T Neuraalilaskennan perusteet

Koko: px
Aloita esitys sivulta:

Download "T 61.3030 Neuraalilaskennan perusteet"

Transkriptio

1 T Neuraalilaskennan perusteet Harjoitustyö time series prediction Heikki Hyyti 60451P EST

2 Yleistä Harjoitustehtävässä piti Matlabin Neural Network Toolbox:n avulla luoda MLP feedforward verkko, ja opettaa se ennustamaan aikasarjaa. Tässä harjoitustyössä data oli annettu valmiina aikasarjana, Matlabin tiedostossa ts.mat. [1] Kuvassa 1 on esitetty koko aikasarja sekä lyhyt näyte mitattavasta aikasarjasta. Kuva 1: Tutkittava aikasarja ylemmässä kuvassa kokonaan ja alemmassa kuvassa lyhyeltä osalta. Aikasarjan esikäsittely Jotta Neural Network Toolbox:lla voitaisiin laskea aikasarjaa, pitää dataa käsitellä niin, että voimme yhtenä vektorina aina antaa neuroverkon syötteet x ja tarkistaa toivotun ulostulon t, joiden avulla verkko lasketaan backpropagation algoritmilla. Muutin aikasarjan ensin sellaiseen muotoon, että siinä on ensimmäisellä rivillä yhdellä viivästetty arvo, toisella rivillä kahdella viivästetty arvo ja niin edelleen. Lisäksi loin tavoitearvot oikeiden arvojen perusteella, niin että tavoitearvoksi verkolle tulee tämän hetkinen arvo. Tällöin edellisten N kpl arvojen perusteella verkko laskee nykyisen arvon. Käytin N arvoja 3, 5 ja 10. Lisäksi poistin ne aikasarjan arvot, joille en voinut tietää tarpeeksi edellisiä arvoja. (N ensimmäistä) Lisäksi aikasarja pitää jakaa testi ja harjoitusjoukkoihin. Jaoin joukot satunnaisessa järjestyksessä puoliksi. Satunnainen järjestys tallennettiin muistiin, jotta jälkeenpäin voitiin taas järjestää mittauspisteet oikeaan, alkuperäiseen, järjestykseen.

3 Laskenta Neural Network Toolbox:n avulla Seuraavaksi luotiin valmiiden työkalujen avulla MLP feedforward neuroverkko. Se toteutettiin Neural Network Toolbox:lla komennolla: net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) Tässä komennossa PR on matriisi, jossa jokaista sisääntuloa vastaa minimi ja maksimiarvojen vektori. Seuraavaksi S1,S2, tarkoittavat piilokerrosten määrää ja neuronien määrää kullakin piilokerroksella niin, että S1 kertoo ensimmäisen piilokerroksen neuronien lukumäärän. Seuraavaksi aaltosulkeiden sisällä olevat TF1, TF2, tarkoittavat kuhunkin piilokerrokseen käytettävää siirtofunktiota. Käytin ensimmäisille piilokerroksille sigmoid funktiota ja viimeiselle lineaarista funktiota. Viimeiset kolme määritettä kertovat funktiolle käytettävät algoritmit ja metodit. BTF ilmaisee backpropagation algoritmin painokertoimien määritystavan. BLF taasen ilmaisee algoritmin bias kertoimien määritystavan ja PF ilmaisee virhefunktion laskentatavan. Käytin laskennassa eri funktioita, niin normaalia backpropagation algoritmia, kuin muunnelmaa, jossa mukaan on otettu momenttitermi kuin adaptiivisesti oppivaakin muunnelmaa. Havaitsin heti, että momenttitermi lisäsi oppimisnopeutta huimasti ja adaptiivisen oppimisen ja momenttitermin yhdistelmä toimi ehdottomasti parhaiten. Tulokset Laskin viisi erilaista kokonaisuutta erilaisella verkon rakenteella. Sain tuloksia, joista voi päätellä, että mitä enemmän verkossa on neuroneita (järkevään rajaan asti) ja mitä pitemmältä ajalta se aikasarjaa seuraa, sitä parempiin ennustustuloksiin päästiin. Seuraavassa on yksitellen esiteltynä jokainen viidestä testikerrasta. Tapaus 1 Ensimmäisenä testasin 5 aikaisemman arvon perusteella ennustamista. Neuroverkossani oli yksi piilokerros, jossa oli kymmenen neuronia. Piilokerroksen siirtofunktio oli sigmoidfunktio ja ulostulon siirtofunktio lineaarinen kerroin. Opetuksessa käytettiin normaalia backpropagation algoritmia ilman momenttia tai muuta apua. Suhteellisiksi virheiksi virheen ja oikean arvon varianssien osamääräksi sain testijoukolle , opetusjoukolle ja kokonaisvirheeksi Kuvasta 2 nähdään opetuksen edistyminen ja kuvasta 3 voi havaita kuinka hyvin järjestelmä opetuksen jälkeen osasi ennustaa aikasarjan tulevaa arvoa. Kuvassa 3 on oikea arvo merkitty vaalealla katkoviivoituksella ja ennustettu arvo tummalla viivalla. X merkitsee testausdatapistettä ja O opetusdatapistettä.

4 Kuva 2: Kuvassa on ensimmäisen testin opetuksen tapahtumat Kuva 3: Oikea ja ennustettu aikasarja sekä opetusnäytteiden ja testausnäytteiden sijainti aikasarjalla 100 ensimmäiseltä aika askeleelta. Tapaus 2 Toinen tapaus on pitkälti samanlainen kuin ensimmäinenkin, mutta vähensin tarkasteltavien menneiden aika askelten määrän kolmeen ja piilokerroksen neuronien määrän kuuteen. Muuten tilanne pysyi täysin samana. Tämän tapauksen opetus näkyy kuvassa 4 ja ennustavuus näkyy kuvassa 5. Kuvat on tehty samalla periaatteella jokaisessa tapauksessa. Suhteelliseksi virheeksi saatiin tässä tapauksessa testijoukolle , opetusjoukolle ja kokonaisvirheeksi Kuten kuvista huomataan, tapauksilla 1 ja 2 ei ole juurikaan eroa. Toisen tapauksen opetus kestää hieman kauemmin ja tulos on hieman huonompi, mutta ei mitään merkittäviä eroja.

5 Kuva 4: Toisen tapauksen verkon opetus Kuva 5: Toisen tapauksen aikasarjan ennustus ja oikea aikasarja piirrettynä samaan kuvaan mittauspisteiden kanssa. Tapaus 3 Tässä tapauksessa taas alettiin vertailla neuroverkon opetusmetodeja. Neuroverkko on muuten tehty täysin samalla tavalla kuin tapauksessa 2, mutta neuroverkkoon otettiin käyttöön momenttitermit ja adaptiivinen oppiminen neuronien painokertoimien määritykseen ja bias termien määritykseen momenttitermit. Tällöin oppiminen nopeutui erittäin paljon. Kuvasta 6 voidaan haita, että tapauksen 3 oppiminen on monikymmenkertaisesti nopeampaa, kuin tapauksen 2 oppiminen. Lisäksi kuvasta 7 voidaan taas havaita neuroverkon ennustavan hyvin aikasarjaa. Tässä tapauksessa suhteelliseksi virheeksi saatiin testijoukon osalta , opetusjoukon osalta ja kokonaisvirheeksi

6 Kuva 6: Kuvassa on kolmannen tapauksen erittäin nopea oppimisprosessi. Kuva 7: Kuvassa on kolmannen tapauksen ennustettu ja oikea aikasarja. Tapaus 4 Kaksi viimeistä tapausta käytettiin virheen minimoimiseen ja ennustettavuuden parantamiseen. Pienensin ensinnäkin tavoitevirheen kymmenesosaansa. Lisäksi mittasin aikasarjaa kymmenen edeltävän askeleen pituudelta ja käytin ensimmäisellä piilokerroksella 20 neuronia. Käytin laskentaan tehokkaimmaksi havaitsemaani momenttitermin ja adaptiivisen laskennan yhdistelmää. Näin virheen sai todella pieneksi ja se olisi varmasti vielä pienentynyt nykyisestäkin, jos vain olisin vaatinut pienemmän virhetason. Kuvissa 8 ja 9 on taas sama kuvapari, kuin edellisissäkin tapauksissa. Tässä tapauksessa suhteellisiksi virheiksi tuli testijoukolle , opetusjoukolle ja kokonaisvirheeksi

7 Kuva 8: Kuvassa on neljännen tapauksen hieman pidempi ja tarkempi opetus. Kuva 9: Kuvassa on neljännen tapauksen erittäin tarkka ennustavuus, joka on lähes joka puolella oikean viivan kanssa päällekkäin. Tapaus 5 Viimeisessä tapauksessa lisättiin verkkoon vielä toinen piilokerros, ja katsottiin vaikuttaisiko se mitenkään laskentatarkkuuteen tai nopeuteen. Pidin tapauksen 4 verkon muuten samana, mutta siirsin piilokerroksen 20 neuronia tasaisesti kahteen kerrokseen niin, että kumpaankin kerrokseen tuli 10 neuronia. Lisäksi havaitsin, että tarkan ennusteen saamiseen ei tarvita kovinkaan montaa edellistä arvoa, joten valitsin että 5 edellistä arvoa riittää. Tämän tapauksen kuvapari löytyy kuvista 10 ja 11. Suhteelliseksi virheeksi sain verkon testijoukolle , opetusjoukolle ja kokonaisvirheeksi Olisin tässäkin tapauksessa varmasti päässyt parempaan lopputulokseen jos olisin odottanut pitempään ja vaatinut pienemmän virhekriteerin.

8 Kuva 10: Tapauksen 5 verkon opetus. Tässä tapauksessa kaksi oli piilokerrosta. Kuva 11: Tapauksen 5 ennustettu aikasarja ja oikea aikasarja ovat jo aivan päällekkäin. Päätelmät ja johtopäätökset Harjoitustyöstä havaittiin, että tällaisen jaksollisesti toistuvan kuitenkin satunnaiselta vaikuttavankin datan ennustaminen onnistuu melko hyvin MLP neuroverkon avulla. Jos aikasarjaa ennustaa niin pitkältä ajalta, että kaikki toistuvat kuviot näkyvät neuroverkolle historiassa, voidaan lähes mitä tahansa pystyä ennustamaan. Näin olisi mahdollista ennustaa esimerkiksi pörssikursseja, jos historiaa laskee vain tarpeeksi pitkältä ajalta, jotta toistuvuudet voidaan havaita.

9 Harjoitustyöstä opittiin myös se, että momenttitermillä ja muilla kehittyneemmillä backpropagation algoritmin muunnoksilla voidaan saavuttaa erittäin paljon nopeampi verkon oppiminen. Tällöin varsinkin suurien verkkojen laskennassa säästetään paljon aikaa ja resursseja. Kolmas huomaamani asia oli se, että kun verkko näkee tarpeeksi historiaa, ei ole enää juurikaan hyötyä lisätä sille enempää tietoa, vaan pienelläkin tietomäärällä voidaan päästä riittävän hyvään lopputulokseen, kuten tapauksesta 2 ja 3 voimme havaita. Näissä tapauksissa seurasin vain 3 edellistä aikasarjan näytettä ja laskin sitä kuudella piilokerroksen neuronilla. Näin pienelläkin laskennalla päästiin erittäin hyvään lopputulokseen verkon kokoon ja laskentamäärään suhteutettuna. Lähdeluettelo 1. Neuraalilaskennan perusteiden kotisivut, harjoitustehtävä aikasarja. Viitattu: Saatavilla: /harjtyo/aikasarja/timeseries.shtml

10 Liitteet Liite 1: Laskentaan käytetty Matlab ohjelmointikoodi %% Neuraalilaskennan harjoitus % Heikki Hyyti 60451P hhyyti@cc.hut.fi % aikasarjan ennustus clear all; %% Ensiksi piirretään muutama mallikuva aikasarjadatasta, jota meillä on % load ts.mat; x = 1:length(ts); figure(1); subplot(2,1,1); plot(x,ts,'k'); title('ennustettava data, ts.mat'); xlabel('mittausnäytteet '); subplot(2,1,2); plot(x(100:200),ts(100:200),'k'); xlabel('mittausnäytteet '); %% Muutetaan mittausdata sellaiseen muotoon, että siinä on jokaisessa % sarakkeessa ensin 1 viivästetty, sitten 2 viivästetty jne. Mittausdata % kirjataan data_x matriisiin ja jokaisen oikea nollaviivästetty arvo % data_t vektoriin. % inputtien määrä eli aikaisempien arvojen määrä inputn = 5; for i = (inputn + 1):length(ts) for j = 1:inputN data_x(i inputn,j) = ts(i j); data_t(i inputn) = ts(i); end end %% jaetaan data satunnaisesti puoliksi harjoitus ja testijoukkoihin rind = randperm(length(data_x)); x_train=data_x(rind(1:floor(length(data_x)/2)),:); t_train=data_t(rind(1:floor(length(data_x)/2))); x_test=data_x(rind(floor(length(data_x)/2)+1:length(data_x)),:); t_test=data_t(rind(floor(length(data_x)/2)+1:length(data_x))); %% MLP verkko % net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) % PR R x 2 matrix of min and max values for R input elements. % Si Size of ith layer, for Nl layers. % TFi Transfer function of ith layer, default = 'tansig'. % BTF Backpropagation network training function, default = 'traingdx'.

11 % BLF Backpropagation weight/bias learning function, default = 'learngdm'. % PF Performance function, default = 'mse'. % ensimmäisen kerroksen neuronien määrä N1 = 10; N2 = 10; % Rx2 min ja max arvot PR = [min(data_x)', max(data_x)']; net = newff(pr, [N1, N2, 1], {'tansig' 'tansig' 'purelin'},'traingdx','learngdm','mse'); %% alustetaan verkko pienillä satunnaisluvuilla % Piilokerroksen painot net.iw{1,1}=0.001*randn([n1 inputn]); % Output layer weights net.lw{2,1}=0.001*randn([n2 N1]); % Biases net.b{1,1}=0.001*randn([n1 1]); net.b{2,1}=0.001*randn([n2 1]); net.b{3,1}=0.001*randn; %% Opetetaan verkko % train(net,p,t,pi,ai,vv,tv) % net Neural Network. % P Network inputs. % T Network targets, default = zeros. % Pi Initial input delay conditions, default = zeros. % Ai Initial layer delay conditions, default = zeros. % VV Structure of validation vectors, default = []. % TV Structure of test vectors, default = []. net.trainparam.epochs = ; net.trainparam.goal = 0.001; [net,tr,y,e]=train(net,x_train',t_train); %% Testataan verkon toimintaa Y_test = sim(net, x_test'); Y_train = sim(net, x_train'); %% Kuvataan tulokset testausdatasta figure(2) % testidata ja harjoitusdata järjestettynä niin, että ensimmäisellä rivillä % on alkuperäinen indeksi, toisella rivillä testiarvo ja kolmannella % rivillä oikea arvo ja neljännellä rivillä virhe merkitään viidennelle

12 % riville nolla, jos kyseessä on harjoitusjoukko ja yksi jos kyseessä on % testijoukko, jotta ne voidaan myöhemmin erottaa toisistaan. YTE = [rind(floor(length(data_x)/2)+1:length(data_x))', Y_test', t_test', (Y_test t_test)', ones(length(y_test),1)]; YTR = [rind(1:floor(length(data_x)/2))', Y_train', t_train', (Y_train t_train)', zeros(length(y_train),1)]; Y_all = [YTE; YTR]; % järjestetään matriisi alkuperäisen indeksin mukaan Y_sort = sortrows(y_all,1); % lasketaan suhteellinen virhe, error = var(virhe) / var(oikea) error_test = var(yte(:,4))/var(yte(:,3)) error_train = var(ytr(:,4))/var(ytr(:,3)) error_all = var(y_sort(:,4))/var(y_sort(:,3)) % otetaan 100 ensimmäisen askeleen matkalta erikseen testidatan ja % harjoitusdatan pisteet piirtoa varten. index_tr = 1; index_te = 1; for i = 1:100 if Y_sort(i,5) == 0 plot_tr(index_tr,1:2) = [i, Y_sort(i,3)]; index_tr = index_tr + 1; else plot_te(index_te,1:2) = [i, Y_sort(i,3)]; index_te = index_te + 1; end end % Plotataan 100 askeleen pätkä dataa malliksi niin, että samassa kuvassa on % ennustettu ja oikea arvo. plot(1:100, Y_sort(1:100,3), ' g',1:100, Y_sort(1:100,2), ' k',... plot_tr(:,1), plot_tr(:,2), 'bo', plot_te(:,1), plot_te(:,2), 'bx'); legend('oikea','ennustettu', 'opetusdatapisteet', 'testausdatapisteet') title('näytteet , joita on ennustettu MLP verkolla');

13 Liite 2: kaikista eri mittauksista saatu mittauspöytäkirja // testi 1. // 5 askeleen ennustus 10 neuronilla. // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdm','learngd','mse'); error_test = error_train = error_all = // testi 2 // 3 askeleen ennustus 6 neuronilla // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdm','learngd','mse'); error_test = error_train = error_all = // testi 3 // 3 askeleen ennustus 6 neuronilla // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdx','learngdm','mse'); // erilaiset opetusmetodit siis (oppi 100x nopeammin) error_test = error_train = error_all = // testi 4 // oikein massiivinen testi // 10 askeleen ennustus 20 neuronilla ja tarkemmalla tarkkuusvaatimuksella. // net = newff(pr, [N1, 1], {'tansig' 'purelin'},'traingdx','learngdm','mse'); error_test = error_train = error_all = // testi 5 // lisää piilokerroksen neuroneita // 5 askeleen ennustus, kymmenen piiloneuronia kahdessa kerroksessa. (N1 = N2 = 10) // net = newff(pr, [N1, N2, 1], {'tansig' 'tansig' 'purelin'},'traingdx','learngdm','mse'); error_test = error_train = error_all =

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

S Laskennallinen Neurotiede

S Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan

Lisätiedot

ImageRecognition toteutus

ImageRecognition toteutus ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

Tekoäly muuttaa arvoketjuja

Tekoäly muuttaa arvoketjuja Tekoäly muuttaa arvoketjuja Näin kartoitat tekoälyn mahdollisuuksia projektissasi Harri Puolitaival Harri Puolitaival Diplomi-insinööri ja yrittäjä Terveysteknologia-alan start-up: Likelle - lämpötilaherkkien

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 4. luento 24.11.2017 Neuroverkon opettaminen - gradienttimenetelmä Neuroverkkoa opetetaan syöte-tavoite-pareilla

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1. T-61.020 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke 18.4.2007, 12:1 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.0 1. Käytämme siis jälleen viterbi-algoritmia todennäköisimmän

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Kognitiivinen mallintaminen. Nelli Salminen

Kognitiivinen mallintaminen. Nelli Salminen Kognitiivinen mallintaminen Neuraalimallinnus 24.11. Nelli Salminen nelli.salminen@tkk.fi Tällä kerralla ohjelmassa vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko oppimissääntöjen

Lisätiedot

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö Tällä kerralla ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 19.2. Nelli Salminen nelli.salminen@helsinki.fi D433 vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko

Lisätiedot

L9: Rayleigh testi. Laskuharjoitus

L9: Rayleigh testi. Laskuharjoitus L9: Rayleigh testi Laskuharjoitus Data on tiedoston Rayleighdata.dat 1. sarake: t = t i Ajan hetket ovat t = t 1, t 2,..., t n, missä n = n = 528 Laske ja plottaa välillä f min = 1/P max ja f max = 1/P

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Numeerinen analyysi Harjoitus 3 / Kevät 2017

Numeerinen analyysi Harjoitus 3 / Kevät 2017 Numeerinen analyysi Harjoitus 3 / Kevät 2017 Palautus viimeistään perjantaina 17.3. Tehtävä 1: Tarkastellaan funktion f(x) = x evaluoimista välillä x [2.0, 2.3]. Muodosta interpoloiva polynomi p 3 (x),

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

T Hahmontunnistuksen perusteet

T Hahmontunnistuksen perusteet T 61.3020 Hahmontunnistuksen perusteet Harjoitustyö Käsin kirjoitettujen numeroiden tunnistus LVQ menetelmällä 30.3.2007 Heikki Hyyti 60451P hhyyti@cc.hut.fi Yleistä Harjoitustyössä piti tehdä käsinkirjoitettujen

Lisätiedot

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 9. harjoitus - ratkaisut 1. a) Viivahakutehtävä pisteessä x suuntaan d on missä min f(x + λd), λ f(x + λd) = (x

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Tieteellinen laskenta 2 Törmäykset

Tieteellinen laskenta 2 Törmäykset Tieteellinen laskenta 2 Törmäykset Aki Kutvonen Op.nmr 013185860 Sisällysluettelo Ohjelman tekninen dokumentti...3 Yleiskuvaus...3 Kääntöohje...3 Ohjelman yleinen rakenne...4 Esimerkkiajo ja käyttöohje...5

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,

Lisätiedot

mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä

mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä osittaisderivaatoista: y 1... J F =.

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Kokonaislukuaritmetiikka vs. logiikkaluupit

Kokonaislukuaritmetiikka vs. logiikkaluupit Diskreetti matematiikka, syksy 2010 Matlab-harjoitus 3 (18.11. klo 16-18 MP103) Tehtäviin vastataan tälle paperille, osoitettuihin tyhjiin alueisiin, yleensä tyhjille riveille. Tehtävät saa ja on suorastaan

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 2 521475S Tietokonealgoritmien rinnakkaisuuden analysointi Algoritmi on proseduuri, joka koostuu äärellisestä joukosta yksiselitteisiä sääntöjä jotka muodostavat operaatiosekvenssin,

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

Python-ohjelmointi Harjoitus 5

Python-ohjelmointi Harjoitus 5 Python-ohjelmointi Harjoitus 5 TAVOITTEET Kerrataan silmukkarakenteen käyttäminen. Kerrataan jos-ehtorakenteen käyttäminen. Opitaan if else- ja if elif else-ehtorakenteet. Matematiikan sisällöt Tehtävät

Lisätiedot

P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)

P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1) Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma. 2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä

Lisätiedot

Sisältö. 2. Taulukot. Yleistä. Yleistä

Sisältö. 2. Taulukot. Yleistä. Yleistä Sisältö 2. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.1 2.2 Yleistä

Lisätiedot

Sisältö. Työn lähtökohta ja tavoitteet Lyhyt kertaus prosessista Käytetyt menetelmät Työn kulku Tulokset Ongelmat ja jatkokehitys

Sisältö. Työn lähtökohta ja tavoitteet Lyhyt kertaus prosessista Käytetyt menetelmät Työn kulku Tulokset Ongelmat ja jatkokehitys Loppuraportti Sisältö Työn lähtökohta ja tavoitteet Lyhyt kertaus prosessista Käytetyt menetelmät Työn kulku Tulokset Ongelmat ja jatkokehitys Työn lähtökohta ja tavoitteet Voimalaitoskattiloiden tulipesässä

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

6. Tietokoneharjoitukset

6. Tietokoneharjoitukset 6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Matlabin perusteita Grafiikka

Matlabin perusteita Grafiikka BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,

Lisätiedot

Matlab- ja Maple- ohjelmointi

Matlab- ja Maple- ohjelmointi Perusasioita 2. helmikuuta 2005 Matlab- ja Maple- ohjelmointi Yleistä losoaa ja erityisesti Numsym05-kurssin tarpeita palvellee parhaiten, jos esitän asian rinnakkain Maple:n ja Matlab:n kannalta. Ohjelmien

Lisätiedot

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin BMA7 - Integraalimuunnokset Harjoitus 9. Määritä -jaksollisen funktion f x = coshx, < x < Fourier-sarja. Funktion on parillinen, joten b n = kun n =,,3,... Parillisuudesta johtuen kertoimet a ja a n saadaan

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)

Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.) Tänään ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 26.2. Nelli Salminen nelli.salminen@helsinki.fi D433 autoassosiaatio, attraktorin käsite esimerkkitapaus: kolme eri tapaa mallintaa kategorista

Lisätiedot

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5 Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA TIETOTEKNIIKAN LAITOS Jyrki Kankaanpää AIKASARJAN MALLINTAMINEN MULTI-LAYER- PERCEPTRON -NEUROVERKOLLA KTM, tietotekniikka Pro Gradu tutkielma VAASA 2007 2 3 SISÄLLYSLUETTELO

Lisätiedot

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Jousen jousivoiman riippuvuus venymästä

Jousen jousivoiman riippuvuus venymästä 1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

Tieto- ja tallennusrakenteet

Tieto- ja tallennusrakenteet Tieto- ja tallennusrakenteet Sisältö Tyyppi, abstrakti tietotyyppi, abstraktin tietotyypin toteutus Tallennusrakenteet Taulukko Linkitetty rakenne Abstraktit tietotyypit Lista (Puu) (Viimeisellä viikolla)

Lisätiedot

MLP-hermoverkko ja sen soveltaminen kuvien luokitteluun

MLP-hermoverkko ja sen soveltaminen kuvien luokitteluun MLP-hermoverkko ja sen soveltaminen kuvien luokitteluun Konenäkö -kurssin 2008 vierailuluento Tietotekniikan laitos Jyväskylän yliopisto Konenäkö -kurssi, 25.9. ja 30.9.2008 Sisältö 1 Hermoverkon perusidea

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Määrittelydokumentti

Määrittelydokumentti Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan Mat 2.4177Operaatiotutkimuksenprojektityöseminaari Tieverkonkunnonstokastinenennustemallija sensoveltaminenriskienhallintaan Väliraportti 3/4/2009 Toimeksiantajat: PöyryInfraOy(PekkaMild) Tiehallinto(VesaMännistö)

Lisätiedot

PID-sa a timen viritta minen Matlabilla ja simulinkilla

PID-sa a timen viritta minen Matlabilla ja simulinkilla PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin

Lisätiedot

Harjoitus 4 -- Ratkaisut

Harjoitus 4 -- Ratkaisut Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151 Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Mat-1.C Matemaattiset ohjelmistot

Mat-1.C Matemaattiset ohjelmistot Mat-.C Matemaattiset ohjelmistot Luento ma 9.3.0 $z; Error, (in rtable/product) invalid arguments.z; z C z C z3 3 C z4 4 C z5 5.Tr z ; z C z C z3 3 C z4 4 C z5 5 ; Error, (in rtable/power) eponentiation

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Tee-se-itse -tekoäly

Tee-se-itse -tekoäly Tee-se-itse -tekoäly Avainsanat: koneoppiminen, tekoäly, neuroverkko Luokkataso: 6.-9. luokka, lukio, yliopisto Välineet: kynä, muistilappuja tai kertakäyttömukeja, herneitä tms. pieniä esineitä Kuvaus:

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

linux linux: käyttäjän oikeudet + lisää ja - poistaa oikeuksia

linux linux: käyttäjän oikeudet + lisää ja - poistaa oikeuksia L6: linux linux linux: käyttäjän oikeudet Käyttäjällä, username, on käyttöoikeus rajattuun levytilaan du -h /home/username/ tulostaa käytetyn levytilan. Yhteenvedon antaa du -h /home/jetsu/ - -summarize

Lisätiedot