MB5 YHTEENVETO. Todennäköisyyslaskenta

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MB5 YHTEENVETO. Todennäköisyyslaskenta"

Transkriptio

1 MB5 YHTEENVETO Todennäköisyyslaskenta

2 Klassinen todennäköisyys Suotuisten tapahtumien lukumäärä Kaikkien mahdollisten tulosten lukumäärä k n Todennäköisyys = P (A) = suotuisat kaikki k n

3 Todennäköisyys P(A) Mahdottoman tapahtuman todennäköisyys 0 Varman tapahtuman todennäköisyys 1 0 < P(A) < 1 0% < P(A) < 100%

4 Todennäköisyyden yhteenlaskusääntö TAI Yhteenslasku Jos tapahtumat A ja B eivät mitenkään vaikuta toisiinsa eli ovat toisistaan riippumattomia, niin P(A tai B) = P(A) + P(B)

5 ESIMERKKI Otetaan korttipakasta kortti. P(kortti on joko pataässä tai hertta) P(pataässä) + P(hertta) , ( 27%)

6 Todennäköisyyden kertosääntö JA, Molemmat Kertolasku Jos tapahtumat A ja B eivät mitenkään vaikuta toisiinsa eli ovat toisistaan riippumattomia, niin P(A ja B) = P(A). P(B)

7 ESIMERKKI Pussissa on 5 sinistä, 3 valkoista ja 7 mustaa kuulaa. Pelaaja ottaa umpimähkään pussista kuulan, palauttaa sen pussiin ja ottaa toisen kuulan P(molemmat kuulat sinisiä) =? P(eka sininen JA toka sininen) ,11

8 Todennäköisyyden kertosääntö Jos tapahtumat A ja B ovat toisistaan riippuvia P(ensin A ja sitten B) = P(A). P(B, kun A on tapahtunut) B-tapahtumassa otetaa huomioon muuttunut tilanne: suotuisat muuttuneet kaikki muuttuneet jne.

9 ESIMERKKI Pussissa on 5 sinistä, 3 valkoista ja 7 mustaa kuulaa. Pelaaja ottaa peräkkäin pussista kaksi kuulaa palauttamatta kuulaa välillä pussiin. P(molemmat kuulat sinisiä) Eka Toka ,095

10 Mikä on todennäköisyys, että pakasta nostetaan peräkkäin 4 ässää? ,

11 A:n vastatapahtuma ei-a Tapahtuma A Vastatapahtuma (=ei-tapahtuma) eia Todennäköisyyksien summa = 1 = 100 % P(A) + P(eiA) = 1 = 100 % P(A) = 1 P(eiA) P(eiA) = 1 P(A) Yleensä: Ainakin yksi Vastatapahtuman avulla

12 ESIMERKKI Perheeseen syntyy neljä lasta P(A)= P(kaikki ovat sunnuntailapsia) 1 P( su) 7 Eka toka kolmas neljäs PA ( ) 4,

13 ESIMERKKI Perheeseen syntyy neljä lasta P(A)= P(kaikki eri viikonpäivinä) PA ( ) 0,

14 AINAKIN... A= Ainakin yhden kerran = 1,2,3, kertaa vastatapahtuma = eia = ei kertaakaan= 0 kertaa P(A ainakin 1 kertaa) = 1 - P(A 0 kertaa) 1 P(ei kertaakaan)

15 Millä todennäköisyydellä 4 lapsesta ainakin yksi on syntynyt sunnuntaina? P(ainakin yksi on syntynyt sunnuntaina) = 1 P(kaikki syntyneet ei-su) P( ei su) suotuisat päivät 6 kaikki päivät 7 eka toka kolmas neljäs ,

16 ESIMERKKI Tullissa tarkastetaan sattumanvaraisesti 5% matkailijoista. Kuinka suuri on todennäköisyys, että 10 hengen seurueesta ainakin 1 joutuu tarkastukseen? tarkastus p = 0,05 ei-tarkastus = 1 0,05 = 0,95 P(ainakin 1) = 1 P(ei yhtään joudu tarkastukseen) P(ainakin 1) = 1 0,95 10 = 0, %

17 Todennäköisyys Erilaisia vaihtoehtoja Peräkkäiset tapahtumat ensin A, sitten B -viittaavat kertolaskuun Rinnakkaiset tapahtumat A tai B viittaavat yhteenlaskuun

18 Jonon järjestyksiä n alkiota voidaan järjestää jonoon n! = n eri tavalla Kuinka monella eri tavalla viisi erilaista pelinappulaa voidaan asettaa pelilaudalle peräkkäin? 5! = = 120 eri tavalla

19 Valintoja: alijoukkoja isommasta joukosta Kuinka monta erilaista k:n alkion ryhmää voidaan valita n :stä alkiosta? "n yli k" = n k Laskimessä yleensä ncr

20 ESIMERKKI Kuinka monella eri tavalla voidaan 10:stä henkilöstä valita 4 henkilöä?

21 Todennäköisyys saada lotossa 7 oikein yhdellä rivillä , Yksi mahdollisuus noin 15 miljoonasta

22 Todennäköisyys saada Viking-lotossa 6 oikein 48 numeron joukosta 6 oikein: , Yksi mahdollisuus noin 12 miljoonasta

23 Lotossa kaikki 7 väärin Lotossa numeroita 39, niistä oikeita 7 Joten vääriä numeroita 39 7 = 32 kpl Vääriä 7:n rivejä yhteensä 32 Kaikki rivit 39 7 Kaikki vääriä: rastitettu 7 numeroa 32:n joukosta 32 väärät rivit 7 P(kaikki 7 väärin) = 0,219 kaikki rivit

24 Lotossa yhdellä rivillä ainakin yksi Numero oikein P(ainakin 1 oikein ) = 1 P(ei yhtään oikein) 1 P(kaikki väärin) 1 P(kaikki väärin) = 1-0,219 = 0,781 V: 0,78

25 KORTTIPELIN TODENNÄKÖISYYKSIÄ (Pakassa 52 korttia. 5 KORTIN KÄSI) 1) Kuinka monta eri kättä? eri "kättä 2) Herttareeti = herttavärisuora = 10, jätkä, rouva kuningas,ässä (Kuningasvärisuora) P(herttareeti) suotuisat tapaukset 1 1 kaikki tapaukset

26 KORTTITODENNÄKÖISYYKSIÄ 4) P (ässäneloset) =? 4 ässää ja yksi muu kortti Muita kortteja 52 4 ässää = 48 kpl Ässäneloset sisältäviä käsiä on siis 48 kpl P(Ässäneloset) suotuisat 48 1 kaikki ,

27 Miten monella eri tavalla voi veikata? Joka rivillä kolme vaihtoehtoa: 1, x, = mahdollisuutta x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2 1 x 2

28 Mikä on todennäköisyys veikata 13 oikein? Suotuisia veikkausrivejä 1 Kaikkia rivejä Tai erikseen 13 ottelua, kukin 1/ ,3 10 7

29 Tehtäviä: Kuinka monella eri tavalla 16 oppilasta voi tehdä jonon? Kuinka monella eri tavalla voidaan 16 oppilaan joukosta valita 4 oppilasta?

30 Harjoitus 5 Millä todennäköisyydellä 16 oppilaan joukossa ainakin kaksi on syntynyt samassa kuussa? Varma tapaus, koska kuukausia on enemmän kuin oppilaita Todennäköisyys = 1 = 100%

31 Tehtävä Kuinka monta kättelyä tarvitaan 16 oppilaan joukossa, jos kaikki kättelevät toisiaan? Siis kuinka monta erilaista kättelyparia voidaan muodostaa 16 oppilaasta

32 Tehtävä Ampuja osuu yleensä kymppiin joka viidennellä laukauksella. Hän ampuu kolme kertaa. Miten suuri mahdollisuus hänellä on saada a) kolme kymppiä? P( kymppiin) 1 5 P(eka10 ja toka10 ja kolmas10)

33 Tehtävä Ampuja osuu yleensä kymppiin joka viidennellä laukauksella. Hän ampuu kolme kertaa. Miten suuri mahdollisuus hänellä on saada b) ei yhtään kymppiä? p = P(kymppi) = 1/5=0,20 P(ei-kymppi) = 0,80 0,8 0,8 0,8 = 0,512 = 51,2 %

34 Tehtävä Laskettelija kaatuu rinteessä 20% todennäköi - syydellä. Hän laskee kolme laskua peräkkäin. Millä todennäköisyydellä hän kaatuu ainakin yhden kerran. Ainakin kerran Lasketaan vastatapahtuman avulla. P(kaatuu) = 0,20 p(ei-kaadu) = 0,80 P(kaatuu ainakin kerran) = 1 P(ei kaadu kertaakaan) 1-0,8 0,8 0,8 0,49

35 HARJOITUS Seuran hallitus valitaan 9 ehdokkaan joukosta. Hallituksen jäsenet tulevat olemaan puheenjohtaja, varapuheenjohtaja, sihteeri ja rahastonhoitaja. Kuinka monta erilaista vaihtoehtoa on vaalissa, kun a) valitaan hallituksen jäsenet ja heille tehtävät

36 Tehtävä Seuran hallitus valitaan yhdeksän ehdokkaan joukosta. Hallituksen jäsenet tulevat olemaan puheenjohtaja, varapuheenjohtaja, sihteeri ja rahastonhoitaja. Kuinka monta erilaista vaihtoehtoa on vaalissa, kun b) valitaan neljä henkilöä hallitukseen ja annetaan heidän päättää myöhemmin keskinäisestä työnjaosta. Valitaan siis 4 henkilö 9 joukosta:

37 HARJOITUS Elossa olevia syntynyttä kohti ikä naiset miehet Laske tilaston mukaan seuraavien tapahtumien todennäköisyydet: a) Vastasyntynyt tyttö elää vähintään 70-vuotiaaksi = 82% b) 30-vuotias mies elää vähintään 80-vuotiaaksi = 31% c) 50-vuotias nainen elää 80- vuotiaaksi, mutta ei 85-vuotiaaksi = 21% 96179

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

Todennäköisyyslaskenta - tehtävät

Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

Kertaustehtäviä Pakassa on jäljellä 50 korttia, joista 11 on herttoja Alkeistapauksia ovat silmälukuparit, joita on 36 kappaletta.

Kertaustehtäviä Pakassa on jäljellä 50 korttia, joista 11 on herttoja Alkeistapauksia ovat silmälukuparit, joita on 36 kappaletta. 0. Pakassa on jäljellä 50 korttia, joista on herttoja. P(kolmas kortti hertta) 50 0,22 02. Alkeistapauksia ovat silmälukuparit, joita on kappaletta. a) Kuvion perusteella pistesumma 4 saadaan tavalla.

Lisätiedot

Kertaustesti Perheessä on neljä lasta, joista valitaan arpomalla kaksi tiskaajaa. Millä todennäköisyydellä nuorin joutuu tiskaamaan?

Kertaustesti Perheessä on neljä lasta, joista valitaan arpomalla kaksi tiskaajaa. Millä todennäköisyydellä nuorin joutuu tiskaamaan? Kertaustesti 1 Nimi: 1. a) Noppaa heitetään kerran. Millä todennäköisyydellä saadaan silmäluku 2? b) Noppaa heitetään kaksi kertaa peräkkäin. Millä todennäköisyydellä molemmilla heitoilla saadaan silmäluku

Lisätiedot

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAA6 koe 26.9.2016 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-osio: Ilman laskinta, MAOL:in taulukkokirja

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Kertausosa. 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. b) Moodi on se muuttujan arvo, jonka frekvenssi on suurin. Mo = 5.

Kertausosa. 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. b) Moodi on se muuttujan arvo, jonka frekvenssi on suurin. Mo = 5. Kertausosa 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. Äänimäärä f f % 0 1 1 0,0169... 59 4 4 0,0677... 59 3 7 7 0,1186... 59 4 15 15 0,54... 59 5 18 18 0,3050... 59 6 1 1 0,033... 59 7

Lisätiedot

Todennäköisyys ja tilastot Tehtävien ratkaisut Kertaustehtävät. Kertaustehtävien ratkaisut

Todennäköisyys ja tilastot Tehtävien ratkaisut Kertaustehtävät. Kertaustehtävien ratkaisut Ratkaisuista Nämä Todennäköisyys ja tilastot -kurssin kertaustehtävien ja -sarjojen ratkaisut perustuvat oppikirjan tietoihin ja menetelmiin. Kustakin tehtävästä on yleensä vain yksi ratkaisu, mikä ei

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2009 1 / 33 Valintakäsky if syote = raw_input("kerro tenttipisteesi.\n") pisteet = int(syote) if pisteet >=

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada OTATKO RISKIN? peli 1. Heitä noppaa 20 kertaa. Tavoitteena on saada vähintään 10 kertaa silmäluku 4, 5 tai 6. Jos onnistut, saat 300 pistettä. Jos et onnistu, menetät 2. Heitä noppaa 10 kertaa. Tavoitteena

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Määritelmiä. Nopanheitossa taas ω 1 = saadaan 1, ω 2 = saadaan 2,..., ω 6 = saadaan

Määritelmiä. Nopanheitossa taas ω 1 = saadaan 1, ω 2 = saadaan 2,..., ω 6 = saadaan Todennäköisyys Todennäköisyys on epävarman matematiikkaa. Matemaattinen todennäköisyys mallintaa satunnaisia ilmiöitä, kuten esimerkiksi nopantai lantinheitto. Todennäköisyyttä voi lähestyä mm. tilastollisesti

Lisätiedot

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 %

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 % Testaa taitosi 1 1. Noppaa heitetään kahdesti. Merkitse kaikki alkeistapaukset koordinaatistoon. a) Millä todennäköisyydellä ainakin toinen silmäluvuista on 3? b) Mikä on a-kohdan tapahtuman vastatapahtuma?

Lisätiedot

8.1. Tuloperiaate. Antti (miettien):

8.1. Tuloperiaate. Antti (miettien): 8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei

Lisätiedot

Huippu 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty KERTAUS KERTAUSTEHTÄVIÄ K. Ensimmäiselle paidalle on 5 vaihtoehtoa, toiselle 4, kolmannelle 3 ja niin edelleen. Axel voi pitää paitoja 5! = 0:ssä eri järjestyksessä. Vastaus: 0:ssä eri järjestyksessä K.

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

A = B. jos ja vain jos. x A x B

A = B. jos ja vain jos. x A x B Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

!!!!!! SUOMEN ANESTESIASAIRAANHOITAJAT RY:N TOIMINTAKERTOMUS 2014

!!!!!! SUOMEN ANESTESIASAIRAANHOITAJAT RY:N TOIMINTAKERTOMUS 2014 SUOMEN ANESTESIASAIRAANHOITAJAT RY:N TOIMINTAKERTOMUS 2014 Yleistä Toimintavuosi2014oliYhdistyksen49.toimintavuosi. Yhdistyksensääntöjenmääräämätkokouksetpidettiin. YleistenkokoustenlisäksijäsenistölläonollutmahdollisuusvaikuttaaYhdistyksentoimintaan

Lisätiedot

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia. Tehtävien ratkaisuja 4. Palloja yhteensä 60 kpl. a) P(molemmat vihreitä) = P((1. pallo vihreä) ja (. pallo vihreä)) = P(1. pallo vihreä) P(. pallo vihreä 1. pallo vihreä) = 0.05 (yleinen kertolaskusääntö)

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Pasi Leppäniemi OuLUMA, sivu 1 POLYNOMIPELI Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Luokkataso: 8-9 lk Välineet: pelilauta, polynomikortit, monomikortit, tuloskortit,

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

10, 9, 5, 6, 7, 4, 7, 9, 8, 7, 6, 7, 8, 6

10, 9, 5, 6, 7, 4, 7, 9, 8, 7, 6, 7, 8, 6 MAA6.1 Loppukoe 23.11.2012 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

LUMATE-tiedekerhokerta, suunnitelma AIHE: PELIT JA TAKTIIKAT

LUMATE-tiedekerhokerta, suunnitelma AIHE: PELIT JA TAKTIIKAT LUMATE-tiedekerhokerta, suunnitelma AIHE: PELIT JA TAKTIIKAT 1. Alkupohdintaa Mitä lempipelejä oppilailla on? Ovatko ne pohjimmiltaan matemaattisia? (laskeminen, todennäköisyys ) Mitä taktiikoita esimerkiksi

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö olisi

Lisätiedot

Kärkipallo sijoitetaan alapisteelle, ja muut pallot sen taakse kiinni toisiinsa.

Kärkipallo sijoitetaan alapisteelle, ja muut pallot sen taakse kiinni toisiinsa. (Nämä säännöt ovat lyhennelmä virallisesta sääntökirjasta). Yleiset säännöt 1.1 PÖYTÄ Ennen pelin aloittamista pöytä merkitään seuraavasti: 1. Yläpiste 4. Alapiste 2. Ylälinja 5. Pakan paikka (3. Keskipiste)

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Jännittävä seurapeli, jossa arvataan kanssapelaajien mieltymyksiä. Kuka tuntee sinut parhaiten?

Jännittävä seurapeli, jossa arvataan kanssapelaajien mieltymyksiä. Kuka tuntee sinut parhaiten? Jännittävä seurapeli, jossa arvataan kanssapelaajien mieltymyksiä. Kuka tuntee sinut parhaiten? Pelin tarkoitus Kerätä pisteitä arvaamalla kanssapelaajien mieltymyksiä. Alkuvalmistelut 1. Asettakaa pistekiekot

Lisätiedot

KOKO PERHEEN HAUSKA STRATEGIAPELI OHJEET

KOKO PERHEEN HAUSKA STRATEGIAPELI OHJEET KOKO PERHEEN HAUSKA STRATEGIAPELI OHJEET ROBOGEM_Ohjevihko_148x210mm.indd 1 PELIN TAVOITE Robotit laskeutuvat kaukaiselle planeetalle etsimään timantteja, joista saavat lisää virtaa aluksiinsa. Ohjelmoi

Lisätiedot

Tilastotieteen perusteet

Tilastotieteen perusteet Tilastotieteen perusteet Esim. Arvostettu juoma-asiantuntija ekonomisti E osallistuu juomien makutestiin, jossa voi saada voi saada arvonimen Melko Suuri Maistaja (MSM *), Suuri maistaja (SM**) tai Erittäin

Lisätiedot

KASVOTON VIHOLLINEN - SÄÄNNÖT

KASVOTON VIHOLLINEN - SÄÄNNÖT KASTN IHLLINEN - SÄÄNNÖT A. LÄHTÖKHTA Kaksi armeijaa valmistautuu taisteluun. Torvet soivat, hevoset korskuvat malttamattomina. Sadat jalat marssivat tasatahtia ottaakseen paikkansa kentällä - paikan,

Lisätiedot

finnish BOI 2015, päivä 1. Muistiraja: 256 MB. 30.04.2015

finnish BOI 2015, päivä 1. Muistiraja: 256 MB. 30.04.2015 Tehtävä: BOW Keilaus finnish BOI 0, päivä. Muistiraja: 6 MB. 30.04.0 Jarkka pitää sekä keilauksesta että tilastotieteestä. Hän on merkinnyt muistiin muutaman viimeisimmän keilapelin tulokset. Valitettavasti

Lisätiedot

Kokoukselle valitaan kolme (3) puheenjohtajaa, kolme (3) sihteeriä sekä kaksi (2) pöytäkirjantarkastajaa.

Kokoukselle valitaan kolme (3) puheenjohtajaa, kolme (3) sihteeriä sekä kaksi (2) pöytäkirjantarkastajaa. Kokouksen järjestyssääntö Edustajakokouksen esityslistan 4. kohdassa tehdyn päätöksen mukaisesti kokouksessa noudatetaan järjestäytymismuotojen ja menettelytapojen osalta seuraavaa järjestyssääntöä: 1

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö

Lisätiedot

(1) Pekan pakasta vetämät neljä korttia ovat hertta 5, hertta 6, hertta 7 ja pata 7. Mikä on todennäköisyys, että seuraava kortti

(1) Pekan pakasta vetämät neljä korttia ovat hertta 5, hertta 6, hertta 7 ja pata 7. Mikä on todennäköisyys, että seuraava kortti Todennäköisyyslaskenta: sarja 1 Todennäköisyyyslaskenta-tehtäväsarjassa on tehtäviä seuraavista asioista: klassinen todennäköisyys, todennäköisyyden laskusäännöt, kombinatoriikka, toistokoe sekä diskreetti-

Lisätiedot

SCIFEST-loppuraportointi korttia. Sara Kagan, Suvi Rönnqvist

SCIFEST-loppuraportointi korttia. Sara Kagan, Suvi Rönnqvist SCIFEST-loppuraportointi 2014 16 korttia Sara Kagan, Suvi Rönnqvist Ohjeet temppuun: Katsoja ottaa korttipakasta 16 korttia ja painaa yhden kortin mieleensä. Tämän jälkeen hän voi sekoittaa korttipakan

Lisätiedot

VETERAANIYLEISURHEILUN LUOKITTELUTAULUKKO MIEHET. Pentti Nieminen

VETERAANIYLEISURHEILUN LUOKITTELUTAULUKKO MIEHET. Pentti Nieminen VETERAANIYLEISURHEILUN LUOKITTELUTAULUKKO Pentti Nieminen MIEHET M35 SM-lk M-lk A-lk B-lk C-lk 60m 7.00 7.20 7.43 7.68 7.93 100m 10.90 11.30 11.75 12.25 12.75 200m 22.00 22.90 23.90 25.00 26.10 400m 49.00

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6. Loppukoe 8.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Myönteisen muistelun kortit. Suomen Mielenterveysseura

Myönteisen muistelun kortit. Suomen Mielenterveysseura Myönteisen muistelun kortit Muistelulla voidaan vahvistaa ja lisätä ikäihmisten mielen hyvinvointia. Myönteisen muistelun korteilla vahvistetaan hyvää oloa tarinoimalla mukavista muistoista, selviytymistaidoista,

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille?

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille? Diskreetti matematiikka, syksy 00 Harjoitus -, ratkaisuista. Kuinka monta erilaista tapaa on 0 hengen seurueella istuutua pyöreän pöydän ympärille? Ratkaisu. Paikat identtisiä, istumajärjestys oleellinen,

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 6 5 4 5 4 3 + 4 3 2 3 2 1. a) 88 b) 66 c) 78 d) 76 Ratkaisu. Suoralla laskulla: 6 5 4 5 4 3 + 4 3 2 3 2 1

Lisätiedot

Johdatus go-peliin. 25. joulukuuta 2011

Johdatus go-peliin. 25. joulukuuta 2011 Johdatus go-peliin 25. joulukuuta 2011 Tämän dokumentin tarkoitus on toimia johdatuksena go-lautapeliin. Lähestymistapamme poikkeaa tavallisista go-johdatuksista, koska tässä dokumentissa neuvotaan ensin

Lisätiedot

Toisessa kyselyssä alueella on 1 ruudussa A ja 3 ruudussa B, joten suosituin ehdokas on B.

Toisessa kyselyssä alueella on 1 ruudussa A ja 3 ruudussa B, joten suosituin ehdokas on B. A Alueet Bittimaassa järjestetään vaalit, joissa on 26 ehdokasta. Jokaisella ehdokkaalla on kirjaintunnus välillä A...Z. Bittimaa on suorakulmion muotoinen ja jaettu neliöruutuihin. Tehtäväsi on selvittää

Lisätiedot

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 Lukujonot Tarvikkeet: siniset ja vihreät lukukortit Toteutus: yksin, pareittain,

Lisätiedot

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2005) 1 Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Kombinatoriikan perusperiaatteet

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko. SUBSTANTIIVIT 1/6 juttu joukkue vaali kaupunki syy alku kokous asukas tapaus kysymys lapsi kauppa pankki miljoona keskiviikko käsi loppu pelaaja voitto pääministeri päivä tutkimus äiti kirja SUBSTANTIIVIT

Lisätiedot

Tehy Tehyn ammattiosaston mallivaalijärjestys V103. Valtuuston kokous 27.5.2003 27.5.2003 1 (7)

Tehy Tehyn ammattiosaston mallivaalijärjestys V103. Valtuuston kokous 27.5.2003 27.5.2003 1 (7) Valtuuston kokous 27.5.2003 27.5.2003 1 (7) 1 ' VAALITAPA Tehyn... ammattiosasto ry:n sääntöjen 13 ':ssä mainitut hallituksen varsinaiset jäsenet ja heidän henkilökohtaiset varajäsenensä valitaan ammattiosaston

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen. Mirjami Manninen. Nimi: Luokka:

Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen. Mirjami Manninen. Nimi: Luokka: 3a Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen KUVITUS Mirjami Manninen Nimi: Luokka: Helsingissä Kustannusosakeyhtiö Otava Sisällys 1. jakso Yhteen- ja vähennyslasku

Lisätiedot

HJS E10 Sininen Kausi 2013-2014

HJS E10 Sininen Kausi 2013-2014 HJS E10 Sininen Kausi 2013-2014 HJS E10 TALVI 2013-2014 2. TALVEN HARJOITUS- JA PELIVUOROT Harjoitus- ja peliohjelma pojat E10 Päivämäärä Aika Paikka Toiminta ke 6.11. klo 17.00-18.00 Pullerin Säästöpankki

Lisätiedot

TURNAUSOHJEET. Turnauksen tavoite. Ennen aloitusta. Taistelukierroksen Pelaaminen. www.ninjago.com

TURNAUSOHJEET. Turnauksen tavoite. Ennen aloitusta. Taistelukierroksen Pelaaminen. www.ninjago.com Turnauksen tavoite Ennen aloitusta Haluatko Spinjitzumestariksi? Valitse vastustaja ja mittele taitojasi monella kierroksella. Voitat ottamalla vastustajaltasi kaikki aseet! Jokainen pelaaja tarvitsee

Lisätiedot

Yksikönmuunnospelit Oppilaalle kopioitavat ohjeet:

Yksikönmuunnospelit Oppilaalle kopioitavat ohjeet: Tekijät: Terho Hautala, Niina Suutari OuLUMA, sivu 1 Yksikönmuunnospelit Oppilaalle kopioitavat ohjeet: Etsi parit Pelataan pareittain. Otetaan käyttöön vain harjoiteltavan mittayksikön pelikortit, Oppilas

Lisätiedot

Kenguru 2014 Ecolier (4. ja 5. luokka)

Kenguru 2014 Ecolier (4. ja 5. luokka) sivu 1 / 11 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan?

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan? 8.2. Permutaatiot Esim. 1 irjaimet, ja asetetaan jonoon. uinka monta erilaista järjes-tettyä jonoa näin saadaan? Voidaan kuvitella vaikka niin, että hyllyllä on vierekkäin kolme laatikkoa (tai raiteilla

Lisätiedot

Pääkirjoitus Polyteknikkojen kalastusseura POKA

Pääkirjoitus Polyteknikkojen kalastusseura POKA T A P PA J A H A U K I 2 0 0 3 T A P P A J A H A U K I T A I S T E L E E J Ä L L E E N 1 P O LY T E K N I K K O J E N K A L A S T U S S E U R A P O K A Pääkirjoitus T o m M a r t o n e n 3. 1 2. 2 0 0

Lisätiedot

Paperiliitto r.y:n alaisten osastojen pääluottamusmiesten ja työosastojen luottamusmiesten. Ohjesääntö 1

Paperiliitto r.y:n alaisten osastojen pääluottamusmiesten ja työosastojen luottamusmiesten. Ohjesääntö 1 Paperiliitto r.y:n alaisten osastojen pääluottamusmiesten ja työosastojen luottamusmiesten Ohjesääntö 1 Paperiliitto r.y:n alaiset ammattiosastot asettavat joka parillisen vuoden loka-marraskuussa pidettävässä

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Olkoon S = {s 1,s 2,...,s n } äärellinen otosavaruus. Oletetaan, että Pr(s i ) = 1, kaikille i = 1, 2,...,n n Tällöin alkeistapahtumat

Lisätiedot

10:15 MIEHET LOHKO 1

10:15 MIEHET LOHKO 1 MIEHET LOHKO 1 PETROIT PYDHONS (M1) 3 2 1 0 12 2 10 5 ARTSI JA ANAN KASETTI (M1) 3 2 0 1 6 11-5 4 ARTSINAL (M1) 3 1 1 1 7 7 0 3 SYMPAATTISET PENSAAT (M1) 3 0 0 3 3 8-5 0 ARTSINAL (M1) ARTSI JA ANAN KASETTI

Lisätiedot

Pelin sisältö: Pelilauta, tiimalasi, 6 pelinappulaa ja 400 korttia.

Pelin sisältö: Pelilauta, tiimalasi, 6 pelinappulaa ja 400 korttia. 7+ 4+ 60+ FI Pelin sisältö: Pelilauta, tiimalasi, 6 pelinappulaa ja 400 korttia. Selitä sanoja käyttäen eri sanoja, synonyymejä tai vastakohtia! Tarkoituksena on saada oma pelikumppani tai joukkue arvaamaan

Lisätiedot

Sisällysluettelo. 1. Johdanto

Sisällysluettelo. 1. Johdanto Säännöt Sisällysluettelo 1. Johdanto 3 2. Sisältö 4 3. Alkuvalmistelut 5 4. Pelin aloitus ja kulku 6 5. Pelin lopetus 9 6. Vaikea peli ja muut pelimuunnelmat 10 1. Johdanto Pelilauta on 25 ruudusta muodostuva

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus Mitkä todennäköisyystulkinnat sopivat seuraaviin väitteisiin?

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus Mitkä todennäköisyystulkinnat sopivat seuraaviin väitteisiin? ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 200 Harjoitus Ratkaisuehdotuksia. Mitkä todennäköisyystulkinnat sopivat seuraaviin väitteisiin? (a) Todennäköisyys että kolikonheitossa saadaan lopulta

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

Jos d-kohdan vasemmalla puolella perusjoukkona on X, niin oikealla puolella

Jos d-kohdan vasemmalla puolella perusjoukkona on X, niin oikealla puolella DISKREETTI MATEMATIIKKA, harjoitustehtävät Tehtäviä tulee todennäköisesti lisää. Uudet tehtävät tulevat aikanaan ladattavaksi samalle sivulle, josta tämäkin moniste löytyi. Ilmoitustaululta on nähtävissä

Lisätiedot

Ajankohtaista gerontologisen kuntoutuksen saralta epidemiologinen näkökulma

Ajankohtaista gerontologisen kuntoutuksen saralta epidemiologinen näkökulma Ajankohtaista gerontologisen kuntoutuksen saralta epidemiologinen näkökulma Pertti Era Gerontologisen kuntoutuksen professori Jyväskylän yliopisto, Terveystieteiden laitos Johtaja, tutkimus- ja kehittämiskeskus

Lisätiedot

Klassisen ja geometrisen todennäköisyyden harjoituksia

Klassisen ja geometrisen todennäköisyyden harjoituksia MAB5: Todennäköisyyden lähtökohdat Harjoitustehtävät Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c)

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

1. Matkalla todennäköisyyteen

1. Matkalla todennäköisyyteen 1. Matkalla todennäköisyyteen Wovon man nicht sprechen kann, darüber muss man schweigen (Ludwig Wittgenstein, Tractatus Logico-Philosophicus 1921) Miten ihmeessä tämä liittyy tähän kurssiin????!?? 1.1

Lisätiedot

Ratkaiseva päätöskierros

Ratkaiseva päätöskierros Nuoli pysähtyy lippukortin kohdalle: Pelaaja, joka pyöräytti nuolta katsoo lippukorttiaan ja päättää mikä maanosa on kyseessä kierroksen aikana (Eurooppa, Etelä-merikka, Pohjois-merikka, frikka, asia vai

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

1) Vastaajan taustatiedot

1) Vastaajan taustatiedot Seuran toiminnan arviointi: Hyvä xxxxx:n jäsen, Olet aloittamassa seuran toiminnan arviointikyselyyn vastaamista. Hienoa! Seuran toimintaa halutaan kehittää entisestään, ja sitä varten Sinun kokemuksesi

Lisätiedot

Totta vai tarua matematiikan paradokseja

Totta vai tarua matematiikan paradokseja Totta vai tarua matematiikan paradokseja Onko intuitio aina oikeassa todennäköisyyksiä pohdittaessa? Tilastot eivät valehtele, eiväthän? Työohjeet: 1) Muodostetaan noin 3 henkilön ryhmät. 2) Valitkaa yhden

Lisätiedot

Aikuiskoulutustutkimus 2006

Aikuiskoulutustutkimus 2006 Koulutus 2008 Aikuiskoulutustutkimus 2006 Aikuiskoulutukseen osallistuminen Aikuiskoulutuksessa 1,7 miljoonaa henkilöä Aikuiskoulutukseen eli erityisesti aikuisia varten järjestettyyn koulutukseen osallistui

Lisätiedot

... 5 ... 5 ... 5 ... 6 ... 7 ... 8 ... 8 ... 9 ... 11 ... 12

... 5 ... 5 ... 5 ... 6 ... 7 ... 8 ... 8 ... 9 ... 11 ... 12 BILJARDI 2 3 SISÄLLYSLUETTELO 1. YLEISTÄ... 5 1.1 KOLMIO/ 9-KEHIKKO... 5 2. PELIN ALOITUS... 5 3. LYÖNTIVUORON VAIHTO... 5 4. VIRHELYÖNNIT... 6 4.1 ERILAISET VIRHEET... 6 4.2 RANGAISTUS VIRHEESTÄ... 7

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

JÄRVENPÄÄN SEURAKUNTA JULISTUSJOHTOKUNTA 6.2.2013 1/2013

JÄRVENPÄÄN SEURAKUNTA JULISTUSJOHTOKUNTA 6.2.2013 1/2013 JÄRVENPÄÄN SEURAKUNTA JULISTUSJOHTOKUNTA 6.2.2013 1/2013 Paikka: Kirkonkulman Sali Aika: Keskiviikkona 6.2.2013 klo 18.00-19.25 liite sivu 1 3 KOKOUKSEN AVAUS 2 3 LAILLISUUS JA PÄÄTÖSVALTAISUUS 3 3 PÖYTÄKIRJAN

Lisätiedot

KUINKA TYYTYVÄINEN OLET MEIHIN?

KUINKA TYYTYVÄINEN OLET MEIHIN? KUINKA TYYTYVÄINEN OLET MEIHIN? Göteborgin kaupunki toteuttaa tämän tutkimuksen voidakseen kehittää eri toimintojaan. Tutkimus

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

Teema 5: Ristiintaulukointi

Teema 5: Ristiintaulukointi Teema 5: Ristiintaulukointi Kahden (tai useamman) muuttujan ristiintaulukointi: aineiston analysoinnin ja tulosten esittämisen perusmenetelmä usein samat tiedot esitetään sekä taulukkona että kuvana mahdollisen

Lisätiedot

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat).

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat). Laske kymmeneen Tavoite: Oppilaat osaavat laskea yhdestä kymmeneen ja kymmenestä yhteen. Osallistujamäärä: Vähintään 10 oppilasta kartioita, joissa on numerot yhdestä kymmeneen. (Käytä 0-numeroidun kartion

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot