T Neuraalilaskennan perusteet

Koko: px
Aloita esitys sivulta:

Download "T 61.3030 Neuraalilaskennan perusteet"

Transkriptio

1 T Neuraalilaskennan perusteet Harjoitustyö time series prediction Heikki Hyyti 60451P EST

2 Yleistä Harjoitustehtävässä piti Matlabin Neural Network Toolbox:n avulla luoda MLP feedforward verkko, ja opettaa se ennustamaan aikasarjaa. Tässä harjoitustyössä data oli annettu valmiina aikasarjana, Matlabin tiedostossa ts.mat. [1] Kuvassa 1 on esitetty koko aikasarja sekä lyhyt näyte mitattavasta aikasarjasta. Kuva 1: Tutkittava aikasarja ylemmässä kuvassa kokonaan ja alemmassa kuvassa lyhyeltä osalta. Aikasarjan esikäsittely Jotta Neural Network Toolbox:lla voitaisiin laskea aikasarjaa, pitää dataa käsitellä niin, että voimme yhtenä vektorina aina antaa neuroverkon syötteet x ja tarkistaa toivotun ulostulon t, joiden avulla verkko lasketaan backpropagation algoritmilla. Muutin aikasarjan ensin sellaiseen muotoon, että siinä on ensimmäisellä rivillä yhdellä viivästetty arvo, toisella rivillä kahdella viivästetty arvo ja niin edelleen. Lisäksi loin tavoitearvot oikeiden arvojen perusteella, niin että tavoitearvoksi verkolle tulee tämän hetkinen arvo. Tällöin edellisten N kpl arvojen perusteella verkko laskee nykyisen arvon. Käytin N arvoja 3, 5 ja 10. Lisäksi poistin ne aikasarjan arvot, joille en voinut tietää tarpeeksi edellisiä arvoja. (N ensimmäistä) Lisäksi aikasarja pitää jakaa testi ja harjoitusjoukkoihin. Jaoin joukot satunnaisessa järjestyksessä puoliksi. Satunnainen järjestys tallennettiin muistiin, jotta jälkeenpäin voitiin taas järjestää mittauspisteet oikeaan, alkuperäiseen, järjestykseen.

3 Laskenta Neural Network Toolbox:n avulla Seuraavaksi luotiin valmiiden työkalujen avulla MLP feedforward neuroverkko. Se toteutettiin Neural Network Toolbox:lla komennolla: net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) Tässä komennossa PR on matriisi, jossa jokaista sisääntuloa vastaa minimi ja maksimiarvojen vektori. Seuraavaksi S1,S2, tarkoittavat piilokerrosten määrää ja neuronien määrää kullakin piilokerroksella niin, että S1 kertoo ensimmäisen piilokerroksen neuronien lukumäärän. Seuraavaksi aaltosulkeiden sisällä olevat TF1, TF2, tarkoittavat kuhunkin piilokerrokseen käytettävää siirtofunktiota. Käytin ensimmäisille piilokerroksille sigmoid funktiota ja viimeiselle lineaarista funktiota. Viimeiset kolme määritettä kertovat funktiolle käytettävät algoritmit ja metodit. BTF ilmaisee backpropagation algoritmin painokertoimien määritystavan. BLF taasen ilmaisee algoritmin bias kertoimien määritystavan ja PF ilmaisee virhefunktion laskentatavan. Käytin laskennassa eri funktioita, niin normaalia backpropagation algoritmia, kuin muunnelmaa, jossa mukaan on otettu momenttitermi kuin adaptiivisesti oppivaakin muunnelmaa. Havaitsin heti, että momenttitermi lisäsi oppimisnopeutta huimasti ja adaptiivisen oppimisen ja momenttitermin yhdistelmä toimi ehdottomasti parhaiten. Tulokset Laskin viisi erilaista kokonaisuutta erilaisella verkon rakenteella. Sain tuloksia, joista voi päätellä, että mitä enemmän verkossa on neuroneita (järkevään rajaan asti) ja mitä pitemmältä ajalta se aikasarjaa seuraa, sitä parempiin ennustustuloksiin päästiin. Seuraavassa on yksitellen esiteltynä jokainen viidestä testikerrasta. Tapaus 1 Ensimmäisenä testasin 5 aikaisemman arvon perusteella ennustamista. Neuroverkossani oli yksi piilokerros, jossa oli kymmenen neuronia. Piilokerroksen siirtofunktio oli sigmoidfunktio ja ulostulon siirtofunktio lineaarinen kerroin. Opetuksessa käytettiin normaalia backpropagation algoritmia ilman momenttia tai muuta apua. Suhteellisiksi virheiksi virheen ja oikean arvon varianssien osamääräksi sain testijoukolle , opetusjoukolle ja kokonaisvirheeksi Kuvasta 2 nähdään opetuksen edistyminen ja kuvasta 3 voi havaita kuinka hyvin järjestelmä opetuksen jälkeen osasi ennustaa aikasarjan tulevaa arvoa. Kuvassa 3 on oikea arvo merkitty vaalealla katkoviivoituksella ja ennustettu arvo tummalla viivalla. X merkitsee testausdatapistettä ja O opetusdatapistettä.

4 Kuva 2: Kuvassa on ensimmäisen testin opetuksen tapahtumat Kuva 3: Oikea ja ennustettu aikasarja sekä opetusnäytteiden ja testausnäytteiden sijainti aikasarjalla 100 ensimmäiseltä aika askeleelta. Tapaus 2 Toinen tapaus on pitkälti samanlainen kuin ensimmäinenkin, mutta vähensin tarkasteltavien menneiden aika askelten määrän kolmeen ja piilokerroksen neuronien määrän kuuteen. Muuten tilanne pysyi täysin samana. Tämän tapauksen opetus näkyy kuvassa 4 ja ennustavuus näkyy kuvassa 5. Kuvat on tehty samalla periaatteella jokaisessa tapauksessa. Suhteelliseksi virheeksi saatiin tässä tapauksessa testijoukolle , opetusjoukolle ja kokonaisvirheeksi Kuten kuvista huomataan, tapauksilla 1 ja 2 ei ole juurikaan eroa. Toisen tapauksen opetus kestää hieman kauemmin ja tulos on hieman huonompi, mutta ei mitään merkittäviä eroja.

5 Kuva 4: Toisen tapauksen verkon opetus Kuva 5: Toisen tapauksen aikasarjan ennustus ja oikea aikasarja piirrettynä samaan kuvaan mittauspisteiden kanssa. Tapaus 3 Tässä tapauksessa taas alettiin vertailla neuroverkon opetusmetodeja. Neuroverkko on muuten tehty täysin samalla tavalla kuin tapauksessa 2, mutta neuroverkkoon otettiin käyttöön momenttitermit ja adaptiivinen oppiminen neuronien painokertoimien määritykseen ja bias termien määritykseen momenttitermit. Tällöin oppiminen nopeutui erittäin paljon. Kuvasta 6 voidaan haita, että tapauksen 3 oppiminen on monikymmenkertaisesti nopeampaa, kuin tapauksen 2 oppiminen. Lisäksi kuvasta 7 voidaan taas havaita neuroverkon ennustavan hyvin aikasarjaa. Tässä tapauksessa suhteelliseksi virheeksi saatiin testijoukon osalta , opetusjoukon osalta ja kokonaisvirheeksi

6 Kuva 6: Kuvassa on kolmannen tapauksen erittäin nopea oppimisprosessi. Kuva 7: Kuvassa on kolmannen tapauksen ennustettu ja oikea aikasarja. Tapaus 4 Kaksi viimeistä tapausta käytettiin virheen minimoimiseen ja ennustettavuuden parantamiseen. Pienensin ensinnäkin tavoitevirheen kymmenesosaansa. Lisäksi mittasin aikasarjaa kymmenen edeltävän askeleen pituudelta ja käytin ensimmäisellä piilokerroksella 20 neuronia. Käytin laskentaan tehokkaimmaksi havaitsemaani momenttitermin ja adaptiivisen laskennan yhdistelmää. Näin virheen sai todella pieneksi ja se olisi varmasti vielä pienentynyt nykyisestäkin, jos vain olisin vaatinut pienemmän virhetason. Kuvissa 8 ja 9 on taas sama kuvapari, kuin edellisissäkin tapauksissa. Tässä tapauksessa suhteellisiksi virheiksi tuli testijoukolle , opetusjoukolle ja kokonaisvirheeksi

7 Kuva 8: Kuvassa on neljännen tapauksen hieman pidempi ja tarkempi opetus. Kuva 9: Kuvassa on neljännen tapauksen erittäin tarkka ennustavuus, joka on lähes joka puolella oikean viivan kanssa päällekkäin. Tapaus 5 Viimeisessä tapauksessa lisättiin verkkoon vielä toinen piilokerros, ja katsottiin vaikuttaisiko se mitenkään laskentatarkkuuteen tai nopeuteen. Pidin tapauksen 4 verkon muuten samana, mutta siirsin piilokerroksen 20 neuronia tasaisesti kahteen kerrokseen niin, että kumpaankin kerrokseen tuli 10 neuronia. Lisäksi havaitsin, että tarkan ennusteen saamiseen ei tarvita kovinkaan montaa edellistä arvoa, joten valitsin että 5 edellistä arvoa riittää. Tämän tapauksen kuvapari löytyy kuvista 10 ja 11. Suhteelliseksi virheeksi sain verkon testijoukolle , opetusjoukolle ja kokonaisvirheeksi Olisin tässäkin tapauksessa varmasti päässyt parempaan lopputulokseen jos olisin odottanut pitempään ja vaatinut pienemmän virhekriteerin.

8 Kuva 10: Tapauksen 5 verkon opetus. Tässä tapauksessa kaksi oli piilokerrosta. Kuva 11: Tapauksen 5 ennustettu aikasarja ja oikea aikasarja ovat jo aivan päällekkäin. Päätelmät ja johtopäätökset Harjoitustyöstä havaittiin, että tällaisen jaksollisesti toistuvan kuitenkin satunnaiselta vaikuttavankin datan ennustaminen onnistuu melko hyvin MLP neuroverkon avulla. Jos aikasarjaa ennustaa niin pitkältä ajalta, että kaikki toistuvat kuviot näkyvät neuroverkolle historiassa, voidaan lähes mitä tahansa pystyä ennustamaan. Näin olisi mahdollista ennustaa esimerkiksi pörssikursseja, jos historiaa laskee vain tarpeeksi pitkältä ajalta, jotta toistuvuudet voidaan havaita.

9 Harjoitustyöstä opittiin myös se, että momenttitermillä ja muilla kehittyneemmillä backpropagation algoritmin muunnoksilla voidaan saavuttaa erittäin paljon nopeampi verkon oppiminen. Tällöin varsinkin suurien verkkojen laskennassa säästetään paljon aikaa ja resursseja. Kolmas huomaamani asia oli se, että kun verkko näkee tarpeeksi historiaa, ei ole enää juurikaan hyötyä lisätä sille enempää tietoa, vaan pienelläkin tietomäärällä voidaan päästä riittävän hyvään lopputulokseen, kuten tapauksesta 2 ja 3 voimme havaita. Näissä tapauksissa seurasin vain 3 edellistä aikasarjan näytettä ja laskin sitä kuudella piilokerroksen neuronilla. Näin pienelläkin laskennalla päästiin erittäin hyvään lopputulokseen verkon kokoon ja laskentamäärään suhteutettuna. Lähdeluettelo 1. Neuraalilaskennan perusteiden kotisivut, harjoitustehtävä aikasarja. Viitattu: Saatavilla: /harjtyo/aikasarja/timeseries.shtml

10 Liitteet Liite 1: Laskentaan käytetty Matlab ohjelmointikoodi %% Neuraalilaskennan harjoitus % Heikki Hyyti 60451P % aikasarjan ennustus clear all; %% Ensiksi piirretään muutama mallikuva aikasarjadatasta, jota meillä on % load ts.mat; x = 1:length(ts); figure(1); subplot(2,1,1); plot(x,ts,'k'); title('ennustettava data, ts.mat'); xlabel('mittausnäytteet '); subplot(2,1,2); plot(x(100:200),ts(100:200),'k'); xlabel('mittausnäytteet '); %% Muutetaan mittausdata sellaiseen muotoon, että siinä on jokaisessa % sarakkeessa ensin 1 viivästetty, sitten 2 viivästetty jne. Mittausdata % kirjataan data_x matriisiin ja jokaisen oikea nollaviivästetty arvo % data_t vektoriin. % inputtien määrä eli aikaisempien arvojen määrä inputn = 5; for i = (inputn + 1):length(ts) for j = 1:inputN data_x(i inputn,j) = ts(i j); data_t(i inputn) = ts(i); end end %% jaetaan data satunnaisesti puoliksi harjoitus ja testijoukkoihin rind = randperm(length(data_x)); x_train=data_x(rind(1:floor(length(data_x)/2)),:); t_train=data_t(rind(1:floor(length(data_x)/2))); x_test=data_x(rind(floor(length(data_x)/2)+1:length(data_x)),:); t_test=data_t(rind(floor(length(data_x)/2)+1:length(data_x))); %% MLP verkko % net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) % PR R x 2 matrix of min and max values for R input elements. % Si Size of ith layer, for Nl layers. % TFi Transfer function of ith layer, default = 'tansig'. % BTF Backpropagation network training function, default = 'traingdx'.

11 % BLF Backpropagation weight/bias learning function, default = 'learngdm'. % PF Performance function, default = 'mse'. % ensimmäisen kerroksen neuronien määrä N1 = 10; N2 = 10; % Rx2 min ja max arvot PR = [min(data_x)', max(data_x)']; net = newff(pr, [N1, N2, 1], {'tansig' 'tansig' 'purelin'},'traingdx','learngdm','mse'); %% alustetaan verkko pienillä satunnaisluvuilla % Piilokerroksen painot net.iw{1,1}=0.001*randn([n1 inputn]); % Output layer weights net.lw{2,1}=0.001*randn([n2 N1]); % Biases net.b{1,1}=0.001*randn([n1 1]); net.b{2,1}=0.001*randn([n2 1]); net.b{3,1}=0.001*randn; %% Opetetaan verkko % train(net,p,t,pi,ai,vv,tv) % net Neural Network. % P Network inputs. % T Network targets, default = zeros. % Pi Initial input delay conditions, default = zeros. % Ai Initial layer delay conditions, default = zeros. % VV Structure of validation vectors, default = []. % TV Structure of test vectors, default = []. net.trainparam.epochs = ; net.trainparam.goal = 0.001; [net,tr,y,e]=train(net,x_train',t_train); %% Testataan verkon toimintaa Y_test = sim(net, x_test'); Y_train = sim(net, x_train'); %% Kuvataan tulokset testausdatasta figure(2) % testidata ja harjoitusdata järjestettynä niin, että ensimmäisellä rivillä % on alkuperäinen indeksi, toisella rivillä testiarvo ja kolmannella % rivillä oikea arvo ja neljännellä rivillä virhe merkitään viidennelle

12 % riville nolla, jos kyseessä on harjoitusjoukko ja yksi jos kyseessä on % testijoukko, jotta ne voidaan myöhemmin erottaa toisistaan. YTE = [rind(floor(length(data_x)/2)+1:length(data_x))', Y_test', t_test', (Y_test t_test)', ones(length(y_test),1)]; YTR = [rind(1:floor(length(data_x)/2))', Y_train', t_train', (Y_train t_train)', zeros(length(y_train),1)]; Y_all = [YTE; YTR]; % järjestetään matriisi alkuperäisen indeksin mukaan Y_sort = sortrows(y_all,1); % lasketaan suhteellinen virhe, error = var(virhe) / var(oikea) error_test = var(yte(:,4))/var(yte(:,3)) error_train = var(ytr(:,4))/var(ytr(:,3)) error_all = var(y_sort(:,4))/var(y_sort(:,3)) % otetaan 100 ensimmäisen askeleen matkalta erikseen testidatan ja % harjoitusdatan pisteet piirtoa varten. index_tr = 1; index_te = 1; for i = 1:100 if Y_sort(i,5) == 0 plot_tr(index_tr,1:2) = [i, Y_sort(i,3)]; index_tr = index_tr + 1; else plot_te(index_te,1:2) = [i, Y_sort(i,3)]; index_te = index_te + 1; end end % Plotataan 100 askeleen pätkä dataa malliksi niin, että samassa kuvassa on % ennustettu ja oikea arvo. plot(1:100, Y_sort(1:100,3), ' g',1:100, Y_sort(1:100,2), ' k',... plot_tr(:,1), plot_tr(:,2), 'bo', plot_te(:,1), plot_te(:,2), 'bx'); legend('oikea','ennustettu', 'opetusdatapisteet', 'testausdatapisteet') title('näytteet , joita on ennustettu MLP verkolla');

13 Liite 2: kaikista eri mittauksista saatu mittauspöytäkirja // testi 1. // 5 askeleen ennustus 10 neuronilla. // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdm','learngd','mse'); error_test = error_train = error_all = // testi 2 // 3 askeleen ennustus 6 neuronilla // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdm','learngd','mse'); error_test = error_train = error_all = // testi 3 // 3 askeleen ennustus 6 neuronilla // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdx','learngdm','mse'); // erilaiset opetusmetodit siis (oppi 100x nopeammin) error_test = error_train = error_all = // testi 4 // oikein massiivinen testi // 10 askeleen ennustus 20 neuronilla ja tarkemmalla tarkkuusvaatimuksella. // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdx','learngdm','mse'); error_test = error_train = error_all = // testi 5 // lisää piilokerroksen neuroneita // 5 askeleen ennustus, kymmenen piiloneuronia kahdessa kerroksessa. (N1 = N2 = 10) // net = newff(pr, [N1, N2, 1], {'tansig' 'tansig' 'purelin'},'traingdx','learngdm','mse'); error_test = error_train = error_all =

S Laskennallinen Neurotiede

S Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan

Lisätiedot

ImageRecognition toteutus

ImageRecognition toteutus ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1. T-61.020 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke 18.4.2007, 12:1 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.0 1. Käytämme siis jälleen viterbi-algoritmia todennäköisimmän

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma. 2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä

Lisätiedot

T Hahmontunnistuksen perusteet

T Hahmontunnistuksen perusteet T 61.3020 Hahmontunnistuksen perusteet Harjoitustyö Käsin kirjoitettujen numeroiden tunnistus LVQ menetelmällä 30.3.2007 Heikki Hyyti 60451P hhyyti@cc.hut.fi Yleistä Harjoitustyössä piti tehdä käsinkirjoitettujen

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

PID-sa a timen viritta minen Matlabilla ja simulinkilla

PID-sa a timen viritta minen Matlabilla ja simulinkilla PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin

Lisätiedot

Sisältö. 2. Taulukot. Yleistä. Yleistä

Sisältö. 2. Taulukot. Yleistä. Yleistä Sisältö 2. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.1 2.2 Yleistä

Lisätiedot

Harjoitus 4 -- Ratkaisut

Harjoitus 4 -- Ratkaisut Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Sisältö. 22. Taulukot. Yleistä. Yleistä

Sisältö. 22. Taulukot. Yleistä. Yleistä Sisältö 22. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 22.1 22.2 Yleistä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Matlab- ja Maple- ohjelmointi

Matlab- ja Maple- ohjelmointi Perusasioita 2. helmikuuta 2005 Matlab- ja Maple- ohjelmointi Yleistä losoaa ja erityisesti Numsym05-kurssin tarpeita palvellee parhaiten, jos esitän asian rinnakkain Maple:n ja Matlab:n kannalta. Ohjelmien

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

1 PID-taajuusvastesuunnittelun esimerkki

1 PID-taajuusvastesuunnittelun esimerkki Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

Moottorin kierrosnopeus Tämän harjoituksen jälkeen:

Moottorin kierrosnopeus Tämän harjoituksen jälkeen: Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,

Lisätiedot

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa

Lisätiedot

Matlabin perusteita Grafiikka

Matlabin perusteita Grafiikka BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Pakettisynkronointitestauksen automaatio

Pakettisynkronointitestauksen automaatio Pakettisynkronointitestauksen automaatio Risto Hietala valvoja: Prof. Riku Jäntti ohjaaja: DI Jonas Lundqvist ESITYKSEN RAKENNE Tietoverkkojen synkronointi Pakettikytkentäisten verkkojen synkronointi Ohjelmistotestaus

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

padvisor - pikaohje - työkalu SATRON Smart/Hart dp- ja painelähettimiä varten

padvisor - pikaohje - työkalu SATRON Smart/Hart dp- ja painelähettimiä varten padvisor - pikaohje - työkalu SATRON Smart/Hart dp- ja painelähettimiä varten Sisältö: 1. Ohjelman toimintojen kuvaus 2. Ohjelman asennus 3. padvisor-ohjelman perustoiminnot 3.1 Ohjelman käynnistys 3.2

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS Jyrki Kankaanpää AIKASARJAN MALLINTAMINEN MULTI-LAYER- PERCEPTRON -NEUROVERKOLLA KTM, tietotekniikka Pro Gradu tutkielma VAASA 2007 2 3 SISÄLLYSLUETTELO

Lisätiedot

Ensikosketus ohjelmointiin

Ensikosketus ohjelmointiin Ensikosketus ohjelmointiin Tällä tunnilla luodaan ensimmäinen oma ohjelmamme. Tähän hyödynnetään Touch Develop -ympäristön kilpikonnaohjelmointikirjastoa. Tutoriaalissa opitaan kilpikonnahahmoa ruudulla

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro:

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro: KILPAILIJAN TEHTÄVÄT Kilpailijan nimi / Nro: Tehtävän laatinut: Hannu Laurikainen, Deltabit Oy Kilpailutehtävä Kilpailijalle annetaan tehtävässä tarvittavat ohjelmakoodit. Tämä ohjelma on tehty laitteen

Lisätiedot

OHJEET LUE TÄMÄ AIVAN ENSIKSI!

OHJEET LUE TÄMÄ AIVAN ENSIKSI! 1/8 OHJEET LUE TÄMÄ AIVAN ENSIKSI! Sinulla on nyt hallussasi testi, jolla voit arvioida oman älykkyytesi. Tämä testi muodostuu kahdesta osatestistä (Testi 1 ja Testi ). Testi on tarkoitettu vain yli neljätoistavuotiaille.

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Kenguru 2011 Cadet (8. ja 9. luokka)

Kenguru 2011 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Puumenetelmät. Topi Sikanen. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu

Puumenetelmät. Topi Sikanen. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu Puumenetelmät Topi Sikanen Puumenetelmät Periaate: Hajota ja hallitse Jaetaan havaintoavaruus alueisiin. Sovitetaan kuhunkin alueeseen yksinkertainen malli (esim. vakio) Tarkastellaan kolmea mallia Luokittelu-

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

Työ tehdään itsenäisesti yhden hengen ryhmissä. Ideoita voi vaihtaa koodia ei.

Työ tehdään itsenäisesti yhden hengen ryhmissä. Ideoita voi vaihtaa koodia ei. Harjoitustyö 1 Harjoitustyö Tehtävä: ohjelmoi lötköjen kansoittamaa alkulimaa simuloiva olioperustainen ohjelma Java-kielellä. Lötköt säilötään linkitetyille listalle ja tekstitiedostoon. Työ tehdään itsenäisesti

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

S MRI sovellukset Harjoitustehtävät. Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen

S MRI sovellukset Harjoitustehtävät. Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen S-66.3326 MRI sovellukset Harjoitustehtävät Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen Tehtävä 8.3 Tehtävä 8.3 - Teoria Käytännössä MRI-kuvaan muodostuu aina virhettä rajallisen resoluution vuoksi Käytännössä

Lisätiedot

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että 3 Simplex-menetelmä Lähdetään jostakin annettuun LP-tehtävään liittyvästä käyvästä perusratkaisusta x (0) ja pyritään muodostamaan jono x (1), x (2),... käypiä perusratkaisuja siten, että eräässä vaiheessa

Lisätiedot

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2 Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

Oppijan saama palaute määrää oppimisen tyypin

Oppijan saama palaute määrää oppimisen tyypin 281 5. KONEOPPIMINEN Älykäs agentti voi joutua oppimaan mm. seuraavia seikkoja: Kuvaus nykytilan ehdoilta suoraan toiminnolle Maailman relevanttien ominaisuuksien päätteleminen havaintojonoista Maailman

Lisätiedot

Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia.

Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia. 1 Luokittelijan suorituskyvyn optimointi Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia. A. Piirteen valinnan menetelmiä

Lisätiedot