6.2 Laskimen käyttö. Mitä funktiolaskimet osaavat

Koko: px
Aloita esitys sivulta:

Download "6.2 Laskimen käyttö. Mitä funktiolaskimet osaavat"

Transkriptio

1 Aluksi Tämä luku (luku 3) ei ole minkään laskimen käsikirja. Se ei myöskään ole tyhjentävä esitys laskimen käytöstä yleensä. Tarkoitukseni on tutkia joitakin laskinten perusominaisuuksia ja siten auttaa sinut alkuun laskimen käytössä. Jos tunnet laskimesi kuin omat taskusi erittäin suositeltava tilanne niin et ehkä tarvitse koko lukua. Manuaaliko mameleille Muista, että laskimesi käsikirja on varsinainen tietolähteesi ja niksikirjasi, kun tutkit omaa konettasi. Arvaamatonta hyötyä saat myös, kun kokeilet ennakkoluulottomasti erilaisia juttuja. Ja kyllä laskimen käytön opiskeleminen voi olla hauskaakin: kokeile älyttömiä! Hyötyä vai haittaa Ota huomioon, että laskimesta on pelkkää haittaa, jos et osaa käyttää sitä, koska saatat silloin uskoa mitä tahansa roskaa koneesi näytöllä milloinkin sattuu olemaan. Tarvitset rutiinia, jos haluat, että voit luottaa tuloksiin, joita koneestasi irti saat. Käytä siis konettasi aivan kaikkeen, aivan kaikkialla ja ihan aina. Millainen laskin Hanki hyvä laskin. Älä kuitenkaan hanki liian hyvää laskinta: markkinoilla on malleja, jotka ovat niin tehokkaita, että ne eivät ole sallittuja yo-kokeissa. Grafiikasta on hyötyä ja sitä laskin saa osata, mutta symbolista laskentaa kone ei saa osata. Ylioppilastutkintolautakunnan sivuilla on tarkempaa tieto sallituista ja kielletyistä piirteistä, ja maahantuojat osaavat kertoa mallikohtaisesti, mikä on sallittu yo-kokeissa mikä ei. On kuitenkin syytä selkeästi tiedostaa, että laskin, taulukkokirja tai mikä muu apuväline tahansa ei korvaa sinun omaa taitoasi tai järkeäsi. Mainostako Mainitsen nimeltä joitakin laskimenvalmistajia ja myös joitakin heidän mallejaan. En kuitenkaan mainosta mitään merkkiä ylitse muiden. Mainitsen nimiä, koska silloin sinä tiedät, mistä minä puhun. Voit sitten etsiä niistä tietoja esimerkiksi netistä. Moni valmistaja laittaa koneittensa käsikirjoja nettiin. Käsikirjan sähköisestä versiosta on helppo etsiä tietoa hakusanan avulla. Paitsi jos käsikirja on skannattu sähköiseen muotoon, jolloin sivut ovat kuvia eikä niistä voi etsiä mitään muuten kuin selaamalla. Ainakin tällöin painettu kirja on digiversiota parempi. Mitä funktiolaskimet osaavat Funktiolaskimet osaavat peruslaskuoperaatiot: yhteenlasku, vähennyslasku, kerto-, jako- ja erilaiset prosenttilaskentaoperaatiot. Tämän lisäksi ne osaavat korottaa luvun mihin tahansa potenssiin, ottaa minkä tahansa juuren, ottaa käänteisluvun, laskea logaritmit ja trigonometriset funktiot. Näppärä apu, joka löytyy kaikista funktiolaskimista, on pii näppäin (π ). 1(11)

2 Itse asiassa se, että laskin on funktiolaskin, määräytyy juuri sillä perusteella, että siitä löytyvät nämä operaatiot. Lisäksi funktiolaskimessa on tilastofunktioita ja onpa monissa murtolukuoperaatiot. Viimeksi mainittu merkitsee sitä, että kone osaa laskea murtoluvuilla joutumatta turvautumaan murtolukujen desimaalilikiarvoihin. Tämä parantaa laskutarkkuutta. Lisää joustavuutta ja tehokkuutta laskuihin tuovat sisäkkäisten sulkeiden käytön mahdollisuus sekä erikseen osoitettavat muistipaikat. Kaikki nämä ovat välttämättömiä lukiolaisen laskimeen kuuluvia ominaisuuksia. Hyödyllisiä koneen ominaisuuksia saattavat olla myös erilaiset luonnonvakiot ja muunnokset yksiköitten ja järjestelmien välillä. Tällaisia ovat muunnokset esimerkiksi hevosvoimien ja kilowattien sekä asteitten ja radiaanien välillä. Tarvitsetko näitä, riippuu sitä, mitä muuta opiskelet paitsi matematiikkaa. Lasketaan pari esimerkkiä kolmella funktiolaskimella. Nämä ovat tällä hetkellä heinäkuu 005 markkinoilla olevia, kolmen eri valmistajan koneita. Valitsen nämä nimenomaiset mallit, koska ne ovat nyt minulla tässä käsillä. Jos minulla olisi muita funktiolaskimia, valitsisin ne. Kaikki kolme ovat hyviä laskimia, jotka riittäisivät muuten lukioon, mutta niissä ei ole graafisia ominaisuuksia. Hewlett-Packard on lisäksi ohjelmoitava. Kaikki ovat myös sallittuja yo-kokeissa. Lisäksi niitten laskentatarkkuus on riittävä, mikä ei yleensä olekaan ongelma. Tarkista, että sinun laskimesi laskee ainakin kymmenellä merkitsevällä numerolla. Koneet ovat Casio fx-115ms, Hewlett-Packard 33s ja Texas Instruments 30X IIB. Ne eivät ole ihan uusia malleja. Myös Sharp valmistaa funktiolaskimia. Kaikilla, varsinkin Hewlett- Packard illa, on malleja, joita ei saa käyttää yo-kokeissa (syinä muun muassa koneiden symbolisen laskennan, CAS:n, toiminteet). Oheisen kuvion merkintä 10:n potenssi tarkoittaa luvun syöttämistä 10-potenssimuodossa. SHIFT nd Pii Neliöjuuri Neliö 10:n potenssi Tangentti Yleinen potenssi Luvun merkin vaihto Vähennyslasku (11)

3 CONST 10:n potenssi Pii E Tangentti ENTER Laskuesimerkkejä funktiolaskimille Lasketaan seuraavat laskut. 1. Suoran putken poikkileikkaus on ympyrä ja sen läpimitta on,54 cm. Laske 30 cm pitkän putken tilavuus. Tämmöinen putki on suora ympyrälieriö. Sen tilavuus lasketaan kaavalla missä r on poikkileikkauksen säde ja s on putken pituus. Casio fx-115ms SHIFT π (.54 / ) x 30 = V = πr s, Keltainen SHIFT valitsee siis toiminnon π näppäimeltä, jolla on myös luvun kymmenen potenssi. Näytön yläriville tulee jokainen näppäily. Ne jäävät näkyviin senkin jälkeen, kun olet painanut yhtäsuuruus näppäintä. Tulos on 15,01437 paitsi että desimaalierottimena on piste. Eri asia sitten on, millä tarkkuudella tulos kannattaa ilmoittaa. Siitä enemmän muussa yhteydessä. Huomaa, että jos kirjoitat väärin, voit korjata sen palaamalla virhekohtaan nuolinäppäimillä. Nuolinäppäimet löydät näytön alla, keskellä olevasta isosta soikiosta, jossa lukee keltaisella muun muassa COPY. Samalla tekniikalla voit myös nopeasti muuttaa kaavassa olevia lukuja ja siis toistaa helposti saman laskun uusilla lukuarvoilla. Hewlett-Packard 33s ohjelmoitava RPN -funktiolaskin HP-33s eroaa muista esimerkkilaskimistamme kahdella erityisellä tavalla: se on ohjelmoitava ja siinä voi käyttää RPN logiikkaa laskemisessa (RPN: Reverse Polish Notation). RPN ei tarvitse sulkeita. 3(11)

4 Ohjelmoitavuus jakautuu vielä kahden eri tyyppisen ohjelmoinnin valintamahdollisuuteen: yhtälö- ja perinteinen ohjelmointi. En anna esimerkkiä ohjelman kirjoittamisesta. Tyydyn toteamaan, että ohjelmointi laajentaa koneen käyttömahdollisuuksia tuntuvasti. RPN:ää pidän kuitenkin niin ansiokkaana, että käytän sitä esimerkkiemme laskemiseen HP:lla. HP-33s osaa kuitenkin myös muitten käyttämän algebrallisen tyylin. Jos hankit HP:n, tutustu RPN:ään!.54 ENTER x 30 π. Huomaa, että tarvitset violetin vaihtonäppäimen, kun otat piin. Näytöllä on nyt luku 15, RPN RPN:n perusidea on, että ensin näppäillään luvut ja sitten annetaan toimintakäskyt. Esimerkiksi äsken annoit luvun,54 ja sitten painoit ENTER, jotta HP tiesi ensimmäisen luvun olevan valmis. Sitten annoit kakkosen ja vasta sen jälkeen ilmoitit, että haluat, että nyt jaetaan:. RPN käyttää pinomuistia välitulosten tallentamiseen. HP33s:n RPN:n pinomuisti käsittää neljä muistipaikkaa: x, y, z ja t. Koneesi käsikirja esittelee RPN järjestelmän tarkemmin. Tutustu siihen perusteellisesti. Huomaat, että laskuvirheet vähenevät, kun RPN:n avulla et joudu uskomaan koneen antamaa tulosta, vaan pysyt koko laskun ajan kärryillä siinä, missä mennään. Tässä koneessa on myös niin sanottu Last X rekisteri. Sen avulla saat viimeisimmän argumentin (pinon x-rekisterin sisällön) takaisin. Texas Instruments 30X IIB π (. 54 ) x 30 = Nyt et siis joudu käyttämään mitään vaihtonäppäintä. Huomaa myös tämän mallin Casion kaltainen syöttörivin muokkaamismahdollisuus.. Maan ja Auringon välimatka eli tähtitieteellinen yksikkö (au) on 149, km ja km valonnopeus on 9979,458. Kuinka kauan valon kestää tulla Auringosta s Maahan? 149, km Nyt suoritamme siis jakolaskun. km 9979,458 s Casio fx-115ms EXP = Huomaa näppäimen EXP käyttö! Se tuottaa näytölle ison E kirjaimen. Tämä tarkoittaa, että seuraava(t) numero(t) on kymmenen eksponentti. Jakolaskun tulos on 499, Muista kuitenkin käytännön tilanteessa ilmoittaa tulos järkevällä tarkkuudella. Hewlett-Packard 33s ohjelmoitava RPN -funktiolaskin E 6. Paina violettia vaihtonäppäintä ja sitten CONST. Saat näkyviin luettelon, joka tarjoaa valittavaksi muutaman luonnonvakion. Yksi niistä, peräti ensimmäinen, on valonnopeus c. Varmista, että c on alleviivattuna ja paina sitten ENTER. Valonnopeuden 6 6 4(11)

5 lukuarvo metreinä sekunnissa ilmestyy laskimen x rekisteriin. Paina sitten. Koska valonnopeuden arvo saatiin metreinä sekunnissa, tämä tulos on kerrottava vielä tuhannella: paina E 3. Nyt sinulla pitäisi olla tulos 499, Tämä luku on sekunteja. Muista järkevä tarkkuus käytännön tilanteessa. Texas Instruments 30X IIB ndEE = Nyt kannattaa huomata, että tarvitaan taas vaihtonäppäintä. Vaihtonäppäimen Texasin versio on ndee. Nyt sitä tarvitaan eksponentin syöttämistä varten. 3. Näet merellä laivan, jonka pituudeksi tiedät 18 metriä. Mittaat kulman, jossa se näkyy. Kulma on 4,16 astetta. Kuinka kaukana laiva on? 18m Etäisyys saadaan kaavasta. 416, tan Mieti vielä, millaisia virhelähteitä laskuissa pitää ottaa huomioon. Oleta jokin oikealta tuntuva epätarkkuus ja laske koneellasi, kuinka paljon se vaikuttaa tulokseen. Casio fx-115ms Selvyyden vuoksi on toisinaan hyvä käyttää sulkeita, vaikkei se olisikaan kirjaimellisesti välttämätöntä. Näppäillään (18 ) tan ( 4.16 ) =. Tulos on Tämä edellyttää, että laskimesi on tilassa, jossa se käyttää asteita (DEG tai DEGREES) kulmayksikkönä. Hewlett-Packard 33s ohjelmoitava RPN -funktiolaskin Tarkista, että koneesi käyttää asteita kulmayksikkönä. 18 ENTER 4,16 ENTER TAN. Näytölläsi on 3001, Texas Instruments 30X IIB Näppäilyt ovat nyt melkein samat kuin Casion tapauksessa. Ainoa ero on, että painettuasi TAN näppäintä et joudu painamaan avaavaa sulkumerkkiä (. Riittää, kun kirjoitat sulkevan sulkumerkin luvun näppäilemisen jälkeen. Ja taas edellytetään, että laskimesi on tilassa, jossa se käyttää asteita (DEG tai DEGREES) kulmayksikkönä. 4. Funktiolaskimissa ja graafisissa laskimissa on tavallaan kaksi miinusmerkkiä: toinen on luvun merkin muuttamista varten, toinen vähennyslaskuja varten. Seuraavat pienet 3 3 laskelmat valaisevat asiaa. Lasketaan 8 6, 8 ( 6), 8 + ( 6), ja. Pane merkille, mitä miinusmerkkiä käytetään missäkin tilanteessa! Casio fx- 115MS Texas Instruments 30X IIB Hewlett-Packard 33s Tulos = 8 6 = 8 ENTER 6 8 ( 6) 8 (-) 6 = 8 (-) 6 = 8 ENTER 6 +/ 14 5(11)

6 8 + ( 6) 8 + (-) 6 = 8 + (-) 6 = 8 ENTER 6 +/ + 3 ^ 3 = ^ 3 = ENTER 3 3 ^ (-) 3 = ^ (-) 3 = ENTER 3 +/ x y 8 x y 0,15 Muistipaikat Sulkeita täydentävät muistipaikat. Myös niitten käyttö kannattaa opetella. Niitten toteuttaminen riippuu laskinmallista, mutta kaksi päätapaa voidaan erottaa: osoitteelliset muistipaikat sekä muistipaikat, joille sinä annat nimen. Muistipaikkaan kannattaa tallentaa vakioita, esimerkiksi euro markkoina (1 euro = 5,94573 markkaa). Vaikka muistaisit vakion ulkoa järkevää saat sen nopeasti ja ilman harmillisia kirjoitusvirheitä käyttöösi, jos se on tallennettu muistipaikkaan. Ikävää, että ennen yo-kokeita joudut antamaan laskimesi opettajalle tyhjennettäväksi kaikesta omasta sisällöstä. Osaa siis asiasi! Mitä graafiset laskimet osaavat Paitsi sen, mihin funktiolaskimet pystyvät, graafiset laskimet kykenevät näyttämään myös funktioiden kuvaajia sekä esimerkiksi tilastolaskujen tuloksia graafisessa muodossa. Lisäksi monissa graafisissa laskimissa on grafiikasta riippumattomia toimintoja, joita ei ole ainakaan kaikissa funktiolaskimissa. Eräs tällainen toiminto on laskuoperaation suorittaminen yhdellä kertaa usealle argumentille. Tämä tehdään kohdistamalla operaatio listaan (engl. list), joka sisältää argumentit. Jotta saat hyödyn tästä mahdollisuudesta, sinun on osattava määritellä listoja. Kun sitten olet määritellyt listan, voit antaa sen argumenttina koneelle kuten pelkän yhden luvun. Koneesi käsikirja neuvoo sinua tässä. Listat ovat erittäin hyödyllinen piirre. Useimmat graafiset laskimet ovat ohjelmoitavia. Jos ostat graafisen laskimen, tarkista asia. Yleisesti graafisissa laskimissa on enemmän muistia ja tehokkaampi prosessori kuin funktiolaskimissa ja ne maksavat enemmän. ALPHA OPTN CLEAR VARS MENU MODE ZOOM Y= ALPHA MATH = 6(11)

7 Huomaa ainakin seuraavat seikat Grafiikan tarkkuus. Mitä isompi sen parempi, esimerkiksi pistettä. Näytön selkeys sekä huonossa valossa että auringonvalossa. Saako kuvasta selvää? Värit vievät virtaa ja ovat kalliita. Saman hintaisessa värinäytöllisessä laskimessa on vähemmän muistia ja/tai toimintoja kuin yksivärisessä koneessa. Muistin määrä ja tyyppi. Kuinka suuressa tilassa ohjelmat toimivat (RAM), kuinka paljon on tilaa sovellusohjelmille (Flash ROM)? Saatko ohjelmia valmistajan nettisivuilta? Jos haluat käyttää tätä mahdollisuutta, tarvitset ainakin pc liitännän (USB.0). Prosessorin nopeus. Kokeile paljon tehoa vaativalla kuvalla kuten esimerkissä 7. Kuinka kauan kestää, että kone piirtää esimerkin 7 kuvan? Subjektiivinen näppäintuntuma. Tuleeko helposti lyöntivirheitä? Tunnetko, milloin näppäimenpainallus on mennyt perille? Eri tehtaiden ilmoittamat toimintojen lukumäärät eivät ole keskenään vertailukelpoiset. Paljon toimintoja on kuitenkin toivottavaa. Mitä toimintoja tarvitset tai haluat? Esimerkkejä graafisille laskimille Antamani ohjeet, jotka koskivat funktiolaskimia, pätevät graafisillekin laskimille. Nyt minulla on kaksi esimerkkikonetta: Casio CFX-9950GB Plus ja Texas Instruments 84 Plus. Ohjeet, jotka annan Casio CFX-9950GB Plussalle, ovat melko helposti sovellettavissa muille Casion malleille, viimeistään käsikirjan avulla. Tämä Casion malli on ollut markkinoilla jo kohtalaisen kauan ja he ovat julkaisseet tukun uusia kuinkas muuten. Vastaavasti ohjeet, jotka annan Texas Instruments 84 Plussalle, pätevät sellaisenaan ainakin myös Texas Instruments 84 Plus SE:lle, Texas Instruments 83 Plussalle ja Texas Instruments 83 Plus SE:lle. Jos sinulla on jokin muu Texas Instrumentsin malli, niin osaat varmaan soveltaa antamani ohjeet sille ainakin käsikirjan avulla! Käsitellään seuraavat tehtävät molemmilla laskimilla: 5. Missä pisteessä suorat y = x + 3 ja y = x + 6 leikkaavat toisensa? Casio CFX-9950GB Plus Numeroidaan Casion Main Menu näytön ikonit. Näin niihin viittaaminen on helpompaa. Tähän valikkoon pääset painamalla MENU näppäintä. Oletusarvoisesti kone myös käynnistyy suoraan tähän valikkoon. Seuraava luettelo on tämän Casion mallin Main Menu näytön ikonien kaavio. En onnistunut ottamaan siitä kelvollista valokuvaa enkä löytänyt sellaista netistäkään. (1,1) (1,) (1,3) (1,4) (1,5) (,1) (,) (3,) (,4) (,5) (3,1) (3,) (3,3) (3,4) (3,5) 7(11)

8 Valitse nuolinäppäimillä Main Menu näytön eli Päävalikon ikoni (1,5), jossa on teksti Graph. Paina oikeassa alanurkassa olevaa sinistä EXE näppäintä. Näppäile kohtaan Y1: x + 3, paina EXE näppäintä ja näppäile sitten kohtaan Y: x + 6. Tässä tarvitset punaista ALPHA -näppäintä. Muista käyttää ( ) näppäintä luvun etumerkin vaihtamiseen! Tallenna tämäkin yhtälö painamalla EXE. Painamalla nyt F6 (DRAW) saat suorien kuvaajat näkyviin. Jos koneessasi ovat oletusasetukset käytössä, suorien leikkauspiste jää näytön ulkopuolelle. Paina EXIT ja sitten SHIFT ja vielä F3. Kirjoita 0 kohtaan Xmin:, 4 kohtaan Xmax:, 0 kohtaan Ymin: ja 6 kohtaan Ymax:. Lue näytöltä suorien leikkauskohdasta x = 1 ja y = 5. Leikkauspiste on siis (1;5). Texas Instruments 84 Plus Aloitetaan painamalla Y= -näppäintä. Kirjoita 1. yhtälö kohtaan \ Y 1 = ja. yhtälö vastaavasti kohtaan \ =. Muuttujaa (x) syöttäessäsi tarvitset vihreää ALPHA Y näppäintä. Paina oikean alanurkan ENTER näppäintä yhtälöiden välissä ja jälkeen. Paina sitten näytön alla olevaa ZOOM näppäintä. Saat suorat näkyviin. Paina vielä ENTER näppäintä, että saat ylimääräiset valikot näytön alareunasta pois. Nyt pystyt kyllä lukemaan leikkauspisteen koordinaatit, mutta jos zoomaat lähemmäs, niin lukeminen on helpompaa. Paina ZOOM ja sitten 1 eli ZBox. Kuljeta kohdistin oikean ylänurkan nuolinäppäimillä ensin y akselille ja vähän leikkauspisteen yläpuolelle ja paina ENTER. Kuljeta kohdistin sitten vähän leikkauspisteen oikealle puolelle ja alas x akselille, paina ENTER ja CLEAR. Leikkauspiste on siis (1;5). Leikkauspiste yhtälön avulla Ratkaistaan yhtälö x + 3 = x + 6. Casio CFX-9950GB Plus Valitse Päävalikon ikoni (,5) ja paina EXE. Paina sitten F3. Näppäile yhtälö sellaisenaan ja paina EXE ja vielä F6 (SOLVE). Saat ratkaisun x = 1. Sijoita tämä jompaankumpaan alkuperäiseen suoran yhtälön ja saat pisteen y koordinaatin. Texas Instruments 84 Plus Paina näppäintä MATH ja sitten 0. Kirjoita + 3 ( x + 6) x. Ota huomioon, että 0 = on valmiina ja että tarvitset kerran ( ) näppäintä sekä ALPHA -näppäintä. Paina ENTER. Ratkaisun x = 1 voit sijoittaa kumpaan tahansa alkuperäiseen yhtälöön ja siten laskea leikkauspisteen y koordinaatin. f x = x x leikkaa x akselin? 6. Missä pisteissä käyrä ( ) + 1 Casio CFX-9950GB Plus Ratkaistaan tämä ensin kuvasta katsomalla ja sitten analyyttisesti eli ratkaisemalla asianmukainen yhtälö. Kirjoita yllä kuvatulla tavalla lauseke x + x 1 kohtaan Y1:. Huomaa, että termin x voit kirjoittaa käyttämällä joko koneen painiketta x ja kirjoittaa alkuperäisen yhtälön täsmälleen sellaisena kuin se on tai kirjoittaa x ^. Piirrä käyrä. Jos haluat zoomata, voi laatikko eli BOX toiminto olla hyvä valinta: paina FI, kun käyrä on näytöllä. Siirrä kohdistin nuolinäppäimillä kohtaan, johon haluat laatikon yhden nurkan, 8(11)

9 paina EXE ja siirrä kohdistin aiotun laatikon lävistäjän toiseen päähän ja paina taas EXE. Lue näytöltä pisteet ( 1;0) ja ( 1 ;0). Ja sitten yhtälö. Se, että käyrä leikkaa x akselin, merkitsee sitä, että sen y koordinaatti on nolla, toisin sanoen x + x 1 = 0. Valitse Päävalikon ikoni (,5) ja paina EXE. Paina sitten F. Vastaa koneen kysymykseen painamalla F1. Näppäile EXE 1 EXE ( ) EXE vielä lopuksi F1. Kone antaa x:n arvot 0,5 ja 1, joten leikkauspisteet ovat ( 1;0) ja ( 1 ;0). Texas Instruments 84 Plus Ratkaistaan tämä ensin kuvasta katsomalla ja sitten analyyttisesti eli ratkaisemalla asianmukainen yhtälö. Kirjoita yllä kuvatulla tavalla lauseke x + x 1 Y= -ikkunaan. Huomaa, että termin x voit kirjoittaa käyttämällä joko koneen painiketta x ja kirjoittaa alkuperäisen yhtälön täsmälleen sellaisena kuin se on tai kirjoittaa x ^. Piirrä käyrä voimassa olevilla asetuksilla painamalla GRAPH tai painamalla ZOOM (näytön alla, keskellä) ja valitsemalla jokin vaihtoehto. Jos haluat zoomata, voi laatikko eli BOX toiminto olla paras valinta: ZOOM ja 1. Siirrä kohdistin nuolinäppäimillä kohtaan, johon haluat laatikon yhden nurkan, paina ENTER ja siirrä kohdistin aiotun laatikon lävistäjän toiseen päähän ja paina taas ENTER. Lue näytöltä pisteet ( 1;0) ja ( 1 ;0). 7. Piirrä ( x) sin( x) ( 3x) sin( 5x) sin( 7x) sin f =. Tässä meillä on periaatteessa kaksi mahdollisuutta: kirjoittaa yhtälö sellaisenaan tai käyttää summan lyhennystä:. Sen mukaan, mikä laskinmalli sinulla on, joko voit tai et voi käyttää kuvaajan piirtämisessä summan lyhennystä. Päätän nyt kuitenkin niin, että asia ei kuulu tämän katsauksen piiriin. Lasken esimerkin käyttämättä tätä toimintoa. Tämä summa on funktio tavalliseen tapaan ja sen muuttujalle x annetaan arvoja kuten muittenkin funktioiden muuttujille. Casio CFX-9950GB Plus Piirretään kuvaaja kirjoittamalla yhtälö sellaisenaan. Tarkista ensin, että koneesi käyttää radiaaneja kulmayksikköinä. Se tapahtuu seuraavalla tavalla. Valitse ensin päävalikon RUN valikko ja paina EXE. Valitse sitten SET UP painamalla SHIFT MENU. Tämän laskimen asetusten valikko eli Set Up valikko on siis näppäimessä MENU. Valitse nuolinäppäimillä vaihtoehto, jossa lukee Angle. Nyt radiaanien valinta tapahtuu painamalla F. Huomaa, että näytön alareunassa, kunkin funktionäppäimen F1, F ja F3 kohdalla lukee vastaavasti Deg, Rad ja Gra. Pääset pois tästä ikkunasta painamalla EXIT. Valitse taas GRAPH ja näppäile sin ( ALPHA x ) + sin ( 3 ALPHA x ) 3 + sin ( 5 ALPHA x ) 5 + sin ( 7 ALPHA x ) (11)

10 Tulos on seuraavannäköinen. Oheisessa kuvassa on valittu Xmin = Ymin = 1,5 ja Ymax = 1,5. π, Xmax = π, Texas Esimerkin 7 kuvaaja Instruments 84 Plus Piirretään nyt äskeinen kuvaaja Texasin koneella. Tarkista, että koneesi käyttää radiaaneja kulmayksikköinä. Se tapahtuu seuraavalla tavalla. Paina MODE. Valitse nuolinäppäimillä RADIAN ja paina ENTER. Paina Y=. Rivin mahdollisen aiemman sisällön voit poistaa painamalla CLEAR. Voit myös siirtyä nuolinäppäinten avulla seuraavalle riville ja antaa vanhan sisällön olla. Kirjoita sin ALPHA x ) + sin 3 ALPHA x ) 3 + sin 5 ALPHA x ) 5 + sin 7 ALPHA x ) 7. Paina WINDOW ja tee seuraavat asetukset. Piin saat näppäilemällä ND ^. Pii on siis samassa näppäimessä kuin hattu eli ^. Paina ENTER aina asetusten välissä. Paina GRAPH, kun olet valmis katsomaan kuvaa. π Xmin= Xmax= π Ymin= 1,5 Ymax= 1,5 Muihin asetuksiin ei kannata puuttua. Harjoitustehtävä Ota selvää, voitko käyttää koneessasi summan lyhennettä ja jos voit, niin käytä sitä yllä määritellyn kuvaajan piirtämiseen. 10(11)

11 Seuraavassa lyhyt katsaus siihen, mitä tuo sitten tarkoittaa. Käyttämällä yllä mainittua summan lyhennysmerkintää voidaan siis kirjoittaa sin ( ) sin ( 3x) sin( 5x) sin( 7x) sin( ( i + 1) x) + + = x. 5 7 i = 0 i + 1 Laskukoneissa tämä kirjoitetaan usein seuraavassa muodossa.. ( sin ( (i + 1)x) (i + 1), i, 0, 3,1) Tähän siis ykkönen. Käsikirja kertoo tarkemmin, jos haluat tietää, miksi ja haluaako koneesi ylipäätään tämänkin parametrin. Tutki käsikirjan avulla, mihin kaikkeen koneesi pystyy. Käytä näitä mahdollisuuksia. Koneesi valmistaja on yrittänyt tehdä siitä helpon käyttää ja on siksi käyttänyt paljon voimia tämän päämäärän saavuttamiseksi. Mielestäni hän on myös onnistunut. Jos näet vähän vaivaa, opit helposti käyttämään konettasi. 11(11)

Luvuilla laskeminen. Esim. 1 Laske 6 21 7

Luvuilla laskeminen. Esim. 1 Laske 6 21 7 Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.

Lisätiedot

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja keskihajonnan

Lisätiedot

Tilastotoiminnot. Seuraavien kahden esimerkin näppäinohjeet on annettu kunkin laskinmallin kohdalla:

Tilastotoiminnot. Seuraavien kahden esimerkin näppäinohjeet on annettu kunkin laskinmallin kohdalla: Tilastotoiminnot Seuraavien kahden esimerkin näppäinohjeet on annettu kunkin laskinmallin kohdalla: Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Excelin käyttö mallintamisessa. Regressiosuoran määrittäminen. Käsitellään tehtävän 267 ratkaisu.

Excelin käyttö mallintamisessa. Regressiosuoran määrittäminen. Käsitellään tehtävän 267 ratkaisu. Excelin käyttö mallintamisessa Regressiosuoran määrittäminen Käsitellään tehtävän 267 ratkaisu. 1)Kirjoitetaan arvot taulukkoon syvyys (mm) ikä 2 4 3 62 6 11 7 125 2) Piirretään graafi, valitaan lajiksi

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

TI-30X II funktiolaskimen pikaohje

TI-30X II funktiolaskimen pikaohje 0 TI-30X II funktiolaskimen pikaohje Sisältö Näppäimet... 1 Resetointi... 1 Aiempien laskutoimitusten muokkaaminen... 2 Edellisen laskutoimituksen tuloksen hyödyntäminen (ANS) ja etumerkki... 3 DEL ja

Lisätiedot

KAAVAT. Sisällysluettelo

KAAVAT. Sisällysluettelo Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli

Lisätiedot

Funktiot. 3.1 Itse määritellyn funktion lauseke Y = Funktio määritellään Y= -editorissa, jonne päästään näppäilemällä Y =.

Funktiot. 3.1 Itse määritellyn funktion lauseke Y = Funktio määritellään Y= -editorissa, jonne päästään näppäilemällä Y =. 0 Funktiot 3.1 Itse määritellyn funktion lauseke Y = Funktio määritellään Y= -editorissa, jonne päästään näppäilemällä Y =. Esim. 1 a) Kirjoita lauseke Y 1 = + 3 (kuva 1) ja paina ENTER. Muuttuja (suuri

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

12. Differentiaaliyhtälöt

12. Differentiaaliyhtälöt 1. Differentiaaliyhtälöt 1.1 Johdanto Differentiaaliyhtälöitä voidaan käyttää monilla alueilla esimerkiksi tarkasteltaessa jonkin kohteen lämpötilan vaihtelua, eksponentiaalista kasvua, sähkölatauksen

Lisätiedot

Johdanto: Parametrigrafiikka Parametriyhtälöiden piirtämisen vaiheet Parametri- ja funktiografiikan eroja

Johdanto: Parametrigrafiikka Parametriyhtälöiden piirtämisen vaiheet Parametri- ja funktiografiikan eroja Kappale 7: Parametrigrafiikka 7 Johdanto: Parametrigrafiikka... 128 Parametriyhtälöiden piirtämisen vaiheet... 129 Parametri- ja funktiografiikan eroja... 130 Tässä kappaleessa kerrotaan, miten parametriyhtälöitä

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

6. Harjoitusjakso II. Vinkkejä ja ohjeita

6. Harjoitusjakso II. Vinkkejä ja ohjeita 6. Harjoitusjakso II Seuraavaksi harjoitellaan algebrallisten syötteiden, komentojen ja funktioiden käyttöä GeoGebrassa. Tarjolla on ensimmäisen harjoittelujakson tapaan kahden tasoisia harjoituksia: perustaso

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.3.06 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/+^ 3 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen 3/ +^ 3 Liiku matematiikka alueella nuolinäppäimin. Kokeile

Lisätiedot

Differentiaali- ja integraalilaskenta 1. Tietokoneharjoitus: ratkaisut

Differentiaali- ja integraalilaskenta 1. Tietokoneharjoitus: ratkaisut Johdanto Kokeile tavallista numeroilla laskemista: yhteen-, kerto- ja jakolaskuja sekä potenssiinkorotusta. 5 (3.1) Differentiaali- ja integraalilaskenta 1 Tietokoneharjoitus: ratkaisut Kurssin 1. alkuviikon

Lisätiedot

Aloitusohje versiolle 4.0

Aloitusohje versiolle 4.0 Mikä on Geogebra? Aloitusohje versiolle 4.0 dynaamisen matematiiikan työvälineohjelma helppokäyttöisessä paketissa oppimisen ja opetuksen avuksi kaikille koulutustasoille vuorovaikutteiset geometria, algebra,

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

OHJELMOITAVA LASKIN SHARP EL-9400 PEREHTYMINEN ERIKOISNÄPPÄIMIIN

OHJELMOITAVA LASKIN SHARP EL-9400 PEREHTYMINEN ERIKOISNÄPPÄIMIIN OHJELMOITAVA LASKIN SHARP EL-9400 PEREHTYMINEN ERIKOISNÄPPÄIMIIN Virta päälle ja pois Ohjelmatila päälle Paluu laskintilaan yleisesti!!! Laskinasetukset: Kulma yms. A.Kontr. B.Muisti (EI: C-E) Luku muistipaikkaan

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Electronisen nopeus ja matkamittarin kalibrointi laite huippunopeus muistilla.

Electronisen nopeus ja matkamittarin kalibrointi laite huippunopeus muistilla. Speedohealer V4 Electronisen nopeus ja matkamittarin kalibrointi laite huippunopeus muistilla. 1. Esipuhe Onnittelemme sinua Speedohealer laitteen oston johdosta. HealTech Electronics Ltd. on omistautunut

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin.

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3. Yhtälöt Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3.1 Ensimmäisen asteen yhtälöt Ratkaise yhtälö. 3 x ( x 3) 4x 5 Kirjoita tehtävä sellaisenaan, maalaa se ja käytä Interactive

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Excel syventävät harjoitukset 31.8.2015

Excel syventävät harjoitukset 31.8.2015 Yleistä Excel on taulukkolaskentaohjelma. Tämä tarkoittaa sitä että sillä voi laskea laajoja, paljon laskentatehoa vaativia asioita, esimerkiksi fysiikan laboratoriotöiden koetuloksia. Excel-ohjelmalla

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Laske Laudatur ClassPadilla

Laske Laudatur ClassPadilla Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Lyhyt matematiikka, syksy 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä Opettaja

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA8 Juuri- ja logaritmifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Juuri- ja logaritmifunktiot (MAA8) Pikatesti ja kertauskokeet

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

ELOKUVATYÖKALUN KÄYTTÖ ANIMAATION LEIKKAAMISESSA. Kun aloitetaan uusi projekti, on se ensimmäisenä syytä tallentaa.

ELOKUVATYÖKALUN KÄYTTÖ ANIMAATION LEIKKAAMISESSA. Kun aloitetaan uusi projekti, on se ensimmäisenä syytä tallentaa. ELOKUVATYÖKALUN KÄYTTÖ ANIMAATION LEIKKAAMISESSA Kun aloitetaan uusi projekti, on se ensimmäisenä syytä tallentaa. Projekti kannattaa tallentaa muutenkin aina sillöin tällöin, jos käy niin ikävästi että

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Laske Laudatur ClassPadilla

Laske Laudatur ClassPadilla Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Lyhyt matematiikka, kevät 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä lukija,

Lisätiedot

Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio

Apua esimerkeistä Kolmio teoriakirja.  nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

Sen jälkeen Microsoft Office ja sen alta löytyy ohjelmat. Ensin käynnistä-valikosta kaikki ohjelmat

Sen jälkeen Microsoft Office ja sen alta löytyy ohjelmat. Ensin käynnistä-valikosta kaikki ohjelmat Microsoft Office 2010 löytyy tietokoneen käynnistävalikosta aivan kuin kaikki muutkin tietokoneelle asennetut ohjelmat. Microsoft kansion sisältä löytyy toimisto-ohjelmistopakettiin kuuluvat eri ohjelmat,

Lisätiedot

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAB2 koe Jussi Tyni Lue ohjeet huolellisesti! Muista, että välivaiheet perustelevat vastauksesi. Muista kirjoittaa konseptille nimesi ja tee pisteytysruudukko konseptin yläreunaan. A-osio. Ei laskinta!

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

Harjoitus 1 -- Ratkaisut

Harjoitus 1 -- Ratkaisut Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

GeoGebra Quickstart. Lyhyt GeoGebra 2.7 -ohje suomeksi

GeoGebra Quickstart. Lyhyt GeoGebra 2.7 -ohje suomeksi GeoGebra Quickstart Lyhyt GeoGebra 2.7 -ohje suomeksi Algebraikkuna GeoGebra on ilmainen matematiikan opetusohjelma. Siinä on työvälineitä dynaamiseen geometriaan, algebraan ja analyysiin. Voit piirtää

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 ESITYS pisteitykseksi Yleisohje tarkkuuksista: Ellei tehtävässä vaadittu tiettyä tarkkuutta, kelpaa numeerisissa vastauksissa ohjeen vastauksen lisäksi yksi merkitsevä

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Suora Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..07 Ennakkotehtävät. a) Kumpaankin hintaan sisältyy perusmaksu ja minuuttikohtainen maksu. Hintojen erotus on kokonaan minuuttikohtaista

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4)

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4) 2. Lisää Java-ohjelmoinnin alkeita Muuttuja ja viittausmuuttuja Vakio ja literaalivakio Sijoituslause Syötteen lukeminen ja Scanner-luokka 1 Muuttuja ja viittausmuuttuja (1/4) Edellä mainittiin, että String-tietotyyppi

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Laske Laudatur ClassPadilla

Laske Laudatur ClassPadilla Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Pitkä matematiikka, syksy 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä Opettaja

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

Lyhyt, kevät 2016 Osa A

Lyhyt, kevät 2016 Osa A Lyhyt, kevät 206 Osa A. Muodostettu yhtälö, 2x 2 + x = 5x 2 Kaikki termit samalla puolla, 2x 2 4x + 2 = 0 Vastaus x = x:n derivaatta on x 2 :n derivaatta on 2x f (x) = 4x + derivoitu väärää funktiota,

Lisätiedot

1 Funktiot, suurin (max), pienin (min) ja keskiarvo

1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1. Avaa uusi työkirja 2. Tallenna työkirja nimellä perusfunktiot. 3. Kirjoita seuraava taulukko 4. Muista taulukon kirjoitusjärjestys - Ensin kirjoitetaan

Lisätiedot

Piirtäminen napakoordinaatistossa

Piirtäminen napakoordinaatistossa 8 Piirtäminen napakoordinaatistossa Yleiskatsaus: piirtäminen napakoordinaatistossa... 132 Napakoordinaattikuvaajan määrittäminen... 133 Piirtotyökalujen käyttäminen napakoordinaattipiirtotilassa... 136

Lisätiedot

MICROSOFT EXCEL 2010

MICROSOFT EXCEL 2010 1 MICROSOFT EXCEL 2010 Taulukkolaskentaohjelman jatkokurssin tärkeitä asioita 2 Taulukkolaskentaohjelmalla voit Käyttää tietokonetta ruutupaperin ja taskulaskimen korvaajana Laatia helposti ylläpidettäviä

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto Versio k15 Näin laadit ilmastodiagrammin Libre Officen taulukkolaskentaohjelmalla. Ohje on laadittu käyttäen Libre Officen versiota 4.2.2.1. Voit ladata ohjelmiston omalle koneellesi osoitteesta fi.libreoffice.org.

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

GeoGebra-harjoituksia malu-opettajille

GeoGebra-harjoituksia malu-opettajille GeoGebra-harjoituksia malu-opettajille 1. Ohjelman kielen vaihtaminen Mikäli ohjelma ei syystä tai toisesta avaudu toivomallasi kielellä, voit vaihtaa ohjelman käyttöliittymän kielen seuraavasti: 2. Fonttikoon

Lisätiedot

LUMA Suomi kehittämisohjelma 8.10.2015 14:53 Joustava yhtälönratkaisu Matemaattinen Ohjelmointi ja Yhtälönratkaisu

LUMA Suomi kehittämisohjelma 8.10.2015 14:53 Joustava yhtälönratkaisu Matemaattinen Ohjelmointi ja Yhtälönratkaisu (MOJYR) Sisällysluettelo (MOJYR)... 1 1. Taustaa... 1 2. MOJYR-ohjelma... 2 2.1 Ohjelman asentaminen... 2 2.2 Käyttöliittymä... 2 3. Puumalli... 3 4. MOJYR-ohjelman ominaisuudet... 5 4.1 Yhtälön muodostaminen...

Lisätiedot

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma:

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma: Kerta 2 Kerta 3 Kerta 4 Kerta 5 Kerta 2 1. Toteuta Pythonilla seuraava ohjelma: 2. Tulosta Pythonilla seuraavat luvut allekkain a. 0 10 (eli, näyttää tältä: 0 1 2 3 4 5 6 7 8 9 10 b. 0 100 c. 50 100 3.

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

Tässä riisinjyvien määrät jokaisessa ruudussa on laskettava yhteen. Tällöin tuloksena on

Tässä riisinjyvien määrät jokaisessa ruudussa on laskettava yhteen. Tällöin tuloksena on 8. Luvut 8.1 Suuret luvut, summa ja kertoma Aloittakaamme shakkipelin keksimiseen liittyvällä tunnetulla tarinalla. Intian hallitsija innostui kovasti shakkipelistä, jonka yksi palatsin viisaista miehistä

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Harjoitus 1 -- Ratkaisut

Harjoitus 1 -- Ratkaisut Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot