Kertaustesti Perheessä on neljä lasta, joista valitaan arpomalla kaksi tiskaajaa. Millä todennäköisyydellä nuorin joutuu tiskaamaan?

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kertaustesti Perheessä on neljä lasta, joista valitaan arpomalla kaksi tiskaajaa. Millä todennäköisyydellä nuorin joutuu tiskaamaan?"

Transkriptio

1 Kertaustesti 1 Nimi: 1. a) Noppaa heitetään kerran. Millä todennäköisyydellä saadaan silmäluku 2? b) Noppaa heitetään kaksi kertaa peräkkäin. Millä todennäköisyydellä molemmilla heitoilla saadaan silmäluku 2? 2. Perheessä on neljä lasta, joista valitaan arpomalla kaksi tiskaajaa. Millä todennäköisyydellä nuorin joutuu tiskaamaan? 3. Sara ostaa kaksi arpaa, Luontoarvan ja Kirja-arvan. Luontoarvoista voittoarpoja on 60 % ja Kirja-arvoista voittoarpoja on 30 %. Millä todennäköisyydellä a) molemmat arvat ovat voittoarpoja b) Luontoarpa on voittoarpa ja Kirja-arpa ei c) toinen arpa voittaa ja toinen ei? Lyhyt matikka 5, WSOY Jompikumpi tapahtuu yhteenlaskusääntö 36

2 Kertaustesti 1, vastaukset 1 1. a) P(silmäluku 2) 0,17 6 b) P(molemmilla silmäluku 2) P(ensimmäisellä 2) P(toisella 2) , Vastaus: a) 0,17 b) 0, Merkitään lapsia ikäjärjestyksessä nuorimmasta vanhimpaan numeroilla 1, 2, 3 ja 4. Luetellaan kaikki mahdolliset alkeistapaukset. 1 2, 1 3, 1 4, 2 3, 2 4 ja 3 4 Kaikkia alkeistapauksia on kuusi ja nuorin (1) on mukana kolmessa alkeistapauksessa, joten P(nuorin joutuu tiskaamaan) 3 6 0,5. Vastaus: 0,5 3. a) P(molemmat arvat voittavat) P(Luontoarpa voittaa ja Kirja-arpa voittaa) P(Luontoarpa voittaa) P(Kirja-arpa voittaa) 0,6 0,3 0,18 b) P(Luontoarpa voittaa ja Kirja-arpa ei voita) P(Luontoarpa voittaa) P(Kirja-arpa ei voita) 0,6 0,7 0,42 c) P(toinen arpa voittaa ja toinen ei) P(Luontoarpa voittaa ja Kirja-arpa ei) + P(Luontoarpa ei voita ja Kirja-arpa voittaa) P(Luontoarpa voittaa) P(Kirja-arpa ei voita) + P(Luontoarpa ei voita) P(Kirja-arpa voittaa) 0,6 0,7 + 0,4 0,3 0,54 Vastaus: a) 0,18 b) 0,42 c) 0,54 Lyhyt matikka 5, WSOY Jompikumpi tapahtuu yhteenlaskusääntö 37

3 Kertaustesti 2 Nimi: 1. Noppaa heitetään viisi kertaa. Muotoile sanallisesti vastatapahtuma tapahtumalle a) saadaan enintään kolme kuutosta b) saadaan vähintään yksi kuutonen c) saadaan viisi kuutosta. 2. Miehistä 4 % on värisokeita. Millä todennäköisyydellä kymmenen miehen joukossa on ainakin yksi värisokea? 3. Asunnonostaja saa valita rakennusvaiheessa asuntonsa kylpyhuoneeseen seinälaatat kuudesta eri vaihtoehdosta, lattialaatat kolmesta eri vaihtoehdosta ja kaapistot viidestä eri vaihtoehdosta. Kuinka monta erilaista sisustusvaihtoehtoa kylpyhuoneeseen voi suunnitella? 4. Matematiikan ryhmässä on 14 tyttöä ja 6 poikaa. Ryhmästä valitaan neljä oppilasta päässälaskukilpailuihin. a) Kuinka monta erilaista nelihenkistä joukkuetta voidaan valita? b) Millä todennäköisyydellä kaikki valitut ovat tyttöjä? c) Millä todennäköisyydellä ainakin yksi valituista on poika? Lyhyt matikka 5, WSOY Osajoukkojen lukumäärä 58

4 Kertaustesti 2, vastaukset 1. a) saadaan vähintään neljä kuutosta b) ei saada yhtään kuutosta c) saadaan korkeintaan neljä kuutosta 2. Tapahtuman A: ainakin yksi värisokea vastatapahtuma on : ei yhtään värisokeaa. P(A) 1 P( ) 1 0, ,34 Vastaus: 0,34 3. Suoritetaan valinta vaiheittain. valitaan seinälaatat valitaan lattialaatat valitaan kaapistot 6 vaihtoehtoa 3 vaihtoehtoa 5 vaihtoehtoa Erilaisia sisustusvaihtoehtoja on Vastaus: a) Erilaisia joukkueita on b) Joukkueita, joissa on vain tyttöjä, on P(kaikki valitut ovat tyttöjä) , c) P(ainakin yksi valituista on poika) 1 P(ei yhtään poikaa) 1 0,21 0,79 Vastaus: a) b) 0,21 c) 0,79 Lyhyt matikka 5, WSOY Osajoukkojen lukumäärä 59

5 ! " " " " " " " " " " " " " " " " " " " " " " " " " " # $ % & & ' % ( ) * % & & + (, & ( - ( & ) ' % ( + (, & ( - ( & ) * 2 % & & + ' % ( + (, & ( ) + - -, &, ( ' & - -, & & - 3 ) * 4 $ % ( + ( ' ) ( ) ( 9 : & ( - ) ( & +,, 2 & & * $ ; ) + + ( & & - % & & + ' % ( + (, & ( - + ', ' + 2 < & & *

6 > $?, ) ' ' & & -,, - 6, + ( - & & -, ', - -, ) ' + ), & & -, ) * 5 % ( & ( - & & -, A % + - -, ( 2 ( -, ( - & & -, ' + ) & ' B C C D E F G C C F H F I J K L M ), ( 5 N O... P O 1. O Q P O O 1

7 K R I # $ (, & ( - 3 ) + - -, & & ) N. 1 0 P Q.. Q $ 6 6 ) ( ) ( S 0 $ > $ 5 Q P ) 7 5 & P ) Q

8 Kertaustesti 4 Nimi: 1. Kurssikokeen pistemäärät olivat: 36, 12, 30, 18, 21, 15, 34, 29, 22, 23, 20, 25 ja 32. Mikä oli kurssikokeen a) keskiarvo b) keskihajonta? 2. Joel ja Jaakko ovat rinnakkaisluokilla. Joel sai fysiikan kokeesta 34 pistettä. Hänen luokkansa kokeen keskiarvo oli 23 pistettä ja keskihajonta 5 pistettä. Jaakko sai kokeesta 38 pistettä. Jaakon luokan keskiarvo oli 24 pistettä keskihajonnan ollessa 7 pistettä. Laske molempien pistemääriä vastaavat normitetut arvot? Kumpi suoriutui kokeesta suhteellisesti paremmin? 3. a) Määritä z. b) Kuinka monta prosenttia normitetusta normaalijakaumasta on varjostetulla alueella? 4. Tutkimuksessa havaittiin, että muropakkausten painon keskiarvo on 375 grammaa ja keskihajonta 7 grammaa. Pakkausten paino noudattaa likimain normaalijakaumaa. Kuinka monta prosenttia pakkauksista painaa vähintään 378 grammaa? Lyhyt matikka 5, WSOY Normaalijakauman taulukon käyttö 108

9 W W T T S Kertaustesti 4, vastaukset T 1. a) ,38 13 keskiarvo 24, U (36 24,38) (32 24,38) b) 7,12 13 V keskihajonta 7,12 2. Lasketaan poikien koetuloksille normitetut arvot. Joel: W X ,2 5 Jaakko: ,0 7 Vastaus: Joel selviytyi kokeessa suhteellisesti paremmin kuin Jaakko. 3. a) 84,5 % lähinnä oleva normitettu arvo z 1,02 b) Koska normitetun arvon 0,74 alapuolella on 77,04 %, arvon yläpuolella on 100 % 77,04 % 22,96 % 23 % jakaumasta. 4. Lasketaan painoa 378 grammaa vastaava normitettu arvo ,43. 7 Normitetun arvon 0,43 yläpuolella on 100 % 66,64 % 33,36 % 33 % havainnoista. Vastaus: Muropaketeista noin 33 % painaa vähintään 378 grammaa. Lyhyt matikka 5, WSOY Normaalijakauman taulukon käyttö 109

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 %

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 % Testaa taitosi 1 1. Noppaa heitetään kahdesti. Merkitse kaikki alkeistapaukset koordinaatistoon. a) Millä todennäköisyydellä ainakin toinen silmäluvuista on 3? b) Mikä on a-kohdan tapahtuman vastatapahtuma?

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia. Tehtävien ratkaisuja 4. Palloja yhteensä 60 kpl. a) P(molemmat vihreitä) = P((1. pallo vihreä) ja (. pallo vihreä)) = P(1. pallo vihreä) P(. pallo vihreä 1. pallo vihreä) = 0.05 (yleinen kertolaskusääntö)

Lisätiedot

Todennäköisyyslaskenta - tehtävät

Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,

Lisätiedot

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAA6 koe 26.9.2016 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-osio: Ilman laskinta, MAOL:in taulukkokirja

Lisätiedot

Kertausosa. 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. b) Moodi on se muuttujan arvo, jonka frekvenssi on suurin. Mo = 5.

Kertausosa. 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. b) Moodi on se muuttujan arvo, jonka frekvenssi on suurin. Mo = 5. Kertausosa 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. Äänimäärä f f % 0 1 1 0,0169... 59 4 4 0,0677... 59 3 7 7 0,1186... 59 4 15 15 0,54... 59 5 18 18 0,3050... 59 6 1 1 0,033... 59 7

Lisätiedot

Huippu 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty KERTAUS KERTAUSTEHTÄVIÄ K. Ensimmäiselle paidalle on 5 vaihtoehtoa, toiselle 4, kolmannelle 3 ja niin edelleen. Axel voi pitää paitoja 5! = 0:ssä eri järjestyksessä. Vastaus: 0:ssä eri järjestyksessä K.

Lisätiedot

Kertaustehtäviä Pakassa on jäljellä 50 korttia, joista 11 on herttoja Alkeistapauksia ovat silmälukuparit, joita on 36 kappaletta.

Kertaustehtäviä Pakassa on jäljellä 50 korttia, joista 11 on herttoja Alkeistapauksia ovat silmälukuparit, joita on 36 kappaletta. 0. Pakassa on jäljellä 50 korttia, joista on herttoja. P(kolmas kortti hertta) 50 0,22 02. Alkeistapauksia ovat silmälukuparit, joita on kappaletta. a) Kuvion perusteella pistesumma 4 saadaan tavalla.

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

Todennäköisyys ja tilastot Tehtävien ratkaisut Kertaustehtävät. Kertaustehtävien ratkaisut

Todennäköisyys ja tilastot Tehtävien ratkaisut Kertaustehtävät. Kertaustehtävien ratkaisut Ratkaisuista Nämä Todennäköisyys ja tilastot -kurssin kertaustehtävien ja -sarjojen ratkaisut perustuvat oppikirjan tietoihin ja menetelmiin. Kustakin tehtävästä on yleensä vain yksi ratkaisu, mikä ei

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Äidinkielen valtakunnallinen koe 9.luokka

Äidinkielen valtakunnallinen koe 9.luokka Keväällä 2013 Puumalan yhtenäiskoulussa järjestettiin valtakunnalliset kokeet englannista ja matematiikasta 6.luokkalaisille ja heille tehtiin myös äidinkielen lukemisen ja kirjoittamisen testit. 9.luokkalaisille

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Kertausosa. 1. a) Lenkkareiden merkki on laatueroasteikollinen muuttuja. Montako millimetriä on tällöin satanut?

Kertausosa. 1. a) Lenkkareiden merkki on laatueroasteikollinen muuttuja. Montako millimetriä on tällöin satanut? V πr h π 7 0,...(cm,0...(l) Montako millimetriä on tällöin satanut? V,0...l,7...(mm) 8 l 8 l Täytyy sataa vähintään,7 mm, että astia täyttyisi. Lasketaan todennäköisyys, että sataa vähintään,7 mm.,7...

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät Lyhyen matematiikan pisteitysohjeet kevät 0 ver..0 Pisteytyssuositus Matematiikka lyhyt oppimäärä Kevät 0..0 Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat

Lisätiedot

1. Tässä tehtävässä päätellään kaksilapsisen perheen lapsiin liittyviä todennäköisyyksiä.

1. Tässä tehtävässä päätellään kaksilapsisen perheen lapsiin liittyviä todennäköisyyksiä. TODENNÄKÖISYYS Aihepiirejä: Yhden ja kahden tapahtuman tuloksien käsittely ja taulukointi, ovikoodit, joukkueen valinta, bussin odotus, pelejä, urheilijoiden testaus kielletyn piristeen käytöstä, linnun

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Internetin saatavuus kotona - diagrammi

Internetin saatavuus kotona - diagrammi Internetin saatavuus kotona - diagrammi 2 000 ruotsalaista vuosina 2000-2010 vastata Internetiä koskeviin kysymyksiin. Alla oleva diagrammi osoittaa, kuinka suurella osuudella (%) eri ikäryhmissä oli Internet

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Ecolier, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2014-2015 MFKA-Kustannus Oy Asememiehenkatu 4, 00520 HELSINKI, puh. 010 322 3162 http://www.mfka.fi

Lisätiedot

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada OTATKO RISKIN? peli 1. Heitä noppaa 20 kertaa. Tavoitteena on saada vähintään 10 kertaa silmäluku 4, 5 tai 6. Jos onnistut, saat 300 pistettä. Jos et onnistu, menetät 2. Heitä noppaa 10 kertaa. Tavoitteena

Lisätiedot

MB5 YHTEENVETO. Todennäköisyyslaskenta

MB5 YHTEENVETO. Todennäköisyyslaskenta MB5 YHTEENVETO Todennäköisyyslaskenta Klassinen todennäköisyys Suotuisten tapahtumien lukumäärä Kaikkien mahdollisten tulosten lukumäärä k n Todennäköisyys = P (A) = suotuisat kaikki k n Todennäköisyys

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Esimerkki 1: auringonkukan kasvun kuvailu

Esimerkki 1: auringonkukan kasvun kuvailu GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin

Lisätiedot

TEAMGYMIN KILPAILUSÄÄNNÖT

TEAMGYMIN KILPAILUSÄÄNNÖT TEAMGYMIN KILPAILUSÄÄNNÖT 1.1.2017 ------------------------- Sisällysluettelo 1. Osallistumisoikeus... 2 2. Kilpailusarjat ja -muodot... 2 3. Joukkueen kokoonpano... 3 4. Sama voimistelija eri joukkueissa...

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto Todennäköisyyslaskenta /7 Sisältö ESITIEDOT: joukko-oppi, n laskeminen, käsite Hakemisto Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennassa tarkastelun kohteena ovat satunnaisilmiöt.esimerkkejä

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

MATEMATIIKAN TASOTESTI / EKAMK / 9.9.2003

MATEMATIIKAN TASOTESTI / EKAMK / 9.9.2003 MATEMATIIKAN TASOTESTI / EKAMK / 9.9.2003 Etelä-Karjalan ammattikorkeakoulun johdon toimeksiannosta järjestettiin aloittaville opiskelijoille matematiikan tasotesti. Mukana olivat kaikki koulutusalat,

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

LISÄTEHTÄVÄT. Päähakemisto Tehtävien ratkaisut -hakemisto. Arvosanat

LISÄTEHTÄVÄT. Päähakemisto Tehtävien ratkaisut -hakemisto. Arvosanat 3 Tilastotutkimuksen analysointi ja raportointi 194. Arvosanat taulukkona: Arvosana f f % Keskuskulma (astetta) 1 4,8 % 17 6 3,8 % 86 7 3,8 % 86 8 8 38,1 % 137 9 9, % 34 Sektoridiagrammina: 37 % 10 % Arvosanat

Lisätiedot

Pelaajien lukumäärä: suositus 3 4 pelaajaa; peliä voi soveltaa myös muille pelaajamäärille

Pelaajien lukumäärä: suositus 3 4 pelaajaa; peliä voi soveltaa myös muille pelaajamäärille Heli Vaara ja Tiina Komulainen OuLUMA, sivu 1 MERIROSVOJEN AARTEENJAKOPELI Avainsanat: matematiikka, pelit, todennäköisyys Pelaajien lukumäärä: suositus 3 4 pelaajaa; peliä voi soveltaa myös muille pelaajamäärille

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

10, 9, 5, 6, 7, 4, 7, 9, 8, 7, 6, 7, 8, 6

10, 9, 5, 6, 7, 4, 7, 9, 8, 7, 6, 7, 8, 6 MAA6.1 Loppukoe 23.11.2012 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

(1) Pekan pakasta vetämät neljä korttia ovat hertta 5, hertta 6, hertta 7 ja pata 7. Mikä on todennäköisyys, että seuraava kortti

(1) Pekan pakasta vetämät neljä korttia ovat hertta 5, hertta 6, hertta 7 ja pata 7. Mikä on todennäköisyys, että seuraava kortti Todennäköisyyslaskenta: sarja 1 Todennäköisyyyslaskenta-tehtäväsarjassa on tehtäviä seuraavista asioista: klassinen todennäköisyys, todennäköisyyden laskusäännöt, kombinatoriikka, toistokoe sekä diskreetti-

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Kuvio 1 Lukutaidon kansalliset suorituspistemäärät

Kuvio 1 Lukutaidon kansalliset suorituspistemäärät Kuvio 1 Lukutaidon kansalliset suorituspistemäärät ( ) Keskihajonta Kansallinen keskiarvo Hongkong 571 (61) h Venäjä 568 (66) h Suomi 568 (64) h Singapore 567 (80) h Pohjois-Irlanti 558 (76) h Yhdysvallat

Lisätiedot

D ( ) E( ) E( ) 2.917

D ( ) E( ) E( ) 2.917 Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka 3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,

Lisätiedot

Kenguru 2015 Cadet (8. ja 9. luokka)

Kenguru 2015 Cadet (8. ja 9. luokka) sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

3. a) Otetaan umpimähkään reaaliluku väliltä [0,1]. Millä todennäköisyydellä tämän luvun ensimmäinen desimaali on 2 tai toinen desimaali on 9?

3. a) Otetaan umpimähkään reaaliluku väliltä [0,1]. Millä todennäköisyydellä tämän luvun ensimmäinen desimaali on 2 tai toinen desimaali on 9? MAA6 Kurssikoe 1.10.20 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Muista että välivaiheet perustelevat ratkaisusi! Lue ohjeet tarkasti! A-osio. Ei saa käyttää

Lisätiedot

PISA 2012 ENSITULOKSIA Pekka Kupari Jouni Välijärvi Koulutuksen tutkimuslaitos Jyväskylän yliopisto

PISA 2012 ENSITULOKSIA Pekka Kupari Jouni Välijärvi Koulutuksen tutkimuslaitos Jyväskylän yliopisto PISA 2012 ENSITULOKSIA Pekka Kupari Jouni Välijärvi Koulutuksen tutkimuslaitos Jyväskylän yliopisto PISA 2012 Programme for International Student Assessment Viides tutkimus PISA-ohjelmassa: pääalueena

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

TILASTOT JA TODENNÄKÖISYYS

TILASTOT JA TODENNÄKÖISYYS TILASTOT JA TODENNÄKÖISYYS Perusopetuksen opetussuunnitelmien perusteissa 2004 on vuosiluokille 6 9 määritelty tietyt tavoitteet koskien tilastoja ja todennäköisyyttä. Seuraavat keskeiset sisällöt tulevat

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

3.5 Todennäköisyyden laskumenetelmiä

3.5 Todennäköisyyden laskumenetelmiä MAB5: Todennäköisyyden lähtökohdat 3.5 Todennäköisyyden laskumenetelmiä Aloitetaan esimerkillä, joka on sitä sarjaa, mihin ei ole mitään muuta yleispätevää ohjetta kuin että on edettävä järjestelmällisesti

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE 1/5 TEHTÄVÄOSA / Ongelmanratkaisu 1.6. 2017 TEHTÄVÄOSA ONGELMANRATKAISU Vastaa kullekin tehtävälle varatulle ratkaisusivulle. Vastauksista tulee selvitä tehtävien

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus KERTAUSHARJOITUKSIA Tilastoje esittämie. a) -9 vuotiaita tyttöjä 377 Koko väestö 9 73 77 Näide tyttöje osuus 3, 0 % 9 73 b) Pojat ja tytöt: 3 377 + 77 = 39 4 39 4 Osuus koko väestöstä, % 9 73 c) Ikäluokka

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

Kenguru 2015 Cadet Ratkaisut

Kenguru 2015 Cadet Ratkaisut sivu 1 / 16 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

PISA 2012 ENSITULOKSIA Pekka Kupari Jouni Välijärvi Koulutuksen tutkimuslaitos Jyväskylän yliopisto

PISA 2012 ENSITULOKSIA Pekka Kupari Jouni Välijärvi Koulutuksen tutkimuslaitos Jyväskylän yliopisto PISA 2012 ENSITULOKSIA Pekka Kupari Jouni Välijärvi Koulutuksen tutkimuslaitos Jyväskylän yliopisto PISA 2012 Programme for International Student Assessment Viides tutkimus PISA-ohjelmassa: pääalueena

Lisätiedot

Menettelytapa vertailtavuuden parantamiseksi

Menettelytapa vertailtavuuden parantamiseksi Menettelytapa vertailtavuuden parantamiseksi Standardoitujen yhteispisteiden keskiarvoista saadaan vertailukelpoinen indikaattori kunkin aineen ja kirjoituskerran kirjoittaneille. Arvosanat jaetaan normaalijakauman

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi)

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi) Kenguru 2013 Junior sivu 1 / 9 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11

Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11 Osa 1: Prosentti Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11 Tehtävä 1: Vastaukset (max. 10 p) Muunna prosenttikertoimeksi. a) 20 %

Lisätiedot

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4. HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot