T Neuraalilaskennan perusteet
|
|
- Maarit Seppälä
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 T Neuraalilaskennan perusteet Harjoitustyö time series prediction Heikki Hyyti 60451P EST
2 Yleistä Harjoitustehtävässä piti Matlabin Neural Network Toolbox:n avulla luoda MLP feedforward verkko, ja opettaa se ennustamaan aikasarjaa. Tässä harjoitustyössä data oli annettu valmiina aikasarjana, Matlabin tiedostossa ts.mat. [1] Kuvassa 1 on esitetty koko aikasarja sekä lyhyt näyte mitattavasta aikasarjasta. Kuva 1: Tutkittava aikasarja ylemmässä kuvassa kokonaan ja alemmassa kuvassa lyhyeltä osalta. Aikasarjan esikäsittely Jotta Neural Network Toolbox:lla voitaisiin laskea aikasarjaa, pitää dataa käsitellä niin, että voimme yhtenä vektorina aina antaa neuroverkon syötteet x ja tarkistaa toivotun ulostulon t, joiden avulla verkko lasketaan backpropagation algoritmilla. Muutin aikasarjan ensin sellaiseen muotoon, että siinä on ensimmäisellä rivillä yhdellä viivästetty arvo, toisella rivillä kahdella viivästetty arvo ja niin edelleen. Lisäksi loin tavoitearvot oikeiden arvojen perusteella, niin että tavoitearvoksi verkolle tulee tämän hetkinen arvo. Tällöin edellisten N kpl arvojen perusteella verkko laskee nykyisen arvon. Käytin N arvoja 3, 5 ja 10. Lisäksi poistin ne aikasarjan arvot, joille en voinut tietää tarpeeksi edellisiä arvoja. (N ensimmäistä) Lisäksi aikasarja pitää jakaa testi ja harjoitusjoukkoihin. Jaoin joukot satunnaisessa järjestyksessä puoliksi. Satunnainen järjestys tallennettiin muistiin, jotta jälkeenpäin voitiin taas järjestää mittauspisteet oikeaan, alkuperäiseen, järjestykseen.
3 Laskenta Neural Network Toolbox:n avulla Seuraavaksi luotiin valmiiden työkalujen avulla MLP feedforward neuroverkko. Se toteutettiin Neural Network Toolbox:lla komennolla: net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) Tässä komennossa PR on matriisi, jossa jokaista sisääntuloa vastaa minimi ja maksimiarvojen vektori. Seuraavaksi S1,S2, tarkoittavat piilokerrosten määrää ja neuronien määrää kullakin piilokerroksella niin, että S1 kertoo ensimmäisen piilokerroksen neuronien lukumäärän. Seuraavaksi aaltosulkeiden sisällä olevat TF1, TF2, tarkoittavat kuhunkin piilokerrokseen käytettävää siirtofunktiota. Käytin ensimmäisille piilokerroksille sigmoid funktiota ja viimeiselle lineaarista funktiota. Viimeiset kolme määritettä kertovat funktiolle käytettävät algoritmit ja metodit. BTF ilmaisee backpropagation algoritmin painokertoimien määritystavan. BLF taasen ilmaisee algoritmin bias kertoimien määritystavan ja PF ilmaisee virhefunktion laskentatavan. Käytin laskennassa eri funktioita, niin normaalia backpropagation algoritmia, kuin muunnelmaa, jossa mukaan on otettu momenttitermi kuin adaptiivisesti oppivaakin muunnelmaa. Havaitsin heti, että momenttitermi lisäsi oppimisnopeutta huimasti ja adaptiivisen oppimisen ja momenttitermin yhdistelmä toimi ehdottomasti parhaiten. Tulokset Laskin viisi erilaista kokonaisuutta erilaisella verkon rakenteella. Sain tuloksia, joista voi päätellä, että mitä enemmän verkossa on neuroneita (järkevään rajaan asti) ja mitä pitemmältä ajalta se aikasarjaa seuraa, sitä parempiin ennustustuloksiin päästiin. Seuraavassa on yksitellen esiteltynä jokainen viidestä testikerrasta. Tapaus 1 Ensimmäisenä testasin 5 aikaisemman arvon perusteella ennustamista. Neuroverkossani oli yksi piilokerros, jossa oli kymmenen neuronia. Piilokerroksen siirtofunktio oli sigmoidfunktio ja ulostulon siirtofunktio lineaarinen kerroin. Opetuksessa käytettiin normaalia backpropagation algoritmia ilman momenttia tai muuta apua. Suhteellisiksi virheiksi virheen ja oikean arvon varianssien osamääräksi sain testijoukolle , opetusjoukolle ja kokonaisvirheeksi Kuvasta 2 nähdään opetuksen edistyminen ja kuvasta 3 voi havaita kuinka hyvin järjestelmä opetuksen jälkeen osasi ennustaa aikasarjan tulevaa arvoa. Kuvassa 3 on oikea arvo merkitty vaalealla katkoviivoituksella ja ennustettu arvo tummalla viivalla. X merkitsee testausdatapistettä ja O opetusdatapistettä.
4 Kuva 2: Kuvassa on ensimmäisen testin opetuksen tapahtumat Kuva 3: Oikea ja ennustettu aikasarja sekä opetusnäytteiden ja testausnäytteiden sijainti aikasarjalla 100 ensimmäiseltä aika askeleelta. Tapaus 2 Toinen tapaus on pitkälti samanlainen kuin ensimmäinenkin, mutta vähensin tarkasteltavien menneiden aika askelten määrän kolmeen ja piilokerroksen neuronien määrän kuuteen. Muuten tilanne pysyi täysin samana. Tämän tapauksen opetus näkyy kuvassa 4 ja ennustavuus näkyy kuvassa 5. Kuvat on tehty samalla periaatteella jokaisessa tapauksessa. Suhteelliseksi virheeksi saatiin tässä tapauksessa testijoukolle , opetusjoukolle ja kokonaisvirheeksi Kuten kuvista huomataan, tapauksilla 1 ja 2 ei ole juurikaan eroa. Toisen tapauksen opetus kestää hieman kauemmin ja tulos on hieman huonompi, mutta ei mitään merkittäviä eroja.
5 Kuva 4: Toisen tapauksen verkon opetus Kuva 5: Toisen tapauksen aikasarjan ennustus ja oikea aikasarja piirrettynä samaan kuvaan mittauspisteiden kanssa. Tapaus 3 Tässä tapauksessa taas alettiin vertailla neuroverkon opetusmetodeja. Neuroverkko on muuten tehty täysin samalla tavalla kuin tapauksessa 2, mutta neuroverkkoon otettiin käyttöön momenttitermit ja adaptiivinen oppiminen neuronien painokertoimien määritykseen ja bias termien määritykseen momenttitermit. Tällöin oppiminen nopeutui erittäin paljon. Kuvasta 6 voidaan haita, että tapauksen 3 oppiminen on monikymmenkertaisesti nopeampaa, kuin tapauksen 2 oppiminen. Lisäksi kuvasta 7 voidaan taas havaita neuroverkon ennustavan hyvin aikasarjaa. Tässä tapauksessa suhteelliseksi virheeksi saatiin testijoukon osalta , opetusjoukon osalta ja kokonaisvirheeksi
6 Kuva 6: Kuvassa on kolmannen tapauksen erittäin nopea oppimisprosessi. Kuva 7: Kuvassa on kolmannen tapauksen ennustettu ja oikea aikasarja. Tapaus 4 Kaksi viimeistä tapausta käytettiin virheen minimoimiseen ja ennustettavuuden parantamiseen. Pienensin ensinnäkin tavoitevirheen kymmenesosaansa. Lisäksi mittasin aikasarjaa kymmenen edeltävän askeleen pituudelta ja käytin ensimmäisellä piilokerroksella 20 neuronia. Käytin laskentaan tehokkaimmaksi havaitsemaani momenttitermin ja adaptiivisen laskennan yhdistelmää. Näin virheen sai todella pieneksi ja se olisi varmasti vielä pienentynyt nykyisestäkin, jos vain olisin vaatinut pienemmän virhetason. Kuvissa 8 ja 9 on taas sama kuvapari, kuin edellisissäkin tapauksissa. Tässä tapauksessa suhteellisiksi virheiksi tuli testijoukolle , opetusjoukolle ja kokonaisvirheeksi
7 Kuva 8: Kuvassa on neljännen tapauksen hieman pidempi ja tarkempi opetus. Kuva 9: Kuvassa on neljännen tapauksen erittäin tarkka ennustavuus, joka on lähes joka puolella oikean viivan kanssa päällekkäin. Tapaus 5 Viimeisessä tapauksessa lisättiin verkkoon vielä toinen piilokerros, ja katsottiin vaikuttaisiko se mitenkään laskentatarkkuuteen tai nopeuteen. Pidin tapauksen 4 verkon muuten samana, mutta siirsin piilokerroksen 20 neuronia tasaisesti kahteen kerrokseen niin, että kumpaankin kerrokseen tuli 10 neuronia. Lisäksi havaitsin, että tarkan ennusteen saamiseen ei tarvita kovinkaan montaa edellistä arvoa, joten valitsin että 5 edellistä arvoa riittää. Tämän tapauksen kuvapari löytyy kuvista 10 ja 11. Suhteelliseksi virheeksi sain verkon testijoukolle , opetusjoukolle ja kokonaisvirheeksi Olisin tässäkin tapauksessa varmasti päässyt parempaan lopputulokseen jos olisin odottanut pitempään ja vaatinut pienemmän virhekriteerin.
8 Kuva 10: Tapauksen 5 verkon opetus. Tässä tapauksessa kaksi oli piilokerrosta. Kuva 11: Tapauksen 5 ennustettu aikasarja ja oikea aikasarja ovat jo aivan päällekkäin. Päätelmät ja johtopäätökset Harjoitustyöstä havaittiin, että tällaisen jaksollisesti toistuvan kuitenkin satunnaiselta vaikuttavankin datan ennustaminen onnistuu melko hyvin MLP neuroverkon avulla. Jos aikasarjaa ennustaa niin pitkältä ajalta, että kaikki toistuvat kuviot näkyvät neuroverkolle historiassa, voidaan lähes mitä tahansa pystyä ennustamaan. Näin olisi mahdollista ennustaa esimerkiksi pörssikursseja, jos historiaa laskee vain tarpeeksi pitkältä ajalta, jotta toistuvuudet voidaan havaita.
9 Harjoitustyöstä opittiin myös se, että momenttitermillä ja muilla kehittyneemmillä backpropagation algoritmin muunnoksilla voidaan saavuttaa erittäin paljon nopeampi verkon oppiminen. Tällöin varsinkin suurien verkkojen laskennassa säästetään paljon aikaa ja resursseja. Kolmas huomaamani asia oli se, että kun verkko näkee tarpeeksi historiaa, ei ole enää juurikaan hyötyä lisätä sille enempää tietoa, vaan pienelläkin tietomäärällä voidaan päästä riittävän hyvään lopputulokseen, kuten tapauksesta 2 ja 3 voimme havaita. Näissä tapauksissa seurasin vain 3 edellistä aikasarjan näytettä ja laskin sitä kuudella piilokerroksen neuronilla. Näin pienelläkin laskennalla päästiin erittäin hyvään lopputulokseen verkon kokoon ja laskentamäärään suhteutettuna. Lähdeluettelo 1. Neuraalilaskennan perusteiden kotisivut, harjoitustehtävä aikasarja. Viitattu: Saatavilla: /harjtyo/aikasarja/timeseries.shtml
10 Liitteet Liite 1: Laskentaan käytetty Matlab ohjelmointikoodi %% Neuraalilaskennan harjoitus % Heikki Hyyti 60451P hhyyti@cc.hut.fi % aikasarjan ennustus clear all; %% Ensiksi piirretään muutama mallikuva aikasarjadatasta, jota meillä on % load ts.mat; x = 1:length(ts); figure(1); subplot(2,1,1); plot(x,ts,'k'); title('ennustettava data, ts.mat'); xlabel('mittausnäytteet '); subplot(2,1,2); plot(x(100:200),ts(100:200),'k'); xlabel('mittausnäytteet '); %% Muutetaan mittausdata sellaiseen muotoon, että siinä on jokaisessa % sarakkeessa ensin 1 viivästetty, sitten 2 viivästetty jne. Mittausdata % kirjataan data_x matriisiin ja jokaisen oikea nollaviivästetty arvo % data_t vektoriin. % inputtien määrä eli aikaisempien arvojen määrä inputn = 5; for i = (inputn + 1):length(ts) for j = 1:inputN data_x(i inputn,j) = ts(i j); data_t(i inputn) = ts(i); end end %% jaetaan data satunnaisesti puoliksi harjoitus ja testijoukkoihin rind = randperm(length(data_x)); x_train=data_x(rind(1:floor(length(data_x)/2)),:); t_train=data_t(rind(1:floor(length(data_x)/2))); x_test=data_x(rind(floor(length(data_x)/2)+1:length(data_x)),:); t_test=data_t(rind(floor(length(data_x)/2)+1:length(data_x))); %% MLP verkko % net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) % PR R x 2 matrix of min and max values for R input elements. % Si Size of ith layer, for Nl layers. % TFi Transfer function of ith layer, default = 'tansig'. % BTF Backpropagation network training function, default = 'traingdx'.
11 % BLF Backpropagation weight/bias learning function, default = 'learngdm'. % PF Performance function, default = 'mse'. % ensimmäisen kerroksen neuronien määrä N1 = 10; N2 = 10; % Rx2 min ja max arvot PR = [min(data_x)', max(data_x)']; net = newff(pr, [N1, N2, 1], {'tansig' 'tansig' 'purelin'},'traingdx','learngdm','mse'); %% alustetaan verkko pienillä satunnaisluvuilla % Piilokerroksen painot net.iw{1,1}=0.001*randn([n1 inputn]); % Output layer weights net.lw{2,1}=0.001*randn([n2 N1]); % Biases net.b{1,1}=0.001*randn([n1 1]); net.b{2,1}=0.001*randn([n2 1]); net.b{3,1}=0.001*randn; %% Opetetaan verkko % train(net,p,t,pi,ai,vv,tv) % net Neural Network. % P Network inputs. % T Network targets, default = zeros. % Pi Initial input delay conditions, default = zeros. % Ai Initial layer delay conditions, default = zeros. % VV Structure of validation vectors, default = []. % TV Structure of test vectors, default = []. net.trainparam.epochs = ; net.trainparam.goal = 0.001; [net,tr,y,e]=train(net,x_train',t_train); %% Testataan verkon toimintaa Y_test = sim(net, x_test'); Y_train = sim(net, x_train'); %% Kuvataan tulokset testausdatasta figure(2) % testidata ja harjoitusdata järjestettynä niin, että ensimmäisellä rivillä % on alkuperäinen indeksi, toisella rivillä testiarvo ja kolmannella % rivillä oikea arvo ja neljännellä rivillä virhe merkitään viidennelle
12 % riville nolla, jos kyseessä on harjoitusjoukko ja yksi jos kyseessä on % testijoukko, jotta ne voidaan myöhemmin erottaa toisistaan. YTE = [rind(floor(length(data_x)/2)+1:length(data_x))', Y_test', t_test', (Y_test t_test)', ones(length(y_test),1)]; YTR = [rind(1:floor(length(data_x)/2))', Y_train', t_train', (Y_train t_train)', zeros(length(y_train),1)]; Y_all = [YTE; YTR]; % järjestetään matriisi alkuperäisen indeksin mukaan Y_sort = sortrows(y_all,1); % lasketaan suhteellinen virhe, error = var(virhe) / var(oikea) error_test = var(yte(:,4))/var(yte(:,3)) error_train = var(ytr(:,4))/var(ytr(:,3)) error_all = var(y_sort(:,4))/var(y_sort(:,3)) % otetaan 100 ensimmäisen askeleen matkalta erikseen testidatan ja % harjoitusdatan pisteet piirtoa varten. index_tr = 1; index_te = 1; for i = 1:100 if Y_sort(i,5) == 0 plot_tr(index_tr,1:2) = [i, Y_sort(i,3)]; index_tr = index_tr + 1; else plot_te(index_te,1:2) = [i, Y_sort(i,3)]; index_te = index_te + 1; end end % Plotataan 100 askeleen pätkä dataa malliksi niin, että samassa kuvassa on % ennustettu ja oikea arvo. plot(1:100, Y_sort(1:100,3), ' g',1:100, Y_sort(1:100,2), ' k',... plot_tr(:,1), plot_tr(:,2), 'bo', plot_te(:,1), plot_te(:,2), 'bx'); legend('oikea','ennustettu', 'opetusdatapisteet', 'testausdatapisteet') title('näytteet , joita on ennustettu MLP verkolla');
13 Liite 2: kaikista eri mittauksista saatu mittauspöytäkirja // testi 1. // 5 askeleen ennustus 10 neuronilla. // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdm','learngd','mse'); error_test = error_train = error_all = // testi 2 // 3 askeleen ennustus 6 neuronilla // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdm','learngd','mse'); error_test = error_train = error_all = // testi 3 // 3 askeleen ennustus 6 neuronilla // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdx','learngdm','mse'); // erilaiset opetusmetodit siis (oppi 100x nopeammin) error_test = error_train = error_all = // testi 4 // oikein massiivinen testi // 10 askeleen ennustus 20 neuronilla ja tarkemmalla tarkkuusvaatimuksella. // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdx','learngdm','mse'); error_test = error_train = error_all = // testi 5 // lisää piilokerroksen neuroneita // 5 askeleen ennustus, kymmenen piiloneuronia kahdessa kerroksessa. (N1 = N2 = 10) // net = newff(pr, [N1, N2, 1], {'tansig' 'tansig' 'purelin'},'traingdx','learngdm','mse'); error_test = error_train = error_all =
Laskuharjoitus 9, tehtävä 6
Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen
S Laskennallinen Neurotiede
S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan
ImageRecognition toteutus
ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa
S-114.3812 Laskennallinen Neurotiede
S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta
Tekoäly muuttaa arvoketjuja
Tekoäly muuttaa arvoketjuja Näin kartoitat tekoälyn mahdollisuuksia projektissasi Harri Puolitaival Harri Puolitaival Diplomi-insinööri ja yrittäjä Terveysteknologia-alan start-up: Likelle - lämpötilaherkkien
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002
Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty
Zeon PDF Driver Trial
Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin
Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.
Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.
Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla
S-114.3812 Laskennallinen Neurotiede
S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 4. luento 24.11.2017 Neuroverkon opettaminen - gradienttimenetelmä Neuroverkkoa opetetaan syöte-tavoite-pareilla
Ratkaisuehdotukset LH 8 / vko 47
Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin
Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.
T-61.020 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke 18.4.2007, 12:1 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.0 1. Käytämme siis jälleen viterbi-algoritmia todennäköisimmän
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006
Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
Kognitiivinen mallintaminen. Nelli Salminen
Kognitiivinen mallintaminen Neuraalimallinnus 24.11. Nelli Salminen nelli.salminen@tkk.fi Tällä kerralla ohjelmassa vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko oppimissääntöjen
Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö
Tällä kerralla ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 19.2. Nelli Salminen nelli.salminen@helsinki.fi D433 vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko
L9: Rayleigh testi. Laskuharjoitus
L9: Rayleigh testi Laskuharjoitus Data on tiedoston Rayleighdata.dat 1. sarake: t = t i Ajan hetket ovat t = t 1, t 2,..., t n, missä n = n = 528 Laske ja plottaa välillä f min = 1/P max ja f max = 1/P
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
Numeerinen analyysi Harjoitus 3 / Kevät 2017
Numeerinen analyysi Harjoitus 3 / Kevät 2017 Palautus viimeistään perjantaina 17.3. Tehtävä 1: Tarkastellaan funktion f(x) = x evaluoimista välillä x [2.0, 2.3]. Muodosta interpoloiva polynomi p 3 (x),
Demo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
Kognitiivinen mallintaminen Neuraalimallinnus, luento 1
Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä
T Hahmontunnistuksen perusteet
T 61.3020 Hahmontunnistuksen perusteet Harjoitustyö Käsin kirjoitettujen numeroiden tunnistus LVQ menetelmällä 30.3.2007 Heikki Hyyti 60451P hhyyti@cc.hut.fi Yleistä Harjoitustyössä piti tehdä käsinkirjoitettujen
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 9. harjoitus - ratkaisut 1. a) Viivahakutehtävä pisteessä x suuntaan d on missä min f(x + λd), λ f(x + λd) = (x
A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
Harha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
Tieteellinen laskenta 2 Törmäykset
Tieteellinen laskenta 2 Törmäykset Aki Kutvonen Op.nmr 013185860 Sisällysluettelo Ohjelman tekninen dokumentti...3 Yleiskuvaus...3 Kääntöohje...3 Ohjelman yleinen rakenne...4 Esimerkkiajo ja käyttöohje...5
815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,
mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä osittaisderivaatoista: y 1... J F =.
TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)
JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Kokonaislukuaritmetiikka vs. logiikkaluupit
Diskreetti matematiikka, syksy 2010 Matlab-harjoitus 3 (18.11. klo 16-18 MP103) Tehtäviin vastataan tälle paperille, osoitettuihin tyhjiin alueisiin, yleensä tyhjille riveille. Tehtävät saa ja on suorastaan
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
Rinnakkaistietokoneet luento S
Rinnakkaistietokoneet luento 2 521475S Tietokonealgoritmien rinnakkaisuuden analysointi Algoritmi on proseduuri, joka koostuu äärellisestä joukosta yksiselitteisiä sääntöjä jotka muodostavat operaatiosekvenssin,
Integrointialgoritmit molekyylidynamiikassa
Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin
Python-ohjelmointi Harjoitus 5
Python-ohjelmointi Harjoitus 5 TAVOITTEET Kerrataan silmukkarakenteen käyttäminen. Kerrataan jos-ehtorakenteen käyttäminen. Opitaan if else- ja if elif else-ehtorakenteet. Matematiikan sisällöt Tehtävät
P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)
Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Ratkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
Mitä on konvoluutio? Tutustu kuvankäsittelyyn
Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.
2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä
Sisältö. 2. Taulukot. Yleistä. Yleistä
Sisältö 2. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.1 2.2 Yleistä
Sisältö. Työn lähtökohta ja tavoitteet Lyhyt kertaus prosessista Käytetyt menetelmät Työn kulku Tulokset Ongelmat ja jatkokehitys
Loppuraportti Sisältö Työn lähtökohta ja tavoitteet Lyhyt kertaus prosessista Käytetyt menetelmät Työn kulku Tulokset Ongelmat ja jatkokehitys Työn lähtökohta ja tavoitteet Voimalaitoskattiloiden tulipesässä
SIMULINK S-funktiot. SIMULINK S-funktiot
S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne
6. Tietokoneharjoitukset
6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen
58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
Matlabin perusteita Grafiikka
BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,
Matlab- ja Maple- ohjelmointi
Perusasioita 2. helmikuuta 2005 Matlab- ja Maple- ohjelmointi Yleistä losoaa ja erityisesti Numsym05-kurssin tarpeita palvellee parhaiten, jos esitän asian rinnakkain Maple:n ja Matlab:n kannalta. Ohjelmien
= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin
BMA7 - Integraalimuunnokset Harjoitus 9. Määritä -jaksollisen funktion f x = coshx, < x < Fourier-sarja. Funktion on parillinen, joten b n = kun n =,,3,... Parillisuudesta johtuen kertoimet a ja a n saadaan
Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin
Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:
Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)
Tänään ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 26.2. Nelli Salminen nelli.salminen@helsinki.fi D433 autoassosiaatio, attraktorin käsite esimerkkitapaus: kolme eri tapaa mallintaa kategorista
Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS Jyrki Kankaanpää AIKASARJAN MALLINTAMINEN MULTI-LAYER- PERCEPTRON -NEUROVERKOLLA KTM, tietotekniikka Pro Gradu tutkielma VAASA 2007 2 3 SISÄLLYSLUETTELO
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
Jousen jousivoiman riippuvuus venymästä
1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä
811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla
Tieto- ja tallennusrakenteet
Tieto- ja tallennusrakenteet Sisältö Tyyppi, abstrakti tietotyyppi, abstraktin tietotyypin toteutus Tallennusrakenteet Taulukko Linkitetty rakenne Abstraktit tietotyypit Lista (Puu) (Viimeisellä viikolla)
MLP-hermoverkko ja sen soveltaminen kuvien luokitteluun
MLP-hermoverkko ja sen soveltaminen kuvien luokitteluun Konenäkö -kurssin 2008 vierailuluento Tietotekniikan laitos Jyväskylän yliopisto Konenäkö -kurssi, 25.9. ja 30.9.2008 Sisältö 1 Hermoverkon perusidea
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,
Numeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Määrittelydokumentti
Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta
Vektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan
Mat 2.4177Operaatiotutkimuksenprojektityöseminaari Tieverkonkunnonstokastinenennustemallija sensoveltaminenriskienhallintaan Väliraportti 3/4/2009 Toimeksiantajat: PöyryInfraOy(PekkaMild) Tiehallinto(VesaMännistö)
PID-sa a timen viritta minen Matlabilla ja simulinkilla
PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin
Harjoitus 4 -- Ratkaisut
Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
Ratkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
Mat-1.C Matemaattiset ohjelmistot
Mat-.C Matemaattiset ohjelmistot Luento ma 9.3.0 $z; Error, (in rtable/product) invalid arguments.z; z C z C z3 3 C z4 4 C z5 5.Tr z ; z C z C z3 3 C z4 4 C z5 5 ; Error, (in rtable/power) eponentiation
Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
Harjoitus 6 ( )
Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,
Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen
Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.
Talousmatematiikan perusteet
kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)
R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
Tee-se-itse -tekoäly
Tee-se-itse -tekoäly Avainsanat: koneoppiminen, tekoäly, neuroverkko Luokkataso: 6.-9. luokka, lukio, yliopisto Välineet: kynä, muistilappuja tai kertakäyttömukeja, herneitä tms. pieniä esineitä Kuvaus:
Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
linux linux: käyttäjän oikeudet + lisää ja - poistaa oikeuksia
L6: linux linux linux: käyttäjän oikeudet Käyttäjällä, username, on käyttöoikeus rajattuun levytilaan du -h /home/username/ tulostaa käytetyn levytilan. Yhteenvedon antaa du -h /home/jetsu/ - -summarize