioilla ( luvun muuttaminen kymmenjärjestelmään ): from sys import s t d i n q=0 sgn=1 # SEM: sign val =0 # SEM: absolute value f o r c i n s t d i n. r e a d l i n e ( ). s t r i p ( " \ n " ) : i f q==0: i f c== " + " : q=1 e l i f c== " " : sgn= 1; q=1 e l i f c i n " " : v a l = i n t ( c ) ; q=2 else : q=99 e l i f q==1: i f c i n " " : v a l = i n t ( c ) ; q=2 else : q=99 e l i f q==2: i f c i n " " : v a l =8 * v a l + i n t ( c ) ; q=2 else : q=99 i f q==2: p r i n t " Octal numeral ; decimal p r e s e n t a t i o n i s ", sgn * v a l else : p r i n t " Not an o c t a l numeral " 17/39

18 Sivupolku: hieman lisää aiheesta Äärellisiä automaatteja voidaan käyttää käytöksen suunnittelun ja toteutuksen apuna esim. peleissä: linkki 1 ja linkki 2 Myös kurssin tietokonekotitehtävissä käytetyn automaattieditorin käyttöliittymän logiikka voidaan nähdä ja on suunniteltu automaattina ( jos olemme tilassa lisää siirtymä ja tulee tapahtuma kaarisymbolia klikattu, siirry alitilaan muokkaa kaarisymbolijoukkoa jne) Adoben ActionScript language ( the programming language for the Adobe Flash Player and Adobe AIR runtime environments ) sisältää tuen automaateille (katso kappale 10 kirjassa Sanders and Cumaranatunge: ActionScript 3.0 Design Patterns) Wikipediasta voi lukaista vaikkapa artikkelit tapahtumapohjaisista automaateista ja automaattipohjaisesta ohjelmoinnista 18/39

19 2.3 Äärellisen automaatin käsitteen formalisointi Mekanistinen malli: syötenauha: i n p u t nauhapää: ohjausyksikkö: q 1 q 2 q 0 Äärellinen automaatti M koostuu äärellistilaisesta ohjausyksiköstä, jonka toimintaa säätelee automaatin siirtymäfunktio δ, sekä merkkipaikkoihin jaetusta syötenauhasta ja nämä yhdistävästä nauhapäästä, joka kullakin hetkellä osoittaa yhtä syötenauhan merkkiä. δ 19/39

20 Automaatin toiminta : Automaatti käynnistetään erityisessä alkutilassa q 0, siten että tarkasteltava syöte on kirjoitettuna syötenauhalle ja nauhapää osoittaa sen ensimmäistä merkkiä. Yhdessä toiminta-askelessa automaatti lukee nauhapään kohdalla olevan syötemerkin, päättää ohjausyksikön tilan ja luetun merkin perusteella siirtymäfunktion mukaisesti ohjausyksikön uudesta tilasta, ja siirtää nauhapäätä yhden merkin eteenpäin. Automaatti pysähtyy, kun viimeinen syötemerkki on käsitelty. Jos ohjausyksikön tila tällöin kuuluu erityiseen (hyväksyvien) lopputilojen joukkoon, automaatti hyväksyy syötteen, muuten hylkää sen. Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. 20/39

21 Edellisen kalvon sanallinen määritelmä voi jättää tulkinnanvaraa (mitä tapahtuu tyhjällä syötteellä ε, jne). Täsmällinen, matemaattinen muotoilu: Määritelmä Äärellinen automaatti on viisikko missä M = (Q,Σ,δ,q 0,F), Q on automaatin tilojen äärellinen joukko; Σ on automaatin äärellinen syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila; F Q on automaatin (hyväksyvien) lopputilojen joukko. 21/39

22 Esimerkki: Liukulukuautomaatin formaali esitys: M = ({q 0,...,q 7,error},{0,1,...,9,.,E,e,+,-}, δ,q 0,{q 2,q 3,q 6 }), missä δ on kuten aiemmin taulukossa; esim. δ(q 0,0) = δ(q 0,1) = = δ(q 0,9) = q 1, δ(q 0,.) = q 7, δ(q 0,E) = δ(q 0,e) = error, δ(q 1,.) = q 2, δ(q 1,E) = δ(q 1,e) = q 4, jne. 22/39

23 Automaatin käytöksen formalisointi Edellinen määritelmä kuvasi automaatin rakenteen mutta ei vielä sen käytöstä. Myös käytös voidaan kuvata tarkasti matemaattisesti parin lisämääritelmän avulla. Automaatin tilanne on pari (q,w) Q Σ Erityisesti automaatin alkutilanne syötteellä x on pari (q 0,x). Intuitio: q on automaatin tila ja w on syötemerkkijonon jäljellä oleva, so. nauhapäästä oikealle sijaitseva osa. Esimerkki Muun muassa seuraavat ovat liukulukuautomaatin tilanteita: (q 0,0.25E2), (q 0,EE..33), (error,e..33), (q 1,.25E2), (q 6,ε). Syötteellä.242E10 automaatin alkutilanne on (q 0,.242E10). 23/39

24 Tilanne (q,w) johtaa suoraan tilanteeseen (q,w ), merkitään (q,w) M (q,w ), jos on w = aw (a Σ) ja q = δ(q,a). Tällöin sanotaan myös, että tilanne (q,w ) on tilanteen (q,w) välitön seuraaja. Intuitio: automaatti ollessaan tilassa q ja lukiessaan nauhalla olevan merkkijonon w = aw ensimmäisen merkin a siirtyy tilaan q ja siirtää nauhapäätä yhden askelen eteenpäin, jolloin nauhalle jää merkkijono w. Jos automaatti M on yhteydestä selvä, relaatiota voidaan merkitä yksinkertaisesti (q,w) (q,w ). Esimerkki Pohdi miksi liukulukuautomaatilla (i) pätee (q 0,0.25E2) (q 1,.25E2), (ii) ei päde (q 0,0.25E2) (q 6,5E2), ja (iii) tilanteella (q 6,ε) ei ole välittömiä seuraajia. 24/39

25 Tilanne (q,w) johtaa tilanteeseen (q,w ) t. tilanne (q,w ) on tilanteen (q, w) seuraaja, merkitään (q,w) M (q,w ), jos on olemassa välitilannejono (q 0,w 0 ), (q 1,w 1 ),..., (q n,w n ), n 0, siten että (q,w) = (q 0,w 0 ), (q 0,w 0 ) M (q 1,w 1 ), (q 1,w 1 ) M (q 2,w 2 )... (q n 1,w n 1 ) M (q n,w n ) ja (q n,w n ) = (q,w ) Erikoistapauksena n = 0 saadaan (q,w) M (q,w) millä tahansa tilanteella (q, w). Jälleen, jos automaatti M on yhteydestä selvä, merkitään yksinkertaisesti (q,w) (q,w ). 25/39

26 Automaatti M hyväksyy merkkijonon x Σ, jos on voimassa muuten M hylkää x:n. (q 0,x) M (q f,ε) jollakin q f F; Toisin sanoen: automaatti hyväksyy x:n, jos sen alkutilanne syötteellä x johtaa, syötteen loppuessa, johonkin hyväksyvään lopputilanteeseen. Automaatin M tunnistama kieli määritellään: L(M) = {x Σ (q 0,x) M (q f,ε) jollakin q f F}. 26/39

27 Esimerkki: Merkkijonon 0.25E2 käsittely liukulukuautomaatilla: (q 0,0.25E2) (q 1,.25E2) (q 2,25E2) (q 3,5E2) (q 3,E2) (q 4,2) (q 6,ε). Koska q 6 F = {q 2,q 3,q 6 }, on siis 0.25E2 L(M). 27/39

28 Vaihtoehtoinen määritelmä (Sipserin kirjasta) Automaatin hyväksymät sanat voitaisiin määritellä myös ilman tilannetta Kulloinkin jäljellä oleva syöte ei tällöin näy suoraan esityksestä Määritelmä Olkoon M = (Q,Σ,δ,q 0,F) äärellinen automaatti M hyväksyy merkkijonon w = w 1 w 2...w n Σ jos on olemassa jono r 0 r 1 r 2...r n Q automaatin tiloja siten, että r0 = q 0 δ(r i,w i+1 ) = r i+1 pätee kaikille 0 i < n r n F L(M) = {w Σ M hyväksyy w:n} Esimerkki: Liukulukuautomaatti hyväksyy merkkijonon 0.25E2 koska yllämainitut ehdot täyttyvät tilajonolla q 0 q 1 q 2 q 3 q 3 q 4 q 6. 28/39

29 Hieman lisää esimerkkejä Esimerkki: Kielet {w {0,1} w sisältää parillisen määrän symbolia 1} ja {w {0,1} w sisältää alimerkkijonon 001} voidaan tunnistaa seuraavilla automaateilla: e o a b c d , 1 Tilan a selitys voisi olla ei olla vielä nähty merkkijonoa 001 ja edellinen merkki ei ollut 0. Mitkä voisivat olla muiden automaatin tilojen selitykset? 29/39

30 Lause Jos L Σ voidaan tunnistaa äärellisellä automaatilla, niin myös kieli L = {w Σ w / L} voidaan. Todistus Otetaan mikä tahansa äärellinen automaatti M L = (Q,Σ,δ,q 0,F), joka tunnistaa kielen L (eli L(M L ) = L). Koska automaatin tila suorituksen lopussa on yksikäsitteinen mille tahansa syötemerkkijonolle, saamme äärellisen automaatin komplementtikielelle L = {w Σ w / L} yksinkertaisesti vaihtamalla kaikki hyväksyvät lopputilat ei-hyväksyviksi ja päinvastoin eli M L = (Q,Σ,δ,q 0,Q \ F). 30/39

31 Esimerkki: Edellisen esimerkin automaatista kielelle L = {w {0,1} w sisältää alimerkkijonon 001} saamme tällä konstruktiolla komplementtikielen L = {w {0,1} w ei sisällä alimerkkijonoa 001} hyväksyvän automaatin: a b c d , 1 31/39

32 Lause Jos kielet A,B Σ voidaan tunnistaa äärellisellä automaateilla, niin myös kieli A B = {w Σ w A ja w B} voidaan. Todistus Olkoot M A = (Q A,Σ,δ A,q A,0,F A ) ja M B = (Q B,Σ,δ B,q B,0,F B ) äärellisiä automaatteja, jotka tunnistavat kielet A ja B. Tehdään automaatti M A B = (Q A B,Σ,δ A B,q A B,0,F A B ), joka simuloi kumpaakin automaattia yhtäaikaa ja hyväksyy merkkijonon jos ja vain jos kumpikin automaatti hyväksyisi. Q A B = Q A Q B eli automaatin tilat ovat pareja, jotka pitävät kirjaa siitä, missä tilassa simuloitavat automaatit A ja B olisivat q A B,0 = (q A,0,q B,0 ) eli alkutilassa kummatkin simuloitavat automaatit olisivat alkutilassa 32/39

33 δ A B ((q a,q B ),σ) = (δ A (q A,σ),δ B (q B,σ)) eli siirrytään uuteen tilaan niin, että se vastaa niitä tiloja, joihin simuloitavat automaatit olisivat päättyneet luettuaan saman merkin σ, ja F A B = F A F B eli hyväksytään joss kumpikin simuloitava automaatti hyväksyisi. Nyt voitaisiin näyttää induktiolla syöte merkkijonon pituuden suhteen, että jos automaatti A on syötteen lukemisen jälkeen tilassa q a ja automaatti B tilassa q B, niin silloin automaatti M A B on tilassa (q A,q B ). (Vastaavia konstruktioita kierroksen 3 demotehtävissä) 33/39

34 Esimerkki: Tehdään esitetyllä konstruktiolla automaatti, joka hyväksyy sanat, jotka sisältävät sekä parillisen määrän symbolia 1 että alisanan 001. Lähtöautomaatit: e o a b c d 0 Tulos: (e, a) (e, b) (e, c) (e, d) (o, a) (o, b) (o, c) (o, d) , /39

35 Sivupolku: joitain muita automaattiluokkia 35/39

36 Äärelliset automaatit ovat ehkäpä yksinkertaisin automaattiluokka. Niiden laajennuksia on paljon, seuraavilla kalvoilla olevien lisäksi mm: Pinoautomaatit: tarkastellaan myöhemmin kurssilla Ajastetut automaatit: laajentavat äärellisiä automaatteja reaalilukuarvoisilla kelloilla (katso esim. johdantoartikkeli ja eräs työkalu) Hybridiautomaatit: sallivat yleisemmän reaalilukuarvoisten muuttujien käytön, käytetään mallintamaan tietokoneohjelmien ja -laitteiden ja fyysisten prosessien välistä vuorovaikutusta Turingin koneet: tarkastellaan myöhemmin kurssilla 36/39

37 Äärettömät merkkijonot Tällä kurssilla tarkastellaan vain äärellisiä merkkijonoja... mutta joissakin sovelluksissa tarvitaan myös äärettömiä syötteitä: Esimerkiksi reaktiivisissa järjestelmissä (serverit, protokollat, jne) suorituksen ei välttämättä oleteta päättyvän ollenkaan Äärettömille merkkijonoille on määritelty useita automaattiluokkia Esim. Büchi-automaatit hyväksyvät äärettömän merkkijonon jos hyväksyvässä tilassa käydään äärettömän usein Sovellusesimerkkinä: spin verification tool 37/39

38 Esimerkki: Büchi-automaatti, joka hyväksyy aakkoston {a, b, c} äärettömät merkkijonot, joiden parillisissa positioissa on a b, c s a 0 s 1 Nyt abacacaba... hyväksytään mutta bbacacaba... ja abacaccba... hylätään. Esimerkki: Büchi-automaatti, joka hyväksyy aakkoston {req, ack, data} äärettömät merkkijonot, joissa jokaista req-symbolia ( request, pyyntö ) seuraa myöhemmin ack-symboli ( acknowledgement, kuittaus ) ack req s 0 s 1 req, data ack, data 38/39

39 Muuntimet Äärellistilaiset muuntimet (engl. transducers) eivät hylkää/hyväksy syötettä vaan muuntavat sen toiseksi merkkijonoksi. Esimerkiksi Mooren koneet liittävät tulosteen laskennan tiloihin s 0 /0 b, c b, c b, c a s a 1 /0 s 2 /1 a input: state: output: a b c a a a c... s 0 s 1 s 0 s 0 s 1 s 2 s 2 s kun taas Mealyn koneet sallivat tulosteen riippua myös nykyisestä syötemerkistä: b/0, c/0 input: a b c a a a c... a/0 state: s 0 s 1 s 0 s 0 s 1 s 1 s 1 s 0... s 0 s 1 output: b/0, c/0 a/1 Käytetään yleisimmin laitteistosuunnittelussa (syöteaakkosto on joukko kellotettuja signaaleja jne); kokeile nettihakua termillä Mealy machine 39/39

Esimerkki 1: Kahviautomaatti.

Esimerkki 1: Kahviautomaatti. Esimerkki 1: Kahviautomaatti. ÄÄRELLISET AUTOAATIT JA SÄÄNNÖLLISET KIELET 2.1 Tilakaaviot ja tilataulut Tarkastellaan aluksi tietojenkäsittelyjärjestelmiä, joilla on vain äärellisen monta mahdollista tilaa.

Lisätiedot

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015 TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013 TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}. 42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Turingin koneen laajennuksia

Turingin koneen laajennuksia Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters

Lisätiedot

Yhteydettömän kieliopin jäsennysongelma

Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen

Lisätiedot

Säännöllisen kielen tunnistavat Turingin koneet

Säännöllisen kielen tunnistavat Turingin koneet 186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016 ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen

Lisätiedot

Algoritmin määritelmä [Sipser luku 3.3]

Algoritmin määritelmä [Sipser luku 3.3] Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:

Lisätiedot

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M := ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun

Lisätiedot

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3 T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w

Lisätiedot

T /2 Tietojenkäsittelyteorian perusteet T/Y

T /2 Tietojenkäsittelyteorian perusteet T/Y T-79.1001/2 Tietojenkäsittelyteorian perusteet T/Y Tietojenkäsittelytieteen laitos, Aalto-yliopisto Aalto-yliopisto Perustieteiden korkeakoulu Tietojenkäsittelytieteen laitos Syksy 2013 T 79.1001/1002

Lisätiedot

Rekursiiviset palautukset [HMU 9.3.1]

Rekursiiviset palautukset [HMU 9.3.1] Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle

Lisätiedot

Pinoautomaatit. Pois kontekstittomuudesta

Pinoautomaatit. Pois kontekstittomuudesta TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino

Lisätiedot

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää S AB CA... A CB...... ja kutsua Derives(S, abcde), niin kutsu Derives(B,

Lisätiedot

Kertausta 1. kurssikokeeseen

Kertausta 1. kurssikokeeseen Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.

Lisätiedot

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman

Lisätiedot

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS .. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen

Lisätiedot

5.3 Ratkeavia ongelmia

5.3 Ratkeavia ongelmia 153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,

Lisätiedot

Kertausta: kielet ja automaatit. ICS-C2000 Tietojenkäsittelyteoria. Alue ja aiheet. Äärelliset automaatit

Kertausta: kielet ja automaatit. ICS-C2000 Tietojenkäsittelyteoria. Alue ja aiheet. Äärelliset automaatit Kertust: kielet j utomtit Lskennllisen ongelmn rtkisevi tietokoneohjelmi j -litteit voidn trkstell utomttein ICS-C2 Tietojenkäsittelyteori Luento 2: Äärelliset utomtit Alto-yliopisto Perustieteiden korkekoulu

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

Olkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio};

Olkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio}; 3.6 Cocke-Younger-Kasami -jäsennysalgoritmi Osittava jäsentäminen on selkeä ja tehokas jäsennysmenetelmä LL(1)-kieliopeille: n merkin mittaisen syötemerkkijonon käsittely sujuu ajassa O(n). LL(1)-kieliopit

Lisätiedot

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

Muunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja

Muunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja sekä muita TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

Säännöllisten kielten sulkeumaominaisuudet

Säännöllisten kielten sulkeumaominaisuudet Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,

Lisätiedot

Formalisoimme nyt edellä kuvatun laskennan.

Formalisoimme nyt edellä kuvatun laskennan. Formalisoimme nyt edellä kuvatun laskennan. Jos M = (Q, Σ, δ, q, F ) on äärellinen automaatti ja w = w... w n on n merkkiä pitkä aakkoston Σ merkkijono, niin automaatti M hyväksyy merkkijonon w, jos on

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Täydentäviä muistiinpanoja laskennan rajoista

Täydentäviä muistiinpanoja laskennan rajoista Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016 TIEA24 Automaatit ja kieliopit, syksy 206 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. lokakuuta 206 Sisällys Kolme laskennan mallia kuvitteellisia (abstrakteja) koneita eli automaatteja lukevat syötteen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri } 135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Esimerkkinä universaalista laskennan mallista tarkastellaan Turingin konetta muunnelmineen. Lyhyesti esitellään myös muita malleja. Tämän luvun jälkeen opiskelija tuntee

Lisätiedot

Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen

Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko 9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

DFA:n käyttäytyminen ja säännölliset kielet

DFA:n käyttäytyminen ja säännölliset kielet säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen

Lisätiedot

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita

Lisätiedot

Turingin koneet. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 7. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Turingin koneet. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 7. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 7. joulukuuta 2015 Sisällys Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

Chomskyn hierarkia ja yhteysherkät kieliopit

Chomskyn hierarkia ja yhteysherkät kieliopit Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien

Lisätiedot

2. Laskettavuusteoriaa

2. Laskettavuusteoriaa 2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää

Lisätiedot

6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w}

6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w} 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = {c w pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. toukokuuta 2011 Sisällys engl. random-access machines, RAM yksinkertaistettu nykyaikaisen (ei-rinnakkaisen)

Lisätiedot

Output. Input Automaton

Output. Input Automaton 16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

9. Matemaattisista koneista.

9. Matemaattisista koneista. 9. Matemaattisista koneista. Monia tietojenkäsittelytehtäviä, digitaalisia komponetteja, ohjelmia jne. voidaan mallintaa äärellistilaisella matemaattisella koneella. Matemaattinen kone on myös tietojenkäsittelijän

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters

Lisätiedot

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Harri Haanpää Peda-forum 2004 AB TEKNILLINEN KORKEAKOULU Tietojenkäsittelyteorian laboratorio T 79.148 Tietojenkäsittelyteorian

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Rajoittamattomat kieliopit (Unrestricted Grammars)

Rajoittamattomat kieliopit (Unrestricted Grammars) Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli

Lisätiedot

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 8: Turingin koneet Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen prujun luvut 4.1 4.2, 6.1 Turingin koneiden

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

582206 Laskennan mallit

582206 Laskennan mallit 582206 Laskennan mallit luennot syksylla 2006, periodit I{II Jyrki Kivinen tietojenkasittelytieteen aineopintokurssi, 6 op, paaaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Ratkeavuus ja efektiivinen numeroituvuus

Ratkeavuus ja efektiivinen numeroituvuus Luku 6 Ratkeavuus ja efektiivinen numeroituvuus Proseduurit Olkoon A aakkosto. Proseduuri aakkoston A sanoille on mikä hyvänsä prosessi (algoritmi) P, jolle annetaan syötteeksi sana w A, ja joka etenee

Lisätiedot

2. Laskettavuusteoriaa

2. Laskettavuusteoriaa 2. Laskettavuusteoriaa Kaymme lapi ratkeamattomuuteen liittyvia ja perustuloksia ja -tekniikoita [HMU luku 9]. Taman luvun jalkeen opiskelija tuntee joukon keskeisia ratkeamattomuustuloksia osaa esittaa

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 10: Lisää ratkeamattomuudesta Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Aiheet: Pysähtymisongelma Epätyhjyysongelma Rekursiiviset

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI. 1. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on

ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI. 1. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI MIKKO KANGASMÄKI. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on viisikko (Q, Σ, s, δ, F ), missä Q on äärellinen joukko tiloja

Lisätiedot

Äärellisten automaattien ja säännöllisten lausekkeiden minimointi

Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Timi Suominen, Riia Ohtamaa ja Pessi Moilanen Helsinki..01 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Äärellisten automaattien

Lisätiedot

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen

Lisätiedot