1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:"

Transkriptio

1 MAA6. Loppukoe Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: 10 6,3 % 15,6 % 8 1, % 7 8,1 % 6 1,5 % 5 1,5 % 3,1 % Määritä arvosanojen keskiarvo, keskihajonta ja moodi. Vastauksesta tulee selvitä laskukaavan avulla, miten keskiarvo ja hajonta on teoriassa laskettu. Muuten näiden laskemiseen voi käyttää laskinta. Perustele moodin valintasi!. Konvehtirasian konvehdit ovat kaikki käärepapereissa. Konvehdeista 7 on punaisessa, vihreässä ja 3 keltaisessa paperissa. Punaiseen käärityistä konvehdeista on tummaa suklaata, samoin vihreään ja keltaiseen käärityistä on tummaa suklaata. Loput ovat maitosuklaata. Mikä on todennäköisyys, että kun otetaan konvehtirasiasta sokkona kaksi konvehtia a) saadaan kaksi vihreään käärepaperiin käärittyä konvehtia? b) saadaan vihreään ja keltaiseen käärityt tummaa suklaata sisältävät konvehdit? c) saadaan punaiseen tai keltaiseen käärityt maitosuklaa konvehdit? 3. a) Avainrenkaaseen pujotetaan avainta. Millä todennäköisyydellä kaksi tiettyä avainta joutuvat vierekkäin? b) Opiskelijan pitää vastata tentissä kahdeksaan tehtävään 1 tehtävästä. Seitsemästä ensimmäisestä tehtävästä pitää vastata neljään. Kuinka monella eri tavalla opiskelija voi valita tehtävät, joihin hän vastaa?. Oletetaan, että jatkolennolle menevät matkalaukut asetetaan kuljetushihnalle satunnaiseen järjestykseen ja Helsinkiin meneviä laukkuja on 1 %. Millä todennäköisyydellä kymmenestä peräkkäin hihnalla olevasta laukusta on Helsinkiin meneviä kaksi tai kolme? Jatkuu

2 5. Jalkapallojoukkueen maalivahti Pepe onnistuu tilastojen perusteella rangaistuspotkun torjunnassa 18% todennäköisyydellä. Pepeä kohti ammutaan kauden aikana rangaistuspotkua. Laske odotusarvo torjuttujen rangaistuspotkujen lukumäärälle! 6. a) Jussi päätti arvostella matikan kokeen siten, että parhaat 3% oppilaista saisi arvosanakseen kympin ja huonoimmat 5% saisi nelosen. Kokeen arvosanat noudattivat normaalijakaumaa. Kokeen maksimipistemäärä oli 30 pistettä, keskiarvopistemäärä oli 1 pistettä ja keskihajonta oli,5. Määritä pistemäärärajat kympille ja neloselle. b) Valmistaja oli tilastoinut, että Volkswagen Passatin moottori kestää keskimäärin km ennen ensimmäistä moottorivikaa keskihajonnan ollessa km. Valmistaja varautuu korjaamaan 1,5 % moottoreista takuuaikana. Mille kilometrimäärälle valmistaja voi myöntää takuun, kun auton moottoreiden vikaherkkyys noudattaa normaalijakaumaa? 7. Kolikko heitetään ämpäriin. Millä todennäköisyydellä ämpärin pohjan ja kolikon keskipisteiden etäisyys pienempi kuin 10 cm, kun ämpärin pohjan halkaisija on 0 cm ja kolikon halkaisija mm? 8. Tennisseuran kuukausiturnauksessa jokainen pelaaja pelaa kerran jokaista vastaan. Yksi osallistujista joutui jättämään turnauksen kesken kolmen pelaamansa ottelun jälkeen. Kuinka monta pelaajaa turnaukseen osallistui alun perin, kun kaikkiaan pelattiin 3 ottelua? Bonus: + pistettä maksimipisteiden päälle, tee jos ehdit: Olkoon 1 P( A) ja P( B) 7 7, sekä P( A ja B). Määritä P( A tai B) ja P( B A )

3 Ratkaisut: 1. Keskiarvo 6,78. Hajonta 1,57 ja Moodi, eli tyyppiluku 7, koska seiska esiintyy otoksessa useimmiten ,066. a) P(saadaan vihreä ja vihreä)= b) TS = tummaa suklaata. P(vihreä TS ja keltainen TS tai keltainen TS ja vihreä TS) 8 0, c) MS = maitosuklaata. P=punainen ja K=keltainen P(P MS ja P MS tai P MS ja K MS tai K MS ja P MS tai K MS ja K MS). Jälkimmäinen vaihtoehto, eli keltaiseen käärittyä maitosuklaata ei ole mahdollinen, koska keltaisia on vain 3 ja kaksi niistä on tummaa suklaata, joten: P(P MS ja P MS tai P MS ja K MS tai K MS ja P MS) , a) Renkaassa avaimella on 8 väliä, joihin tietty avainpari voi sijoittua vierekkäin. Avainpari voi sijoittua kahdella eri tavalla vierekkäin. Eli käytännössä vain vaihtaa paikkoja päittäin. 7 muuta avainta voivat olla 7! eri järjestyksessä. Tällöin suotuisten järjestysten lukumäärä on 8 7! Kaikki yhdeksän avainta voidaan sijoittaa avainrenkaaseen! eri tavalla. P = = = b) Tehtäväryhmästä A valitaan neljä ja ryhmästä B neljä, jolloin valintatapoja on kaikkiaan Vastaus: 175 eri tavalla A. P( tai 3) = ,1 0,888 0,13 0,88 0,330 0,087 0, Vastaus: Todennäköisyys on noin 3 % B Todennäköisyysjakauma, todennäköisyydet erillisille torjuntamäärille pitää laskea toistokokeilla: X=Torjunnat P(X) 0 0, ,18 0,331 1

4 7 0,18 0, ,18 3 0, ,18 0,0 5 0,18 5 0, ,18 6 0, ,18 7 1, ,18 8 8, ,18 1,8 10 Nyt EX ( ) 00, ,331 0, 08 30,18 0, , , , , ,8 10 1,6 Eli Pepen torjuntojen odotusarvo on n. 1,6 torjuntaa kauden aikana. Täysissä maaleissa järkevämmin ilmaistuna Pepe torjuu keskimäärin kaksi yhdeksästä rankkarista. 6. a) Jos parhaat 3% saavat kympin, niin se tarkoittaa, että 7% jää kympin alle. Määritetään normaalijakauman tiheysfunktion taulukosta z-arvo, jolle ( z) 0,7 => z=1,88. Lasketaan nyt tätä z:n arvoa vastaava pistemäärän arvo, joka siis on sitten se kympin raja: x 1 1,88,5 8, 6 x1 7,5 x, eli täytyy saada yli 7,5 pistettä jotta saa,5 kympin. Jos heikoimmat 5% saa nelosen, niin sitä vastaa negatiivinen z:n arvo, joka on peilattava keskiarvon positiiviselle puolelle. Myös todennäköisyyksiä kuvaava osuma-alue peilautuu niin, että sama alue löytyy parhaista viidestä prosentista, jonka alle jää 5%. Määritetään normaalijakauman tiheysfunktion taulukosta z-arvo, jolle ( z) 0,5 => z=1,65. Oikea, alkuperäinen keskiarvon vasemmalla puolella oleva z= -1,65. Lasketaan nyt tätä z:n arvoa vastaava pistemäärän arvo, joka siis on nelosen raja: x 1 1, 65,5 7, 05 x1 11, 6 x Eli täytyy siis saada alle 11,5 pistettä,5 jotta saa nelosen. (Opettajat yleensä käyttävät plussia, miinuksia ja puolia pisteitä) b) Jos 1,5% jää rajan alle, niin tämä tuntematon raja x on keskiarvon vasemmalla puolella ja pitää peilata keskiarvon oikealle puolelle, siten että tämän rajan x päälle jää 1,5% => sen alle jää 8,5%, joten määritetään normaalijakauman tiheysfunktion taulukosta z-arvo, jolle ( z) 0,85 => z=,17. Oikea, alkuperäinen keskiarvon vasemmalla puolella oleva z= -,17. Lasketaan nyt tätä z:n arvoa vastaava kilometrimäärä, joka siis takuukorjauskilometrien raja, tämän alle hajoaa 1,5% volkkareiden moottoreista:

5 x 0000, x x Nyt kannattaa pyöristää alaspäin, koska jos pyöristetään ylös esim km, niin takuukorjaukseen tulee yli 1,5% autoja => Pyöristetään siis km! 7. Kolikon suotuisa putoamisalue on ympyrä, jonka säde on 10cm + 1mm (puolet kolikon halkaisijasta) = 11, cm => Suotuisa ala A 11, 15,. Koko ämpärin ala, mihin kolikko voi pudota on => 31,% Ak Joten s 15, P( keskipisteiden etäisyys alle 10 cm) 0, Merkitään pelaajien lukumäärä n ja ratkaistaan se yhtälöstä ( ) ( ) ( )( ) ( ) ( ) n = 10 n = 7 (negatiivinen juuri ei käy). Vastaus: 10 Bonus: 7 P( AjaB) P( A) P( B A) P( B A) P( B A) P( B) 7 Eli A ja B ovat toisistaan riippumattomia tapahtumia! Tällöin 1 5 P( A tai B) P( A) P( B) 7 7 7

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

10, 9, 5, 6, 7, 4, 7, 9, 8, 7, 6, 7, 8, 6

10, 9, 5, 6, 7, 4, 7, 9, 8, 7, 6, 7, 8, 6 MAA6.1 Loppukoe 23.11.2012 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

3. a) Otetaan umpimähkään reaaliluku väliltä [0,1]. Millä todennäköisyydellä tämän luvun ensimmäinen desimaali on 2 tai toinen desimaali on 9?

3. a) Otetaan umpimähkään reaaliluku väliltä [0,1]. Millä todennäköisyydellä tämän luvun ensimmäinen desimaali on 2 tai toinen desimaali on 9? MAA6 Kurssikoe 1.10.20 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Muista että välivaiheet perustelevat ratkaisusi! Lue ohjeet tarkasti! A-osio. Ei saa käyttää

Lisätiedot

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAA6 koe 26.9.2016 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-osio: Ilman laskinta, MAOL:in taulukkokirja

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 %

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 % Testaa taitosi 1 1. Noppaa heitetään kahdesti. Merkitse kaikki alkeistapaukset koordinaatistoon. a) Millä todennäköisyydellä ainakin toinen silmäluvuista on 3? b) Mikä on a-kohdan tapahtuman vastatapahtuma?

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita

Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita 1. Laske 3 21 12 3. a) 27 b) 28 c) 29 d) 30 e) 31 Ratkaisu. 3 21 12 3 = 63 36 = 27. 2. Peräkylän matematiikkakerholla on kaksi tapaa

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet MAA. Koe Jussi Tyni 0.9.0 Tee pisteytysruudukko! Vastaa yhteensä tehtävään. Muista kirjoittaa selkeät välivaiheet A-OSIO Vastaa tehtävistä A A kahteen ja palauta vastaukset. Tähän osioon on käytettävissä

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)

Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin) 1/11 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

Perustele vastauksesi välivaiheilla! Lue ohjeet ja tehtävänannot huolella! Tee vastauskonseptin yläreunaan pisteytysruudukko

Perustele vastauksesi välivaiheilla! Lue ohjeet ja tehtävänannot huolella! Tee vastauskonseptin yläreunaan pisteytysruudukko MAA1 Koe 2.9.2015 Perustele vastauksesi välivaiheilla! Lue ohjeet ja tehtävänannot huolella! Tee vastauskonseptin yläreunaan pisteytysruudukko Jussi Tyni A-osio. Ratkaise tehtävät tähän monisteelle! Ei

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Kertausosa. 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. b) Moodi on se muuttujan arvo, jonka frekvenssi on suurin. Mo = 5.

Kertausosa. 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. b) Moodi on se muuttujan arvo, jonka frekvenssi on suurin. Mo = 5. Kertausosa 1. a) Muodostetaan taulukon perusteella frekvenssijakaumat. Äänimäärä f f % 0 1 1 0,0169... 59 4 4 0,0677... 59 3 7 7 0,1186... 59 4 15 15 0,54... 59 5 18 18 0,3050... 59 6 1 1 0,033... 59 7

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

Klassisen ja geometrisen todennäköisyyden harjoituksia

Klassisen ja geometrisen todennäköisyyden harjoituksia MAB5: Todennäköisyyden lähtökohdat Harjoitustehtävät Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c)

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

C2-D2 Final Four-turnaukset

C2-D2 Final Four-turnaukset C2-D2 Final Four-turnaukset 31.3 2.4.2017 C2 AAA alempi Jatkosarja C2 AAA alemman jatkosarjan Final Four-turnaus pelataan Malmin Jäähallissa Helsingissä 1.4.2017. Turnaukseen C2 AAA alemman jatkosarjojen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

PIKAOHJEET WILMAN KÄYTÖSTÄ - HUOLTAJA

PIKAOHJEET WILMAN KÄYTÖSTÄ - HUOLTAJA 1 (6) PIKAOHJEET WILMAN KÄYTÖSTÄ - HUOLTAJA Sisältö Mikä Wilma on?... 1 Kirjautuminen ohjelmaan, käyttäjätunnus, salasana... 1 Etusivu, käytössä olevat toiminnot... 2 Pikaviestit... 2 Työjärjestys... 3

Lisätiedot

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi! MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 2A

Tilastollinen päättely II, kevät 2017 Harjoitus 2A Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 5 Ratkaisuehdotuksia Näissä harjoituksissa viljellään paljon sanaa paradoksi. Sana tulee ymmärtää laajassa mielessä. Suppeassa mielessähän

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Esimerkki 1: auringonkukan kasvun kuvailu

Esimerkki 1: auringonkukan kasvun kuvailu GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin

Lisätiedot

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia. Tehtävien ratkaisuja 4. Palloja yhteensä 60 kpl. a) P(molemmat vihreitä) = P((1. pallo vihreä) ja (. pallo vihreä)) = P(1. pallo vihreä) P(. pallo vihreä 1. pallo vihreä) = 0.05 (yleinen kertolaskusääntö)

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot