SAMPOSUUREET Matti Oksama

Koko: px
Aloita esitys sivulta:

Download "SAMPOSUUREET Matti Oksama"

Transkriptio

1 ESY Q16.2/2006/ Espoo SAMPOSUUREET Matti Oksama

2 1 GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä / Dnro / Tekijät Matti Oksama Raportin laji tutkimusraportti Toimeksiantaja Raportin nimi Samposuureet Tiivistelmä Työssä tutkitaan, miten eri suureita Sampodatasta muodostetaan. Pohditaan 3-dimensionaalista rakenteista syntyvää dataa. 3-dimensionaalisten suureiden eräs luonnollinen esitys on profiilimuotoinen kullakin taajuudella. Asiasanat (kohde, menetelmät jne.) Sähkömagnetismi, mallinnus, Sampo-menetelmä Maantieteellinen alue (maa, lääni, kunta, kylä, esiintymä) Karttalehdet Muut tiedot Arkistosarjan nimi Q-raporttisarja Arkistotunnus Q16.2/2006/6 Kokonaissivumäärä 17 Kieli suomi Hinta Julkisuus julkinen Yksikkö ja vastuualue ESY/Geofysiikka Hanketunnus Allekirjoitus/nimen selvennys Allekirjoitus/nimen selvennys

3 2 Oksama, M., Sampo-suureet. Geologian tutkimuskeskus, Arkistoraportti, 17 sivua. Q16.2/2006/6 Johdanto Työssä tutkitaan, miten eri suureita Sampodatasta muodostetaan. Pohditaan 3-dimensionaalista rakenteista syntyvää dataa. 3-dimensionaalisten suureiden eräs luonnollinen esitys on profiilimuotoinen kullakin taajuudella. Kuvassa 1. esitetään Sampomittaussysteemi. Lähettimenä toimii pieni horisontaalinen virtasilmukka (halkaisija= 20-50m). Se syöttää ajallisesti harmonisesti vaihtelevaa virtaa taajuuksilla 2.38Hz-19840Hz. Vastaanotin mittaa kolmea kohtisuoraa magneettikentän komponenttia. Tietoa lähetinvirran vaiheesta ei tuoda vastaanottimeen. Kuva 1. Samposysteemi sen mukaisesti, miten sitä on työssä mallinnettu. Miinus-merkkieroja syntyy, jos komponenttien positiiviset suunnat eroavat kuvan 1. positiivisista suunnista. Samposuureista Sampomittauksista voidaan johtaa seuraavat suureet. Suureet luokitellaan sen mukaan, tunnetaanko lähetindipolin momentti vai ei. Suureet, joiden mittaamiseen ei tarvitse tietää lähetin-dipolin momenttia: - Hz/Hrad joko kompleksilukuna tai itseisarvona abs(hz/hrad). - Htang/Hz joko kompleksilukuna tai itseisarvona abs(htang/hz).

4 3 Tässä oletetaan, että kompleksilukujen käyttö sähkömagnetismin aikaharmonisten kenttien tapauksessa tunnetaan, katso esim. Geofysiikan osaston raportti xxx. Suureet, joiden mittausten tulkinta vaatii lähteen magneettisen momentin tuntemisen: - abs(hz). - abs((hr). Magneettinen momentti supistuu suhdesuureiden esityksestä, kun vastaanottimen kelojen magneettiset momentit ovat yhtä suuret. Yksittäistä komponenttia tulkittaessa on tiedettävä lähteen magneettinen momentti. Suhdesuureille täydellinen harmoninen aikakäyttäytyminen, eli reaali- ja imaginääriosat, saadaan laskettua. Suhdesuuret siis voidaan esittää kompleksilukuna, esim. Geofysiikan osaston raportti xxx. Sampon pääsuureen Hz/Hrad tapauksessa näytämme yksinkertaisella esimerkillä, miten laaja taajuuskaista ainakin osittain korvaa informaatiopuutteen, jos mittaamme vain itseisarvosuureen emmekä kompleksista suuretta: Tarvitsemme yhden taajuuden mittauksessa reaali- ja imaginääriosat, jos haluamme puoliavaruusmallin tapauksessa ratkaista lähetin- ja vastaanotinsysteemin korkeuden puoliavaruudesta ja puoliavaruuden sähkönjohtavuuden. Jos taas mittaamme vain itseisarvoa, tarvitsemme kahdella eri taajuudella tehdyt mittaukset, jotta kykenemme ratkaisemaan lähetin-vastaanotinsysteemin korkeuden puoliavaruudesta ja puoliavaruuden sähkönjohtavuuden. Sampomittaukset pyritään järjestämään siten, että siirryttäessä profiililla kelaväli pidetään samana. Mittaukset ovat samanarvoisia, mittausten paikkariippuvuudesta voi tehdä alustavia päätelmiä. Mittausten vaikutusalue pysyy samana, eikö vaihtele pisteeltä toiselle. Kenttäkomponenttit Komponenteista voidaan yleisesti sanoa, että pystykomponentti eroaa nollasta aina, vaikka taajuudella nolla. Radiaalikomponentti menee nollaan, jos taajuus tekee samoin. Johtamattomassa avaruudessa radiaalikomponentti on nolla Sampomenetelmässä käytetyillä taajuuksilla. Tangentiaalinen komponentti eroaa nollasta, jos lähetin-vastaanotin linjan suhteen johtokykyjakauma ei ole symmetrinen eikä taajuus ole nolla. Esimerkiksi pystyn johteen tapauksessa mittausprofiilin mennessä keskeltä levyä tangentiaalikomponentti on profiililla nolla, muttei muilla levyn reunan tuntumassa olevilla profiileilla. Jotta yksittäisiä komponentteja kannattaa esittää profiililla, vaaditaan, että kaikissa profiilin mittauspisteissä lähteen voimakkuus tietyllä taajuudella on sama, ja lähetin-vastaanotinetäisyys on sama. Vaatimukset ovat välttämättömiä profiilin komponentin silmin havaittaviin johtopäätöksiin, vertaa esim. Slingram-menetelmän tulkintaa. Puutteellisestakin kenttäkomponenttien mittauksesta voidaan kuitenkin jotain päätellä. Pystykomponentista nähdään levymäisen johteen sijainnin maanpintaprojektio, kuva 2.. Slingrammenetelmässä sijainti päätellään samoin. Radiaalikomponentin anomaliasta nähdään karkeasti

5 4 levyn sijainti. Oikeastaan kaikille samposuureille on yhteistä, että anomaalisen alueen keskikohta on ainakin lähellä levyn keskikohdan maanpinnan projektiota. Tangentiaalisesta komponentista päätellään ollaanko levyn reunan tuntumassa vai keskellä levyä, levyn reunan tuntumassa se on itseisarvoltaan suurimmillaan ja keskiprofiililla se on nolla. Laskentaesimerkissämme levyn reunalla tangentiaalinen komponentti on noin kymmenesosan pystykomponentista. On tietenkin tärkeää kiinnittää komponenttien mitattavuuteen huomiota! Kenttäkomponenttien suhteet Samposuureista tärkein on pystymagneettikentän ja radiaalisen kentän suhde. Suhteen tiedettyämme sijainnin funktiona ja riittävän monella taajuudella pystymme tulkitsemaan, ainakin periaatteessa, Sampomittausten vaikutusalan sisällä maan sähkönjohtavuuden. Kyseinen suhde, samposuure, saadaan laskettua, kun yksittäiset komponentit ovat mitatut. Suhde voidaan esittää kompleksilukuna tai itseisarvona. Kompleksilukuna esitettäessä on tiedettävä eri komponenttien mittausten aika-ero. Sampomittauksissa aikaero on nolla. Suureelle on kehitetty muunnos, jonka käyttö on laskennollisesti hyvin helppo, Geofysiikan raportti xxx. Muunnoksen malli on 2-kerrosmaa. Muunnos ei toimi pystyhköille johteille, mutta toimii kohtalaisen kaatuville kelaväliä laajemmille johteille, Heikki Soininen Geofysiikan osaston vuosikertomukset. Itseisarvomerkin poistaminen pääsuureesta, eli pääsuureen esittäminen kompleksilukuna tuo lisää tietoa. Numeerisia tutkimuksia kompleksisen suureen vaikutuksesta inversioon verrattuna itseisarvosuureeseen ei ole tehty, joskin yksinkertaisella esimerkillä näytettiin, että laajan taajuuskaistan mittaukset itseisarvosuhteella ainakin osittain korvaavat kompleksisen Hz/Hradsuhteen. Kolmedimensionaalisuutta, esiintymän loppumista kulun suunnassa ja johdekasauman keskipisteen sijaintia arvioidaan pääsuureen lisäksi suhteella Htang/Hz. Symmetrisessä tapauksessa vastakkaisella reunaprofiililla suure on erimerkkinen reaali- ja imaginääriosiltaan, mutta itseisarvoltaan kumpikin osa on yhtä suuri. Htang/Hz-anomaliasta voidaan päätellä, onko johteen keskittymä oikealla vai vasemmalla puolella mittausprofiiliin nähden. Tutkitaan esimerkinä samposuureen kompleksimuotoa. Käytetään aikaharmoonisen kentän laskuissa totuttua kompleksista esitystapaa. suhde = ( abs(hz)exp(iwt + ivaihez ))/(abs(hr)exp(iwt + ivaiher)) = [abs(hz)/abs(hr)]exp(i(vaihez-vaiher) = Sexp(iw vaihe-ero) = a + i b S on suhteen itseisarvo, vaihez ja vaiher ovat kummankin komponentin esitykseen vaadittavat tekijät, jotka riippuvat tehtävän matemaattisesta ratkaisusta ja milloin mittaus tehdään. Sampossahan mittaus tehdään satunnaisena ajanhetkenä. Suhteet saadaan määrättyä yksikäsitteisesti, satunnaisuus supistuu pois. Eli vaiheet sampomittauksista johtuen eivät määräydy yksikäsitteisesti, vaihe-erotus kylläkin. Lasku on suoritettu aikariippuvuustekijällä exp(iwt).

6 5 Numeerinen esimerkki samposuureista Mallinnusprofiileilla esitetään seuraavat suureet sampotaajuuksilla: - Magneettikentän komponenttien itseisarvot abs(hz), abs(hrad) ja abs(htang) - Samposuure, abs(hz/hr) - Samposuure kompleksisena Hz/Hr - Suure Htang/Hz kompleksisena - Pysty-radiaalitason ellipsin eksentrisyys - Pystykentän ja radiaalikentän välinen vaihe - Näennäinen ominaisvastus - Syvyysmuunnos Huomautus: Kuvassa 1. esitetään Samposysteemi sen mukaisesti, miten sitä on työssä mallinnettu. Miinus-merkkieroja syntyy, jos komponenttien positiiviset suunnat eroavat kuvan 1. positiivisista suunnista. Kuvassa 2. esitetään mallimme keskiprofiililla Hz:n itseisarvo kolmella taajuudella. Pystykentän itseisarvo anomalia käyttäytyy kuin Slingram-menetelmässä reaali- ja imaginääriosat, suurimmillaan levyn keskellä pieneten levyn laitoja kohti, kuva 3. Pystyn levyn projektio maan pinnalla nähdään profiililla välittömästi; keskipisteen projektio maan pinnalla sijaitsee anomalian minimin keskipisteessä. Mallinnusesimerkissämme matalimmalla Sampon taajuudella 7.96 Hz - anomalia ei ole muodostunut, ja suurimmalla taajuudella Hz - jo hieman pienentynyt keskitaajuuksiin nähden. Kuvassa 4. esitetään H:n radiaalikomponentin itseisarvon käyttäytyminen keskiprofiililla. Radiaalikomponentti ei ole herännyt pienimmällä taajuudella. Anomalia on suurimmillaan keskitaajuudella. Radiaalikomponentin anomalia ei ole symmetrinen levyn keskipisteen suhteen, mutta anomalia syntyy levyn ollessa lähettimen ja vastaanottimen välissä niin kuin kaikki Sampoanomaliat syntyvät, ja levy on lähellä anomaalisen alueen keskikohtaa. Kuvassa 5. esitetään Hrad:n itseisarvon käyttäytyminen levyn reunaprofiililla. Kuvassa 6. esitetään H:n tangentiaalikomponentin itseisarvon käyttäytyminen reunaprofiililla. Se eroaa nollasta, kun lähetin-vastaanotin suoran suhteen johtavuusjakauma ei ole symmetrinen. Levyn keskiprofiililla johdejakauma on siis symmetrinen, eli Htang on nolla. Anomalia ei ole symmetrinen, mutta maksimi syntyy lähes levyn keskipisteen projektion kohdalle. Levyn reunaprofiililla Htang itseisarvo on kymmenesosa vastaavasta Hz:n itseisarvosta. Kuvassa 7. esitetään keskiprofiililla suhteen Hz/Hrad itseisarvo. Hrad on matalimmalla taajuudella niin pieni, että suhde on epärealistisen suuri. Kyseisellä taajuudella ei käytännössä pysty muodostamaan suhdetta, koska Hrad on epätarkka (kelojen asennon epätarkkuus, kohina). Kuvassa 8. esitetään suhteen Hz/Hrad itseisarvo Sampon keski- ja suurimmalla taajuudella 4464 Hz ja Hz. Suurimmalla taajuudella on levystä johtuva anomalia selvästi pienempi. Kuvassa 9. esitetään taajuuksilla 4464 Hz (herziä) ja Hz (herziä) suhteen Hz/Hr-suureen reaali- ja imaginäärikäyrät. Haluttaessa sovittaa useampi taajuus levy-malliin työn määrä sovitusta käsin tehtäessä on suuri. Inversio on tietokoneen tehtävä.

7 6 Suureen Htang/Hz käyttäytyminen esitetään kuvassa 10. mallinnuskuvan reunaprofiililla. Kuvissa 10. a-f esitetään suureen Htang/Hz käyttäytymimnen eri kuvan 1. profiileilla. Profiilin kohtisuora etäisyys profiilista, kuvan 1. muuttuja x, on seuraava: profiili a, x=240 m profiili b, x=200m profiili c, x=150m profiili d, x=100m profiili e, x=50m profiili f, x=-240m Suurimmat anomalia-arvot havaitaan profiililla 150 m keskipisteestä. Kaikilla piirretyillä profiileilla havaitaan selvä anomalia, mutta esitetyn kahden taajuuden, 4464 Hz ja Hz, anomalian keskinäiset suuruudet muuttuvat lähempänä levyn keskipistettä kuin kauempana. Alin taajuus ei juuri herää. Profiilit a ja f ovat symmetrisesti keskipisteen suhteen. Kyseiset anomaliat ovat yhtä suuria mutta erimerkkisiä. Suureesta Htang/Hz voidaan päätellä, onko levyn johdekeskittymä anomaliaprofiilin oikealla vai vasemmalla puolella, suurehan eroaa vain etumerkiltään, jos ollaan oikealla vai vasemmalla puolella levyä. Kuvassa 11. esitetään Hz:n ja Hrad:n välisen vaiheen käyttäytyminen. Vaihe on tunnetusti epäjatkuvavaiheen mennessä 2*pii:n tai sen moninkerran yli, kuten kuvasta näkee. Suurin vaihero mallinnusesimerkissämme on keskitaajuudella. Pienimmällä taajuudella vaihe-ero ei juuri anna anomaliaa. Pysty-radiaalitasossa piirretty ellipsin eksentrisyys profiilikäyrät on piirretty kuvassa 12. Ne heräävät muilla Sampotaajuuksilla kuin alimmilla. Suurimmat anomaliat ovat levyn ollessa lähettimen ja vastaanottimen välissä. Kuvassa 13. ja 14. on piirretty keskiprofiilille muunnoksessa saatavat suureet näennäinen ominaisvastus ja näennäinen syvyys. Näennäiseen syvyyteen vaikuttaa suuresti taajuus, kuten kuvasta näkee. Esitetty alimman taajuuden näennäinen-syvyyskäyrä on taajuusalueella, jota Sampo ei kykene luotettavasti mittaamaan. In-line tilanteessa ohuen levyn maanpintaprojektion paikka saadaan tarkasti Hz: n itseisarvosta, jos profiililla tietty taajuus on mitattu samalla lähdevoimakkuudella. Levyn loppuminen kulunsuunnassa näkyy suureesta Htang/Hz suureen Hz/Hrad lisäksi. Levyn tarkka geometria, sähköiset ominaisuudet, saadaan mallintamalla tai invertoimalla kompleksista suuretta Hz/Hrad ja Htang/Hz tai vastaavia itseisarvisuureita. Oletettavasti kompleksinen suure antaa enemmän tietoa. Tosin aiemmin esitetty esimerkki viittaisi siihen, että mitattaessa laajaa taajuuskaistaa kompleksisen suureen ja itseisarvosuureen informaatiosisältö lähestyisi toisiaan. Sampon pääsuureen suhteen abs(hz/hrad) riippuu suuresti nimittäjästä pienillä taajuuksilla. Hrad:han menee nollaan kun taajuus pienenee tarpeeksi. Tästä aiheutuu suuri herkkyys pienillä taajuuksilla Hrad:in mittausille, mm. kallistusvirheet johtuvat tästä. Tuleekin mieleen, voisiko syvällä olevat esiintymät tulkita abs(hz):lla.

8 7 Syvemmälle Samposuure on herkkä kallistukselle pienillä taajuuksilla, jossa kallistuksesta aiheutuu pysyvä vaakakenttä pienillä taajuuksilla, vaikka nimittäjän pitäisi mennä nollaan. Kallistunut lähdedipoli ei aiheuta suuria muutoksia Hz:aan. Virheet käyttäytyvät kertoimella cosa, missä a on kallistuskulma. Kallistuskorjaus parantaa tilannetta Samposuureelle. Kallistuskorjaus on kuitenkin aina approksimatiivinen korjaus. Kallistuneen dipolin tapauksessa täydellinen tulkinta saadaan vain kallistuneella dipolilähteellä, perustotuus. Kiinnostavaa olisi tutkia, kuinka syvälle pääsisi, jos mitattaisiin lähettimen kallistus ja lähettimen ja vastaanottimen korkeuserot tarkkaan. Jos tulkinnoissa tukeuduttaisiin vain Hz:an? Syvemmältä saadaan luotettavia tulkintoja, jos - Mittaussysteemin geometria on tarkkaan tiedossa. - Tulkinta on kehittyneempää, ei vain kerrosmalleja. Kuva 2. Mallimme keskiprofiililla Hz:n itseisarvo kolmella taajuudella. Pystykentän itseisarvo anomalia käyttäytyy kuin Slingram-menetelmässä reaali- ja imaginääriosat, suurimmillaan levyn keskellä pieneten levyn laitoja kohti.

9 8 Kuva 3. Pystyn levyn projektio maan pinnalla nähdään profiililla välittömästi; keskipisteen projektio maan pinnalla sijaitsee anomalian minimin keskipisteessä. Mallinnnusesimerkissämme matalimmalla Sampon taajuudella 7.96 Hz - anomalia ei ole muodostunut, ja suurimmalla taajuudella Hz - jo hieman pienentynyt keskitaajuuksiin nähden. Kuva 4. H:n radiaalikomponentin itseisarvon käyttäytyminen keskiprofiililla. Radiaalikomponentti ei ole herännyt pienimmällä taajuudella. Anomalia on suurimmillaan keskitaajuudella. Radiaalikomponentin anomalia ei ole symmetrinen levyn keskipisteen suhteen, mutta anomalia syntyy levyn ollessa lähettimen ja vastaanottimen välissä niin kuin kaikki Sampoanomaliat syntyvät, ja levy on lähellä anomaalisen alueen keskikohtaa.

10 9 Kuva 5. Hrad:n itseisarvon käyttäytyminen levyn reunaprofiililla. Kuva 6.H:n tangentiaalikomponentin itseisarvon käyttäytyminen reunaprofiililla. Se eroaa nollasta, kun lähetinvastaanotin suoran suhteen johtavuusjakauma ei ole symmetrinen. Levyn keskiprofiililla johdejakauma on siis symmetrinen, eli Htang on nolla. Anomalia ei ole symmetrinen, mutta maksimi syntyy lähes levyn keskipisteen projektion kohdalle. Levyn reunaprofiililla Htang itseisarvo on kymmenesosa vastaavasta Hz:n itseisarvosta.

11 10 Kuva 7. Keskiprofiililla suhteen Hz/Hrad itseisarvo. Hrad on matalimmalla taajuudella niin pieni, että suhde on epärealistisen suuri. Kyseisellä taajuudella ei käytännössä pysty muodostamaan suhdetta, koska Hrad on epätarkka (kelojen asennon epätarkkuus, kohina). Kuva 8. Suhteen Hz/Hrad itseisarvo Sampon keski- ja suurimmalla taajuudella 4464 Hz ja Hz. Suurimmalla taajuudella on levystä johtuva anomalia selvästi pienempi.

12 11 Kuva 9. Taajuuksilla 4464 Hz (herziä) ja Hz (herziä) suhteen Hz/Hr-suureen reaali- ja imaginäärikäyrät. Haluttaessa sovittaa useampi taajuus levy-malliin työn määrä sovitusta käsin tehtäessä on suuri. Inversio on tietokoneen tehtävä. Kuva 10a-f. Suureen Htang/Hz käyttäytyminen mallinnuskuvan reunaprofiililla. Suureen Htang/Hz käyttäytymimnen eri kuvan 1. profiileilla. Profiilin kohtisuora etäisyys profiilista, kuvan 1 muuttuja x, on seuraava: Kuva 10a profiili a, x=240 m Kuva 10b profiili b, x=200m Kuva 10c profiili c, x=150m Kuva 10d profiili d, x=100m Kuva 10e profiili e, x=50m Kuva 10f profiili f, x=-240m Suurimmat anomalia-arvot havaitaan profiililla 150 m keskipisteestä. Kaikilla piirretyillä profiileilla havaitaan selvä anomalia, mutta esitetyn kahden taajuuden, 4464 Hz ja Hz, anomalian keskinäiset suuruudet muuttuvat lähempänä levyn keskipistettä kuin kauempana. Alin taajuus ei juuri herää. Profiilit a ja f ovat symmetrisesti keskipisteen suhteen. Kyseiset anomaliat ovat yhtä suuria mutta erimerkkisiä. Suureesta Htang/Hz voidaan päätellä, onko levyn johdekeskittymä anomaliaprofiilin oikealla vai vasemmalla puolella, suurehan eroaa vain etumerkiltään, jos ollaan oikealla vai vasemmalla puolella levyä.

13 12 Kuva 10a. kuva 10b.

14 13 kuva 10c. kuva 10d.

15 14 kuva 10e. kuva 10f.

16 15 Hz ja Hrad vaihe-ero Hz 4464 Hz Hz m Kuva 11. Hz:n ja Hrad:n välisen vaiheen käyttäytyminen. Vaihe on tunnetusti epäjatkuvavaiheen mennessä 2*pii:n tai sen monikerran yli, kuten kuvasta näkee. Suurin vaihe-ero mallinnusesimerkissämme on keskitaajuudella. Pienimmällä taajuudella vaihe-ero ei juuri anna anomaliaa. Kuva 12. Pysty-radiaalitasossa piirretty ellipsin eksentrisyys profiilikäyrät on piirretty kuvassa 12. Ne heräävät muilla Sampotaajuuksilla kuin alimmilla. Suurimmat anomaliat ovat levyn ollessa lähettimen ja vastaanottimen välissä.

17 16 Kuva 13. keskiprofiilille muunnoksessa saata suure näennäinen ominaisvastus Kuva 14. keskiprofiilille muunnoksessa saata suure näennäinen näennäinen syvyys.

Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama

Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama ESY Q16.2/2006/4 28.11.2006 Espoo Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI 28.11.2006 Tekijät Matti Oksama Raportin laji Tutkimusraportti

Lisätiedot

Kompleksilukujen käyttö sähkömagneettisia kaavoja johdettaessa Matti Oksama

Kompleksilukujen käyttö sähkömagneettisia kaavoja johdettaessa Matti Oksama ESY Q16.2/2006/5 16.11.2006 Espoo Kompleksilukujen käyttö sähkömagneettisia kaavoja johdettaessa Matti Oksama GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI 16.11.2006 Tekijät Matti Oksama Raportin laji Tutkimusraportti

Lisätiedot

Geologian tutkimuskeskus Q 19/2041/2006/1 20.11.2006 Espoo JÄTEKASOJEN PAINUMAHAVAINTOJA ÄMMÄSSUON JÄTTEENKÄSITTELYKESKUKSESSA 1999-2006.

Geologian tutkimuskeskus Q 19/2041/2006/1 20.11.2006 Espoo JÄTEKASOJEN PAINUMAHAVAINTOJA ÄMMÄSSUON JÄTTEENKÄSITTELYKESKUKSESSA 1999-2006. Geologian tutkimuskeskus Q 19/2041/2006/1 20.11.2006 Espoo JÄTEKASOJEN PAINUMAHAVAINTOJA ÄMMÄSSUON JÄTTEENKÄSITTELYKESKUKSESSA 1999-2006 Seppo Elo - 2 - GEOLOGIAN TUTKIMUSKESKUS Tekijät Seppo Elo KUVAILULEHTI

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

HYDROTERMISEN. GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Työraportti VAIKUTUS KIVIEN PETROFYSIKAALISIIN OMINAISUUKSIIN KUUSAMON~ Y ~ S S A

HYDROTERMISEN. GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Työraportti VAIKUTUS KIVIEN PETROFYSIKAALISIIN OMINAISUUKSIIN KUUSAMON~ Y ~ S S A Q 19/46] 3/1998/1 KUUSAMO Pertti Turunen 4.6.1998 ARKISTOKAPPALE GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Työraportti HYDROTERMISEN MUUTTUMISEN VAIKUTUS KIVIEN PETROFYSIKAALISIIN OMINAISUUKSIIN

Lisätiedot

Kiviaineksen määrä Kokkovaaran tilan itäosassa Kontiolahdessa. Akseli Torppa Geologian Tutkimuskeskus (GTK)

Kiviaineksen määrä Kokkovaaran tilan itäosassa Kontiolahdessa. Akseli Torppa Geologian Tutkimuskeskus (GTK) GEOLOGIAN TUTKIMUSKESKUS Itä-Suomen yksikkö Kuopio M173K2015 Kiviaineksen määrä Kokkovaaran tilan itäosassa Kontiolahdessa Akseli Torppa Geologian Tutkimuskeskus (GTK) Kokkovaran tilan pintamalli. Korkeusulottuvuutta

Lisätiedot

Kullaan Levanpellon alueella vuosina 1997-1999 suoritetut kultatutkimukset.

Kullaan Levanpellon alueella vuosina 1997-1999 suoritetut kultatutkimukset. GEOLOGIAN TUTKIMCJSKESKUS Tekij at Rosenberg Petri KUVAILULEHTI Päivämäärä 13.1.2000 Raportin laji Ml 911 14312000/ 711 0 tutkimusraportti 1 Raportin nimi Toimeksiantaja Geologian tutkimuskeskus Kullaan

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Raportti 61/2012 Rovaniemi 26.6.2012

GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Raportti 61/2012 Rovaniemi 26.6.2012 GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Raportti 61/2012 Rovaniemi Selvitys Sodankylän ympäristön maankäyttöä ja kaivostoimintaa tukevasta maaperätiedonkeruusta ja toimintamallista - maaperätiedonkeruu

Lisätiedot

Maatutkaluotauksen soveltuvuudesta maan lohkareisuuden määrittämiseen Pekka Hänninen, Pekka Huhta, Juha Majaniemi ja Osmo Äikää

Maatutkaluotauksen soveltuvuudesta maan lohkareisuuden määrittämiseen Pekka Hänninen, Pekka Huhta, Juha Majaniemi ja Osmo Äikää Etelä-Suomen yksikkö P 31.4/2009/12 02.03.2009 Espoo Maatutkaluotauksen soveltuvuudesta maan lohkareisuuden määrittämiseen Pekka Hänninen, Pekka Huhta, Juha Majaniemi ja Osmo Äikää GEOLOGIAN TUTKIMUSKESKUS

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

3D-IP -tulkinnan testaus Taija Huotari

3D-IP -tulkinnan testaus Taija Huotari Etelä-Suomen yksikkö Q16.1/200/6 Espoo 3D-IP -tulkinnan testaus Taija Huotari GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä / Dnro Tekijät Taija Huotari Raportin laji arkistoraportti Toimeksiantaja

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Geologian tutkimuskeskus M06/3821/-97/1/10 Inari, Angeli. Antero Karvinen Rovaniemi

Geologian tutkimuskeskus M06/3821/-97/1/10 Inari, Angeli. Antero Karvinen Rovaniemi Geologian tutkimuskeskus Inari, Angeli Rovaniemi 17.12.1997 Kaoliinitutkimukset Inarin kunnassa Angelin ympäristössä Jalkavaara 1 ja 2 nimisillä valtausalueilla kaivosrekisterinumero 5622/1 ja 2 Tutkimukset

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

HARJOITUS 7 SEISOVAT AALLOT TAVOITE

HARJOITUS 7 SEISOVAT AALLOT TAVOITE SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

Basen-Fossilryggen terminen mallinnus: Esimerkki ABAQUS FEM -ohjelmiston käytöstä. Elo Seppo

Basen-Fossilryggen terminen mallinnus: Esimerkki ABAQUS FEM -ohjelmiston käytöstä. Elo Seppo Geologian tutkimuskeskus Raporttitunnus 6/2011 Etelä-Suomen yksikkö 02.02.2011 Espoo Basen-Fossilryggen terminen mallinnus: Esimerkki ABAQUS FEM -ohjelmiston käytöstä Elo Seppo GEOLOGIAN TUTKIMUSKESKUS

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

TDC-CD TDC-ANTURI RMS-CD MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. TDC-CD_Fin.doc 2008-02-01 / BL 1(5)

TDC-CD TDC-ANTURI RMS-CD MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. TDC-CD_Fin.doc 2008-02-01 / BL 1(5) TDC-ANTURI RMS-CD MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA _Fin.doc 2008-02-01 / BL 1(5) SISÄLTÖ 1. TEKNISET TIEDOT 2. MALLIN KUVAUS 3. TOIMINNON KUVAUS 4. UUDELLEENKÄYTTÖOHJEET 5. KÄÄMITYKSEN TARKASTUS 1. TEKNISET

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

5i!40 i. $,#] s! LL 9 S0. GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Työraportti. VLF-R-mittaus Kouvervaarasta

5i!40 i. $,#] s! LL 9 S0. GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Työraportti. VLF-R-mittaus Kouvervaarasta Q 19/4522/2000/1 KUUSAMO Pertti Turunen 16.6.2000 GEOLOGIAN TUTKIMUSKESKUS Pohjois-Suomen aluetoimisto Työraportti @ 60 Li 9 S0 5i!40 i 1 rd $,#] s! LL 10' 0 50 100 150 X (m) 200 20 30 40 VLF-R-mittaus

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Serpentiinin ja serpentiniitin hyotykayttonakymia

Serpentiinin ja serpentiniitin hyotykayttonakymia ARKISTOKAFPALE.Q h :IS/PL ILZ-SuoinEi! yksikk6 M 10.1/2006/3 Kuopio Serpentiinin ja serpentiniitin hyotykayttonakymia Soile Aatos, Peter Sorjonen-Ward, Asko Kontinen & Tapio Kuivasaari QEOLOQIAN TVrKlMUSKESKUS

Lisätiedot

PAIMION KORVENALAN ALUEELLA VUOSINA 1996-1998 SUORITETUT KULTATUTKIMUKSET.

PAIMION KORVENALAN ALUEELLA VUOSINA 1996-1998 SUORITETUT KULTATUTKIMUKSET. RAPORTTITIEDOSTO N:O 4403 GEOLOGIAN TUTKIMUSKESKUS Etelä-Suomen aluetoimisto Kallioperä ja raaka-aineet M19/2021/2000/1/10 PAIMIO Korvenala Petri Rosenberg 20.1.2000 PAIMION KORVENALAN ALUEELLA VUOSINA

Lisätiedot

Ajotaitomerkkisäännöt matkailuautolle voimaan 1.1.2012

Ajotaitomerkkisäännöt matkailuautolle voimaan 1.1.2012 Ajotaitomerkkisäännöt matkailuautolle voimaan..202 Tarkoitus on saada jokainen karavaanari kiinnostumaan ajotaitonsa kehittämisestä oman ajoneuvonsa käsittelyssä. On tärkeää, että mahdollisimman moni kokee

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Kapeakaistainen signaali

Kapeakaistainen signaali Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO TILAVUUSVIRRAN MITTAUS...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 MITTAUSJÄRJESTELY

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

1. Mittausjohdon valmistaminen 10 p

1. Mittausjohdon valmistaminen 10 p 1 1. Mittausjohdon valmistaminen 10 p Valmista kuvan mukainen BNC-hauenleuka x2 -liitosjohto. Johtimien on oltava yhtä pitkät sekä mittojen mukaiset. 60 100 mm 1 000 mm Puukko ja BNC-puristustyökalu ovat

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

TUTKIMUSTYÖSELOSTUS SODANKYLÄN KUNNASSA VALTAUSALUEILLA KUSTRUOTOMANAAPA 1 JA VIUVALO-OJA 1, KAIV. REK. N:O 3473 SUORITETUISTA MALMITUTKIMUKSISTA

TUTKIMUSTYÖSELOSTUS SODANKYLÄN KUNNASSA VALTAUSALUEILLA KUSTRUOTOMANAAPA 1 JA VIUVALO-OJA 1, KAIV. REK. N:O 3473 SUORITETUISTA MALMITUTKIMUKSISTA GEOLOGIAN TUTKIMUSKESKUS 1 (3) M 06/3741/-88/1/10 Sodankylä Kustruotomanaapa ja Viuvalo-oja Tapani Mutanen 26.10.1988 TUTKIMUSTYÖSELOSTUS SODANKYLÄN KUNNASSA VALTAUSALUEILLA KUSTRUOTOMANAAPA 1 JA VIUVALO-OJA

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

7A.2 Ylihienosilppouma

7A.2 Ylihienosilppouma 7A.2 Ylihienosilppouma Vetyatomin perustilan kentän fotoni on λ 0 = 91,12670537 nm, jonka taajuus on f o = 3,289841949. 10 15 1/s. Tämä spektriviiva on kaksoisviiva, joiden ero on taajuuksina mitattuna

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

eologian tutkimuskeskus Ahvenanmaa, Jomala ---- eofysiikan osasto Seismiset luotaukset Ahvenanmaalla Jomalan alueella 1987.

eologian tutkimuskeskus Ahvenanmaa, Jomala ---- eofysiikan osasto Seismiset luotaukset Ahvenanmaalla Jomalan alueella 1987. eologian tutkimuskeskus Ahvenanmaa, Jomala ---- eofysiikan osasto J Lehtimäki 16.12.1987 Työraportti Seismiset luotaukset Ahvenanmaalla Jomalan alueella 1987. Jomalan kylän pohjoispuolella tavataan paikoin

Lisätiedot

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen. Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele

Lisätiedot

Seismiset luotaukset Jyväskylän m1k:n ja Toivakan kunnan alueella syksyllä 1991. Paikka Karttalehti Luotauslinjoja Sijantikuva Tulokset.

Seismiset luotaukset Jyväskylän m1k:n ja Toivakan kunnan alueella syksyllä 1991. Paikka Karttalehti Luotauslinjoja Sijantikuva Tulokset. 4"-&.#&.4. - ARIIISTOKAPPALE a ---pppp ~1913211/94/4/23 GEOLOGIAN TUTKIMUSKESKUS Koskee: 3211 09 Väli-Suomen aluetoimisto 3212 08 Ty öraporiii 3212 09 Jwäskvlän mk Toivakka H. Forss 19.11.1991 Seismiset

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

Kuva 1. Mallinnettavan kuormaajan ohjaamo.

Kuva 1. Mallinnettavan kuormaajan ohjaamo. KUORMAAJAN OHJAAMON ÄÄNIKENTÄN MALLINNUS KYTKETYLLÄ ME- NETELMÄLLÄ Ari Saarinen, Seppo Uosukainen VTT, Äänenhallintajärjestelmät PL 1000, 0044 VTT Ari.Saarinen@vtt.fi, Seppo.Uosukainen@vtt.fi 1 JOHDANTO

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

7/1977 UIMISKYVYN PARANTAMINEN AUTONIPPUJEN KIRISTYSTÄ PARANTAMALLA. Arno Tuovinen

7/1977 UIMISKYVYN PARANTAMINEN AUTONIPPUJEN KIRISTYSTÄ PARANTAMALLA. Arno Tuovinen 7/1977 UIMISKYVYN PARANTAMINEN AUTONIPPUJEN KIRISTYSTÄ PARANTAMALLA Arno Tuovinen MDSATIHO Opastinsilta 8 B 00520 HELSINKI 52 SELOSTE Pubelin 9D-l400ll 7/1977 7/1977 UIMISKYVYN PARANTAMINEN AUTONIPPUJEN

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

LAITE SUUNTAUKSEN HAVAINNOLLISTAMISEKSI KEKSINNÖN ALA. Esillä oleva keksintö liittyy laitteen 5suuntauksen havainnollistamiseen.

LAITE SUUNTAUKSEN HAVAINNOLLISTAMISEKSI KEKSINNÖN ALA. Esillä oleva keksintö liittyy laitteen 5suuntauksen havainnollistamiseen. 1 LAITE SUUNTAUKSEN HAVAINNOLLISTAMISEKSI KEKSINNÖN ALA Esillä oleva keksintö liittyy laitteen 5suuntauksen havainnollistamiseen. TUNNETUN TEKNIIKAN KUVAUS Tunnettua ovat erilaiset tasosensorit. Eräs 10yleisimmistä

Lisätiedot

Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki

Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki 27.8.2014 1 Taustatiedot Suonenjoen kaupungin keskustassa on käynnissä asemakaavatyö, jonka

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Geofysikaalisia tutkimuksia Soklissa vuosina 2009-2015

Geofysikaalisia tutkimuksia Soklissa vuosina 2009-2015 GEOLOGIAN TUTKIMUSKESKUS Geofysiikan sovellukset Rovaniemi 19.1.2016 3/2016 Geofysikaalisia tutkimuksia Soklissa vuosina 2009-2015 Pertti Turunen Soklin magneettinen anomalia pintakuviona ja painovoima-anomalia

Lisätiedot

Jos sinulla on kysyttävää 10. Vastaanotin toimi.

Jos sinulla on kysyttävää 10. Vastaanotin toimi. Tärkeät turvallisuustiedot ennen käyttöönottoa 1 Onnea uuden Langattoman Baby Guardin johdosta. Ennen kuin otat langattoman Baby Guardin käyttöösi, lue kaikki turvallisuus- ja käyttööhjeet huolellisesti,

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 2 Stereokuvan laskeminen 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Aiheet Stereokuvan laskeminen stereokuvan piirto synteettisen stereokuvaparin tuottaminen laskemalla stereoelokuva kollineaarisuusyhtälöt

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot