5. Painottamisen harhat ja analyyttinen hierarkiaprosessi

Koko: px
Aloita esitys sivulta:

Download "5. Painottamisen harhat ja analyyttinen hierarkiaprosessi"

Transkriptio

1 5. Painottamisen harhat ja analyyttinen hierarkiaprosessi 1

2 5 Painottamisen harhat ja analyyttinen hierarkiaprosessi 5.1 Analyyttinen hierarkiaprosessi (AHP) Thomas L. Saatyn kehittämä menetelmä (1977, 1980) erittäin suosittu - sadoittain tieteellisesti raportoituja ja tuhansittain muita sovelluksia runsaasti ohjelmistotukea saatavilla Expert Choice tunnettu prof. Ernest Formanin kehittämä ohjelmisto systeemianalyysin laboratoriossa kehitetty mm. HIPRE ja WinPRE ei tukeudu arvopuuanalyysin aksiomaattiseen perustaan Vaihtoehtojen vertailu Lähtökohdat tavoitteet ja vaihtoehdot esitetään hierarkiana ylemmän tason kriteerit jaetaan alemman tason kriteereihin vaihtoehdot viedään kriteerihierarkian alimmalle tasolle 2

3 Jokaisen kriteerin kohdalla määritellään paikallinen (lokaali) painovektori, joka kuvastaa sen alla olevien elementtien merkitystä ao. kriteerin saavuttamisen kannalta. Painovektorin määritys perustuu pareittaisiin vertailuihin: jos alla kriteerejä, kysytään "Kumpi kriteereistä on tärkeämpi? Kuinka paljon tärkeämpi se on?" jos alla vaihtoehtoja, kysytään "Kumpi vaihtoehdoista on parempi ao. kriteerin suhteen? Kuinka paljon parempi?" Vastaukset tulkitaan suhdeasteikolla päätöksentekijää pyydetään antamaan suoraan painosuhteet i / j =r ij. vertailut tehdään käyttäen sanallista suhdeasteikkoa, ts. suhde r ij valitaan joukosta Scale Verbal statement 1-to-9 Balanced Equally important Slightly more important Strongly more important Very strongly more important Extremely more important

4 Tulokset riippuvat olennaisesti vertailuasteikosta. esim. jos vaihtoehto x 1 on erittäin paljon parempi kuin x 2, niin 1 / 2 = 9 suomeksi käytetään usein ilmaisuja termejä 3= jonkin verran, 5= paljon, 7 = hyvin paljon, 9 = erittäin paljon. Pareittaisista vertailuista saadaan vertailumatriisi A: A = r11 L r1 M O M rn1 L r n nn lävistäjäelementit ovat ykkösiä r ii = 1 pareittaisten vertailujen suhdevastaukset viedään yläkolmiomatriisiin A on resiprokaalimatriisi alakolmiomatriisin elementit toteuttavat ehdon r ji =1/r ij eli j / i = 1/( i / j ) Pareittaiset vertailut voivat olla keskenään epäjohdonmukaisia esim. jos x 1 on 3 kertaa parempi kuin x 2 ja x 2 on 5 kertaa parempi x 3, niin x 1 :n tulisi olla 3 5 kertaa parempi kuin x 3 tätä AHP:n tavallinen suhdeasteikko ei edes periaatteessa salli Painot on estimoitava 4

5 Ominaisarvotekniikassa kriteeriin liittyvä painovektori saadaan normeeraamalla vertailumatriisin A:n suurinta ominaisarvoa vastaava ominaisvektori A = max Vertailujen epäjohdonmukaisuutta mitataan johdonmukaisuussuhteella (C.R., consistency ratio), joka on johdonmukaisuusindeksin (C.I., consistency index) CI.. = λ λmax n n 1 ja satunnaisesti generoitujen vertailumatriisien CI-lukujen keskiarvona saadun satunnaisindeksin (R.I., random index) välinen suhde. heuristinen peukalosääntö: jos C.R. > 0.10, vertailut ovat niin epäjohdonmukaisia, että niitä tulisi korjata Lopuksi elementtien (sekä kriteerien ja vaihtoehtojen) kokonaispainot lasketaan rekursiivisesti kaavasta = i k i k missä i on kriteerin i kokonaispaino, i k on elementin k (paikallinen) paino kriteerin i suhteen ja summa lasketaan yli niiden kriteerien, joiden alle elementti k on hierarkkiassa., 5

6 5.1.2 AHP:n ongelmat Rank reversal (Belton ja Gear, 1983) uuden vaihtoehdon lisääminen tai poistaminen saattaa muuttaa jo aikaisemmin arvioitujen vaihtoehtojen keskinäistä järjestystä, vaikka se ei olisikaan paras Esim. Vaihtoehtoja A ja B vertaillaan kahden yhtä tärkeän (so. samanpainoisen) kriteerin suhteen C 1 ja C 2 : C 1 C 2 A 1 5 B 4 1 C 1 5 Kun vaihtoehtoja on vain kaksi, niin niiden kokonaispainoiksi saadaan A B = + = = + = Lisätään A:n kanssa identtinen vaihtoehto C ja lasketaan uudet (kokonais)painot: A B = C = + = = + =

7 B:stä tuleekin nyt siis paras vaihtoehto! Rank reversal-ilmiön syynä on normalisointi: kunkin attribuutin alla paikallisten painojen summa normeerataan yhdeksi ottamatta huomioon ilman, että normeerauksen vaikutusta attribuuttipainoihin otetaan huomioon. Ilmiötä ei esiinny, jos käytetään arvofunktioita ja alimmalla tasolla paikalliset painot normeerataan siten, että paras vaihtoehto saa arvon 1 ja huonoin arvon 0 ja muut tältä väliltä. 5.2 Systemaattiset virheet kriteeripainoissa Teoreettisia ongelmia "Ranking bias" (Pöyhönen ja Hämäläinen, 1997): Painojen normalisoinnin takia yksinomaan kriteerien tärkeysjärjestykseen perustuvissa painotusmenetelmissä (esim. SMARTER) painot muuttuvat, jos arvopuun rakennetta muutetaan esimerkiksi jakamalla kriteerejä osakriteereihin. 7

8 Esim. Jos kaksitasoisen hierarkiassa kaksi ylimmän tason kriteeriä painotetaan hierarkkisesti SMARTERmenetelmällä, tärkeämmän kriteerin painoksi saadaan 2( n+ 1 R i ) 2 ( ) = = 0.67 nn ( + 1) 2 3 1st 2nd st 2nd 3rd 4th 5th Sum of eights is 0.80 Mutta jos ylemmän tason kriteerit jaetaan osakriteereihinsä siten, että ensimmäisen kriteerin alle tulee kolme kriteeriä ja toisen alle kaksi kriteeriä, jotka ovat samalla alimman tason kriteereistä kaksi vähiten tärkeätä, ensimmäisen haaran painoksi saadaan 3 2( n+ 1 Ri ) = = nn ( + 1) i= 1 2 (5+ 1 1) 2 (5+ 1 2) 2 (5+ 1 3) = = + + =

9 5.2.2 Kokeellisia havaintoja Seuraavat ilmiöt on todettu lähinnä empiirisissä (kokeellisissa) tutkimuksissa, joihin on osallistunut opiskelijoita. A. Menetelmät vaikuttavat painoihin Eri menetelmien avulla saadaan käytännössä erilaisia kriteeripainoja Teoriassa menetelmät ovat samanlaisia mistä erot siis johtuvat? Yhtenä selityksenä se, että ihmisillä on taipumus käyttää vain tiettyjä numeroita (esm. SMARTissa aloituspiste 10 saa ihmiset vastaamaan tasakymmeniä). Eroja voidaan selittää myös sillä, että vastaukset sisältävät sittenkin lähinnä ordinaalista informaatiota (tärkeysjärjestys) toisin kuin arvoteoria olettaa. B. Sanat painotuksessa: AHP:n sanoja vastaavat numeeriset estimaatit riippuvat asiayhteydestä valmiiksi rakennetut sanalliset asteikot eivät välttämättä vastaa vastaajan todellisia preferenssejä. 9

10 C. "Range effect": Päätöksentekijät eivät huomioi riittävästi vaihteluvälien edellyttämiä muutoksia kriteeripainoissa Päätöksentekijät eivät tulkitse attribuutin painoa teorian mukaisesti Esimerkiksi palkka-attribuutin paino saattaa olla sama riippumatta siitä, onko palkan vaihteluväli a) vai b) Onko vika painotusmenetelmissä, jotka eivät kysymysten kautta tuo vaihteluväliä tarpeeksi selkeästi esiin? D. "Splitting bias": Kriteerin jakaminen osatekijöihin lisää kriteerin painoa etenkin ei-hierarkkisessa painotuksessa (0.44) Ilmiön on selitetty johtuvan "availability"-heuristiikasta: kriteerin esille tuominen useissa yhteyksissä kasvattaa sen painoarvoa. 10

11 Ongelma: yksittäisen henkilön käyttäytymistä on aikaisemmissa kokeissa kuvattu keskiarvoilla ei ole välttämättä totta, että splitting bias olemassa. Esimerkki Whole group Anti group Pro group eight Attr1 Attr2 Attr3 Attr1 Attr2 Attr3 Attr1 Attr2 Attr3 Pöyhönen, Vrolijk, Hämäläinen (1997): Pyrkimys käyttää vain tiettyjä numeroita yhdessä normalisoinnin kanssa voivat johtaa painojen muuttumiseen, jos arvopuun rakenne muuttuu. E. Geneerisiä numeerisen estimoinnin harhoja Subjektilta (so. koehenkilöltä) pyydetään ärsykkeen suuruutta kuvaavia numeerisia estimaatteja (esim. etäisyys, valovoima, tapahtuman kesto, jne.) 1. Centering bias ärsykkeita koskevat estimaatit pyrkivät kasautumaan aiempien estimaattien keskiarvon tuntumaan 11

12 2. Stimulus and response equalizing bias asteikon laajuus ei välttämättä vaikuta riittävästi 3. Contraction bias isoja ärsykkeitä koskevat estimaatit aliarvioidaan kun taas pienet yliarvioidaan vrt. teknologisen kehityksen ennustaminen 4. Stimulus spacing bias estimaatit annetaan tasavälein vaikka ärsykkeet eivät olekaan tasavälisiä 5. Log bias esim on kaksi kertaa isompi Mahdollisten harhojen huomioonottaminen Tulokset riippuvat kriteerijoukosta, arvopuun rakenteesta ja vaihtoehtojoukosta Käytännössä kaikkia harhoja ei pystytä testaamaan (aika- ja budjettirajoitukset) Painotus etenee usein iteratiivisesti ja tietokoneavusteisesti Herkkyysanalyysin avulla voidaan tarkastella, missä määrin suositukset mahdollisesti muuttuvat, jos mallin parametrien arvot muuttuvat 12

5. Analyyttinen hierarkiaprosessi

5. Analyyttinen hierarkiaprosessi 5. Analyyttinen hierarkiaprosessi 1 5 Painottamisen harhat ja analyyttinen hierarkiaprosessi 5.1 Analyyttinen hierarkiaprosessi (AHP) Thomas L. Saatyn kehittämä menetelmä (1977, 1980) erittäin suosittu

Lisätiedot

Ominaisarvojen jakauma balansoidulla asteikolla AHP:ssa

Ominaisarvojen jakauma balansoidulla asteikolla AHP:ssa Mat-.08 Sovelletun matematiikan erikoistyöt 0.9.003 Ominaisarvojen jakauma balansoidulla asteikolla AHP:ssa Teknillinen korkeakoulu Systeemianalyysin laboratorio Keijo Jaakola 564B . Johdanto... 3. Painojen

Lisätiedot

Päätöksenteko ja analyyttinen hierarkiaprosessi, AHP

Päätöksenteko ja analyyttinen hierarkiaprosessi, AHP Päätöksenteko ja analyyttinen hierarkiaprosessi, AHP 1. AHP ja päätöksenteko Kykymme mallintaa kompleksista ongelma- tai ilmiökokonaisuutta ovat rajalliset. Tämä näkyy selvästi, kun mitataan taloudellisia

Lisätiedot

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely)

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Juha Kännö 23..22 Ohjaajat: TkL Antti Punkka, DI Eeva Vilkkumaa Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa

Lisätiedot

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla \esitelm\hki0506.ppt 18.5.2006 Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen Pekka Leskinen ja Tuomo Kainulainen Metla FORS-iltapäiväseminaari 24.5.2006: Operaatiotutkimus

Lisätiedot

Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä. Jari Mustonen, 47046C,

Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä. Jari Mustonen, 47046C, Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä Jari Mustonen, 47046C, jari.mustonen@iki. 4. huhtikuuta 2005 Sisältö 1 Johdanto 2 2 Aikaisempi tutkimus 3 2.1 Arvopuuanalyysi.........................

Lisätiedot

Polkuriippuvuus trade-off-painotuksessa (valmiin työn esittely)

Polkuriippuvuus trade-off-painotuksessa (valmiin työn esittely) Polkuriippuvuus trade-off-painotuksessa (valmiin työn esittely) Riikka Siljander 8.9.2014 Ohjaaja: DI Tuomas Lahtinen Valvoja: prof. Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla

Lisätiedot

Additiivinen arvofunktio

Additiivinen arvofunktio Additiivinen arvofunktio Mat-.44 Optimointiopin seminaari kevät 0 Preferenssi Päätöksentekijällä preferenssi vaihtoehtojen a,b A välillä a parempi kuin b ( a b) b parempi kuin a ( b a) Indifferentti vaihtoehtojen

Lisätiedot

2. Arvon ja hyödyn mittaaminen

2. Arvon ja hyödyn mittaaminen 2. Arvon ja hyödyn mittaaminen 1 2 Arvon ja hyödyn mittaaminen 2.1 Miksi tarvitsemme arvofunktiota? Arvofunktio on preferenssien (mieltymysten) matemaattinen kuvaus. Arvofunktio kuvaa päätöskriteeriä vastaavan

Lisätiedot

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.

Lisätiedot

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Kaksi sovellusta robustien päätössuositusten tuottamisesta

Kaksi sovellusta robustien päätössuositusten tuottamisesta Esitelmä 12 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Kaksi sovellusta robustien päätössuositusten tuottamisesta Antti Toppila 2.3.2011 Esitelmä 12 Antti Toppila sivu 2/19 Optimointiopin

Lisätiedot

Monitavoitearviointi Ylä-Lapin metsien kestävästä käytöstä

Monitavoitearviointi Ylä-Lapin metsien kestävästä käytöstä Monitavoitearviointi Ylä-Lapin metsien kestävästä käytöstä Ylä-Lapin metsien kestävä käyttö hankeen loppuseminaari Saariselkä 26.3.2009 Heli Saarikoski, Jyri Mustajoki ja Mika Marttunen Suomen ympäristökeskus

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia

Lisätiedot

Kaikkiin kysymyksiin vastataan kysymys paperille pyri pitämään vastaukset lyhyinä, voit jatkaa paperien kääntöpuolille tarvittaessa.

Kaikkiin kysymyksiin vastataan kysymys paperille pyri pitämään vastaukset lyhyinä, voit jatkaa paperien kääntöpuolille tarvittaessa. NIMI: OPPILASNUMERO: ALLEKIRJOITUS: tehtävä 1 2 3 4 yht pisteet max 25 25 25 25 100 arvosana Kaikkiin kysymyksiin vastataan kysymys paperille pyri pitämään vastaukset lyhyinä, voit jatkaa paperien kääntöpuolille

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

UUDEN MUOVITEOLLISUUSTUOTTEEN KEHITTÄMINEN ANALYYTTISTA HIERARKIAPROSESSIA HYÖDYNTÄEN

UUDEN MUOVITEOLLISUUSTUOTTEEN KEHITTÄMINEN ANALYYTTISTA HIERARKIAPROSESSIA HYÖDYNTÄEN LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknistaloudellinen tiedekunta Tuotantotalouden osasto UUDEN MUOVITEOLLISUUSTUOTTEEN KEHITTÄMINEN ANALYYTTISTA HIERARKIAPROSESSIA HYÖDYNTÄEN Työn tarkastaja: professori

Lisätiedot

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

Synkronoitu luenta suomen rytmin tutkimuksessa

Synkronoitu luenta suomen rytmin tutkimuksessa Synkronoitu luenta suomen rytmin tutkimuksessa Michael L. O Dell, Tommi Nieminen, Liisa Mustanoja Tampereen yliopisto, Jyväskylän yliopisto 26.2.2010, Mekrijärven tutkimusasema Synkronoitu luenta (Cummins)

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

hyvä osaaminen

hyvä osaaminen MERKITYS, ARVOT JA ASENTEET FYSIIKKA T2 Oppilas tunnistaa omaa fysiikan osaamistaan, asettaa tavoitteita omalle työskentelylleen sekä työskentelee pitkäjänteisesti. T3 Oppilas ymmärtää fysiikkaan (sähköön

Lisätiedot

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen 1 FYSIIKKA Fysiikan päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta fysiikan opiskeluun T2 ohjata

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea. Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

arvioinnin kohde

arvioinnin kohde KEMIA 9-lk Merkitys, arvot ja asenteet T2 Oppilas tunnistaa omaa kemian osaamistaan, asettaa tavoitteita omalle työskentelylleen sekä työskentelee pitkäjänteisesti T3 Oppilas ymmärtää kemian osaamisen

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.

Lisätiedot

arvioinnin kohde

arvioinnin kohde KEMIA 8-lk Merkitys, arvot ja asenteet T2 Oppilas asettaa itselleen tavoitteita sekä työskentelee pitkäjänteisesti. Oppilas kuvaamaan omaa osaamistaan. T3 Oppilas ymmärtää alkuaineiden ja niistä muodostuvien

Lisätiedot

Ryhmäläisten nimet:

Ryhmäläisten nimet: 1 TJT10, kevät 2017 VERTAISARVIOINTILOMAKE Ryhmäläisten nimet: 1. 2. 3. Heuristinen arviointi käyttäen ohjeistuksessa olevaa heuristiikkalistaa. Tehdään vertaisarviointi käyttöliittymästä. Testi suoritetaan

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

Suomen Akatemian toimikuntarakenne

Suomen Akatemian toimikuntarakenne Suomen Akatemian toimikuntarakenne 1. Sukupuoli Nainen Mies En halua kertoa 2. Vastaajan taustaorganisaatio Yliopisto Ammattikorkeakoulu Tutkimuslaitos Muu julkinen sektori Elinkeinoelämä Työmarkkinajärjestö

Lisätiedot

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen KEMIA Kemian päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta kemian opiskeluun T2 ohjata ja

Lisätiedot

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

MS-A0003/A Matriisilaskenta Laskuharjoitus 6 MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Ryhmäläisten nimet:

Ryhmäläisten nimet: 1 TJTA10, kevät 2020 VERTAISARVIOINTILOMAKE Ryhmäläisten nimet: 1. 2. 3. Heuristinen arviointi käyttäen ohjeistuksessa olevaa heuristiikkalistaa. Tehdään vertaisarviointi käyttöliittymästä. Testi suoritetaan

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

Harjoitus 12: Monikriteerinen arviointi

Harjoitus 12: Monikriteerinen arviointi Harjoitus 12: Monikriteerinen arviointi MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Monikriteerinen arviointi Kurssin opetusteemojen

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Harjoitus 2, viikko 38, syksy 2012 1. Tutustu liitteen 1 kuvaukseen Suuresta bränditutkimuksesta v. 2009. Mikä tämän kuvauksen perusteella on ko.

Lisätiedot

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS 466111S Rakennusfysiikka, 5 op. RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma,

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Palvelusetelihanke Hinnoitteluprojekti / hinnoittelupolitiikan vaihtoehtoja ja malleja 16.4.2010

Palvelusetelihanke Hinnoitteluprojekti / hinnoittelupolitiikan vaihtoehtoja ja malleja 16.4.2010 Palvelusetelihanke Hinnoitteluprojekti / hinnoittelupolitiikan vaihtoehtoja ja malleja 16.4.2010 Sisältö Sivu Johdanto 3 Palvelusetelin hinnoittelun elementit 5 Palvelun hinta: hintakatto tai markkinahinta

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet

SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet A271117, Tietokannat Teemu Saarelainen teemu.saarelainen@kyamk.fi Lähteet: Leon Atkinson: core MySQL Ari Hovi: SQL-opas TTY:n tietokantojen perusteet-kurssin

Lisätiedot

Monitasomallit koulututkimuksessa

Monitasomallit koulututkimuksessa Metodifestivaali 9.5.009 Monitasomallit koulututkimuksessa Mitä ihmettä? Antero Malin Koulutuksen tutkimuslaitos Jyväskylän yliopisto 009 1 Tilastollisten analyysien lähtökohta: Perusjoukolla on luonnollinen

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

Hämeenlinnan kaupunki Asiakastyytyväisyys 2014 Ikäihmisten palvelut asumispalvelut

Hämeenlinnan kaupunki Asiakastyytyväisyys 2014 Ikäihmisten palvelut asumispalvelut Hämeenlinnan kaupunki Asiakastyytyväisyys 2014 Ikäihmisten palvelut asumispalvelut 9.2.2015 Mikko Kesä Meiju Ahomäki Jari Holttinen YLEISTÄ TUTKIMUKSESTA Palveluiden käyttäjien profiili Palveluiden käyttö

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun

Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun Timo Honkela Kognitiivisten järjestelmien tutkimusryhmä Adaptiivisen informatiikan tutkimuskeskus Tietojenkäsittelytieteen

Lisätiedot

1. TILASTOLLINEN HAHMONTUNNISTUS

1. TILASTOLLINEN HAHMONTUNNISTUS 1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,

Lisätiedot

Johdatus tilastotieteeseen

Johdatus tilastotieteeseen Johdatus tilastotieteeseen Jari Päkkilä Kevätlukukausi 2017 Matemaattisten tieteiden laitos Esimerkki mittauksen luotettavuudesta Viime viikon mittausharjoituksessa pelattiin mm. kunnat kartalle -peliä

Lisätiedot

hyvä osaaminen. osaamisensa tunnistamista kuvaamaan omaa osaamistaan

hyvä osaaminen. osaamisensa tunnistamista kuvaamaan omaa osaamistaan MERKITYS, ARVOT JA ASENTEET FYSIIKKA 8 T2 Oppilas asettaa itselleen tavoitteita sekä työskentelee pitkäjänteisesti. Oppilas harjoittelee kuvaamaan omaa osaamistaan. T3 Oppilas ymmärtää lämpöilmiöiden tuntemisen

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Katkosjoukkojen

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 20. huhtikuuta 2018 Vastaa kaikkiin tehtäviin. Tee kukin tehtävä omalle konseptiarkille. Noudata ohjelmointitehtävissä kurssin koodauskäytänteitä.

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

Maailman turvallisin betoniteollisuus vuonna 2015 kutsu työturvallisuuskilpailuun 2011

Maailman turvallisin betoniteollisuus vuonna 2015 kutsu työturvallisuuskilpailuun 2011 Maailman turvallisin betoniteollisuus vuonna 2015 kutsu työturvallisuuskilpailuun 2011 Lähtökohdat Turvallisuustaso alhainen muuhun teollisuuteen verrattuna Tarpeettomia onnettomuus- ja sairauskustannuksia

Lisätiedot

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 2A

Tilastollinen päättely II, kevät 2017 Harjoitus 2A Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

HYÖTYTEORIAN SOVELLUS LUONNONARVOKAUPAN JA TARJOUSKILPAILUN HANKKEIDEN ARVIOINTIIN

HYÖTYTEORIAN SOVELLUS LUONNONARVOKAUPAN JA TARJOUSKILPAILUN HANKKEIDEN ARVIOINTIIN HYÖTYTEORIAN SOVELLUS LUONNONARVOKAUPAN JA TARJOUSKILPAILUN HANKKEIDEN ARVIOINTIIN MMT Jouni Pykäläinen & MMT Mikko Kurttila, TAUSTA (KRITEERITYÖRYHMÄN PAPERI) yleisenä tavoitteena tärkeiksi arvioitujen

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Tämän tarjouslomakkeen tiedot koskevat palvelua, jota tarjotaan seuraavaan hankittavana olevaan palvelumuotoon:

Tämän tarjouslomakkeen tiedot koskevat palvelua, jota tarjotaan seuraavaan hankittavana olevaan palvelumuotoon: HELSINGIN KAUPUNKI TARJOUSLOMAKE (A/4) 1 (7) Tämän tarjouslomakkeen tiedot koskevat palvelua, jota tarjotaan seuraavaan hankittavana olevaan palvelumuotoon: A/4. AVOKUNTOUTUS Palveluntuottaja: Tarjottava

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot