Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään

Koko: px
Aloita esitys sivulta:

Download "Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään"

Transkriptio

1 Ohjelmointi Ohjelmoinnissa koneelle annetaan tarkkoja käskyjä siitä, mitä koneen tulisi tehdä. Ohjelmointikieliä on olemassa useita satoja. Ohjelmoinnissa on oleellista asioiden hyvä suunnittelu etukäteen. Tarkka suunnitelma ongelmanratkaisusta ja sen toteuttamisesta säästää myöhemmin paljon aikaa ja vaivaa mahdollisista virheiden etsimisistä. Hyvin toteutettu suunnitelma ongelmanratkaisusta on looginen ja selkeä.

2 Algoritmit Ohjelman tekemisen hahmottamisessa käytetään apuna algoritmeja. Algoritmia voitaisiin kuvata esimerkiksi tietyn ongelman ratkaisemiseksi annettuina täsmällisinä, suoritettavissa olevina ristiriidattomina peräkkäisinä käskyinä, joita on äärellinen määrä. Muodostetun algoritmin tulee toimia kaikissa mahdollisissa tapauksissa.

3 Muodosta algoritmi seuraavasta tapauksesta: Laita numerot 1, 5 ja 8 järjestykseen suurimmasta pienimpään. Käytössä olevat toiminnot ovat kahden luvun vertaaminen keskenään ja niiden paikan vaihtaminen.

4 Esimerkki algoritmista 1 Vertaa ensimmäistä ja toista lukua keskenään. Jos toinen luku on suurempi kuin ensimmäinen, vaihda lukujen paikkoja. uusi järjestys 5, 1, 8 2 Vertaa toista ja kolmatta lukua keskenään. Jos kolmas luku on suurempi kuin toinen, vaihda lukujen paikkaa uusi järjestys 5, 8, 1 3 Vertaa ensimmäistä ja toista lukua keskenään. Jos toinen luku on suurempi kuin ensimmäinen, vaihda lukujen paikkoja. uusi järjestys 8, 5, 1 4 Jatka vertailua, kunnes olet tehnyt kierroksia yhtä monta kuin mitä joukossa on alkioita.

5 Tehtävän 3 algoritmi vaihtoehto a 1 Vertaa kirjaimia 1 ja 2. Jos kirjain 2 on aakkosissa ennen kirjainta 1 vaihda kirjaimien paikkaa. Uusi järjestys D, G, H, C 2 Vertaa kirjaimia 2 ja 3. Jos kirjain 3 on aakkosissa ennen kirjainta 2 vaihda kirjaimien paikkaa. Uusi järjestys D, G, H, C 3 Vertaa kirjaimia 3 ja 4. Jos kirjain 4 on aakkosissa ennen kirjainta 3 vaihda kirjaimien paikkaa. Uusi järjestys D, G, C, H 4 Toista kohdat 1-3, kunnes tulee kierros, jolloin ei tarvitse tehdä yhtään vaihtoa. Kierroksia yhteensä 3. Vertailuja 9 kappaletta.

6 Tehtävän 3 algoritmi vaihtoehto b 1 Vertaa kirjaimia 1 ja 2. Jos kirjain 2 on aakkosissa ennen kirjainta 1 vaihda kirjaimien paikkaa. Uusi järjestys D, G, H, C 2 Vertaa kirjaimia 1 ja 3. Jos kirjain 3 on aakkosissa ennen kirjainta 1 vaihda kirjaimien paikkaa. Uusi järjestys D, G, H, C 3 Vertaa kirjaimia 1 ja 4. Jos kirjain 4 on aakkosissa ennen kirjainta 1 vaihda kirjaimien paikkaa. Uusi järjestys C, G, H, D 4 Vertaa kirjaimia 2 ja 3. Jos kirjain 3 on aakkosissa ennen kirjainta 2 vaihda kirjaimien paikkaa. Uusi järjestys C,G, H, D

7 Tehtävän 3 algoritmi vaihtoehto b 5 Vertaa kirjaimia 2 ja 4. Jos kirjain 4 on aakkosissa ennen kirjainta 2 vaihda kirjaimien paikkaa. Uusi järjestys C,D, H, G 6 Vertaa kirjaimia 3 ja 4. Jos kirjain 4 on aakkosissa ennen kirjainta 3 vaihda kirjaimien paikkaa. Uusi järjestys C,D, G, H 7 Lopeta, kun vertailtavia lukuja ei enää ole. ( Vertailuja 6 kappaletta )

8 Tehtävä 4A 1 Siirrä ensimmäinen numero muistipaikkaan. Muistipaikka: 7 2 Vertaa muistipaikan numeroa ja toista numeroa keskenään. Jos toinen numero on muistipaikan numeroa suurempi, vaihda toinen numero muistipaikkaan. Muistipaikka: 55 3 Vertaa muistipaikan numeroa ja kolmatta numeroa keskenään. Jos kolmas numero on muistipaikan numeroa suurempi, vaihda kolmas numero muistipaikkaan. Muistipaikka: 65 4 Vertaa muistipaikan numeroa ja neljättä numeroa keskenään. Jos neljäs numero on muistipaikan numeroa suurempi, vaihda kolmas numero muistipaikkaan. Muistipaikka: 65

9 Tehtävä 4A algoritmi 5 Vertaa muistipaikan numeroa ja viidettä numeroa keskenään. Jos viides numero on muistipaikan numeroa suurempi, vaihda viides numero muistipaikkaan. Muistipaikka: 88 6 Vertaa muistipaikan numeroa ja kuudetta numeroa keskenään. Jos kuudes numero on muistipaikan numeroa suurempi, vaihda kuudes numero muistipaikkaan. Muistipaikka: 88 7 Lopeta vertailu, kun olet päässyt lukujonon viimeiseen lukuun. Muistipaikassa oleva numero on luvuista suurin.

10 Tehtävän 4B algoritmi Luvut laitetaan ensin suuruusjärjestykseen jommallakummalla tehtävän 3 tavoista. Tällöin suurin luku on lukujonon viimeinen luku. ( Tai ensimmäinen luku, jos järjestys on suurimmasta pienimpään. )

11 Tehtävän 5 algoritmi Luvut laitetaan suuruusjärjestykseen jommallakummalla tehtävän 3 tavoista. Tällöin toiseksi suurin luku on toiseksi viimeisenä lukujonossa. ( Tai toinen luku, jos järjestys on suurimmasta pienimpään. )

12 Vuokaavio Algoritmien suunnittelussa ja esittämisessä käytetäänkin usein vuokaavioesitystä. Vuokaavioesityksellä algoritmin toiminta voidaan esittää yksinkertaisemmin kuvioiden avulla eikä samaa selitystä tarvitse turhaan toistaa.

13 Vuokaavioissa käytettävät merkit Soikiolla kuvataan algoritmin aloitusta ja lopetusta. Aloitussoikiosta lähtee vain yksi nuoli, eikä siihen voi tulla yhtään nuolta. Lopetussoikioosta ei voi lähteä nuolia. Suorakulmio kuvaa tietokoneen prosessointia. Tietokoneen suorittama tehtävä kirjoitetaan suorakaiteen sisään. Suorakulmiosta voi lähteä vain yksi nuoli! Suunnikas kuvaa päätöksen tekoa eli eri vaihtoehtojen valintaa. Suunnikkaasta lähtee aina kaksi nuolta. Nuolilla kuvataan ohjelman etenemissuuntaa.

14 Harjoitus 6 Aloita Tarkista säätila Epätosi Sataa Tosi Ota sateenvarjo Lähde ulos Lopeta

15 Harjoitus 7 Aloita Heitä uistin veteen Epätosi Sait kalan Tosi Irrota kala uistimesta ja heitä veteen Mittaa kala Lopeta Tosi Kala on täysimittainen Epätosi

16 Harjoitus 8A Aloita Heitä noppa Laske silmälukujen summa Tosi Summa on yli 12 Epätosi Lopeta

17 Aloita Harjoitus 8B Heitä noppa Silmäluku on 4 Epätosi Laske silmälukujen summa Tosi Summa on yli 12 Epätosi Tosi Lopeta

18 Harjoitus 8C Aloita Heitä noppa Laita silmäluku muistiin Heitä noppa Siirrä silmäluku muistiin Tosi Vertaa silmälukua muistissa olevaan Luku on sama Epätosi Lopeta

19 Logiikka ohjelmoinnissa Ohjelmoinnissa on paljon valintoja ja toistoa. Edellä tehdyistä algoritmeista voi huomata, että valinta tehtiin aina jonkin ehdon perusteella. Esimerkiksi tehtävässä 6 sateenvarjon mukaan ottamisen ehtona oli sade. Ohjelmoinnissa käytettävät valinta-tapaukset esitetäänkin ehtolausekkeina. Ehtolausekkeissa asioita verrataan toisiinsa. Tehtävässä 6 verrataan ulkona vallitsevaa säätä ehtoon ulkona sataa. Ehto voi ohjelmoinnissa olla joko tosi tai epätosi. Tehtävässä 6 väite ulkona sataa on siis ehtona joko tosi tai epätosi.

20 Vertailuoperaattorit Ohjelmoinnin ehtolausekkeissa asioiden samanlaisuus tai erilaisuus selvitetään vertailuoperaattoreiden avulla. Java-ohjelmoinnissa vertailuoperaattorit ovat: == Yhtä suuri kuin!= Erisuuri kuin > Suurempi kuin < Pienempi kuin >= Suurempi tai yhtä suuri kuin <= Pienempi tai yhtä pieni kuin

21 Esimerkki vertailuoperaattoreista 2 >= 1 Tosi väite 3!= 3 Epätosi väite a < c Tosi väite

22 Ja- ja tai-operaattorit Monimutkaisempien ehtojen täyttymisen tutkimiseen tarvitaan loogisia operaattoreita. Loogisia operaattoreitaovat esimerkiksi ehdolliset ja- ja tai-operaattorit. Yhdistettäessä ehdot ja-operaattorilla, on molempien ehtojen oltava tosia, jotta lopputulos olisi tosi. Yhdistettäessä ehdot tai-operaattorilla, on lopputulos tosi useammassa eri vaihtoehdossa.

23 Ja-operaattori esimerkki Olkoon lauseet A = Paidassa on punaista ja B = Paidassa on vihreää. Tarkastellaan ja-operaattorilla yhdistettyjä ehtoja seuraavissa tapauksissa: I) A on tosi ja B on tosi? ->Väite A ja B on tosi. II) A on epätosi ( Paidassa ei ole punaista ) ja B on tosi? -> Väite A ja B on epätosi. III) A on tosi ja B on epätosi ( Paidassa ei ole vihreää ) -> Väite A ja B on epätosi. IV) A on epätosi ( Paidassa ei ole punaista ) ja B on epätosi ( Paidassa ei ole vihreää )? -> Väite A ja B on epätosi.

24 Tai-operaattori Olkoon lauseet A = Paidassa on punaista ja B = Paidassa on vihreää. Tarkastellaan tai-operaattorilla yhdistettyjä ehtoja seuraavissa tapauksissa: I. Onko väite A tai B tosi, jos A on tosi ja B on tosi? ->Väite A tai B on tosi. II. Onko väite A tai B tosi, jos A on epätosi ja B on tosi? -> Väite A tai B on tosi. III. Onko väite A tai B tosi, jos A on tosi ja B on epätosi? -> Väite A tai B on tosi. IV. Onko väite A tai B tosi, jos A on epätosi ja B on epätosi? -> Väite A ja B on epätosi.

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2009 1 / 33 Valintakäsky if syote = raw_input("kerro tenttipisteesi.\n") pisteet = int(syote) if pisteet >=

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 21.9.2016 CSE-A1111 Ohjelmoinnin peruskurssi Y1 21.9.2016 1 / 22 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5)

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5) Alkuarvot ja tyyppimuunnokset (1/5) Aiemmin olemme jo antaneet muuttujille alkuarvoja, esimerkiksi: int luku = 123; Alkuarvon on oltava muuttujan tietotyypin mukainen, esimerkiksi int-muuttujilla kokonaisluku,

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 14.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 14.9.2015 1 / 17 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin.

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin. 2. Ohjausrakenteet Ohjausrakenteiden avulla ohjataan ohjelman suoritusta. peräkkäisyys valinta toisto Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

5/20: Algoritmirakenteita III

5/20: Algoritmirakenteita III Ohjelmointi 1 / syksy 2007 5/20: Algoritmirakenteita III Paavo Nieminen nieminen@jyu.fi Tietotekniikan laitos Informaatioteknologian tiedekunta Jyväskylän yliopisto Ohjelmointi 1 / syksy 2007 p.1/17 Tämän

Lisätiedot

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen.

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Sisällys 3. Pseudokoodi Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if--rakenteilla. oisto while-, do-while- ja for-rakenteilla. 3.1 3.2 Johdanto

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

Pikapaketti logiikkaan

Pikapaketti logiikkaan Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös

Lisätiedot

13. Loogiset operaatiot 13.1

13. Loogiset operaatiot 13.1 13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet Tunnus, varattu sana, kommentti Muuttuja, alkeistietotyyppi, merkkijono, Vakio Tiedon merkkipohjainen tulostaminen Ohjelmointi (ict1tx006) Tunnus (5.3) Javan tunnus Java-kirjain Java-numero

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Tietotyypit ja operaattorit

Tietotyypit ja operaattorit Tietotyypit ja operaattorit Luennossa tarkastellaan yksinkertaisten tietotyyppien int, double ja char muunnoksia tyypistä toiseen sekä esitellään uusia operaatioita. Numeeriset tietotyypit ja muunnos Merkkitieto

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Harjoitustyön testaus. Juha Taina

Harjoitustyön testaus. Juha Taina Harjoitustyön testaus Juha Taina 1. Johdanto Ohjelman teko on muutakin kuin koodausta. Oleellinen osa on selvittää, että ohjelma toimii oikein. Tätä sanotaan ohjelman validoinniksi. Eräs keino validoida

Lisätiedot

Sisällys. Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä. 2.2

Sisällys. Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä. 2.2 2. Vuokaaviot 2.1 Sisällys aavioiden rakenne. aavioiden piirto symboleita yhdistelemällä. aavion osan toistaminen silmukalla. simerkkejä. 2.2 Vuokaaviot Graafinen kieli algoritmien kuvaamiseen. Muodostetaan

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

16. Ohjelmoinnin tekniikkaa 16.1

16. Ohjelmoinnin tekniikkaa 16.1 16. Ohjelmoinnin tekniikkaa 16.1 Sisällys For-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. If-else-lause vaihtoehtoisesti

Lisätiedot

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin Sisällys 17. Ohjelmoinnin tekniikkaa for-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. if-else-lause vaihtoehtoisesti

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

SELECT-lauseen perusmuoto

SELECT-lauseen perusmuoto SQL: Tiedonhaku SELECT-lauseen perusmuoto SELECT FROM WHERE ; määrittää ne sarakkeet, joiden halutaan näkyvän kyselyn vastauksessa sisältää

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä:

Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä: 2. Vuokaaviot 2.1 Sisällys Kaavioiden rakenne. Kaavioiden piirto symbolta yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä: algoritmi oven avaamiseen vuokaaviona, keskiarvon laskeminen

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

11. Javan valintarakenteet 11.1

11. Javan valintarakenteet 11.1 11. Javan valintarakenteet 11.1 Sisällys If- ja if--lauseet. Orpo. Valintaa toisin: switch-lause. 11.2 Valintarakenteet Valintarakenteilla ilmaistaan formaalisti, kuinka algoritmin suoritus voi haarautua

Lisätiedot

TALLENNETAAN MUISTITIKULLE JA MUISTIKORTILLE

TALLENNETAAN MUISTITIKULLE JA MUISTIKORTILLE TALLENNETAAN MUISTITIKULLE JA MUISTIKORTILLE HERVANNAN KIRJASTON TIETOTORI Insinöörinkatu 38 33720 Tampere 040 800 7805 tietotori.hervanta@tampere.fi TALLENNETAAN MUISTIKULLE JA MUISTIKORTILLE 1 Muistitikun

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Logiikka 1/5 Sisältö ESITIEDOT:

Logiikka 1/5 Sisältö ESITIEDOT: Logiikka 1/5 Sisältö Formaali logiikka Luonnollinen logiikka muodostaa perustan arkielämän päättelyille. Sen käyttö on intuitiivista ja usein tiedostamatonta. Mikäli logiikka halutaan täsmällistää esimerkiksi

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun juureen

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

1 Logiikkaa. 1.1 Logiikan symbolit

1 Logiikkaa. 1.1 Logiikan symbolit 1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 6 MAA11 Lukuteoria ja logiikka Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Lukuteoria ja logiikka (MAA11) Pikatesti ja kertauskokeet

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Tarvikkeet: A5-kokoisia papereita, valmiiksi piirrettyjä yksinkertaisia kuvioita, kyniä

Tarvikkeet: A5-kokoisia papereita, valmiiksi piirrettyjä yksinkertaisia kuvioita, kyniä LUMATE-tiedekerhokerta, suunnitelma AIHE: OHJELMOINTI 1. Alkupohdinta: Mitä ohjelmointi on? Keskustellaan siitä, mitä ohjelmointi on (käskyjen antamista tietokoneelle). Miten käskyjen antaminen tietokoneelle

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot 3. Muuttujat ja operaatiot Sisällys Muuttujat. Nimi ja arvo. Algoritmin tila. Muuttujan nimeäminen. Muuttujan tyyppi. Muuttuja ja tietokone. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeetiikka.

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

Käsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti

Käsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti Käsitteistä Reliabiliteetti, validiteetti ja yleistäminen KE 62 Ilpo Koskinen 28.11.05 empiirisessä tutkimuksessa puhutaan peruskurssien jälkeen harvoin "todesta" ja "väärästä" tiedosta (tai näiden modernimmista

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R): Diskreetti matematiikka, sks 2010 Harjoitus 2, ratkaisuista 1. Seuraavassa on kuvattu kolme virtapiiriä, joissa on paristo, sopiva lamppu L ja katkaisimia P, Q, R, joiden läpi virta kulkee (1) tai ei kulje

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Koodaamme uutta todellisuutta FM Maarit Savolainen https://blog.edu.turku.fi/matikkaajakoodausta/

Koodaamme uutta todellisuutta FM Maarit Savolainen https://blog.edu.turku.fi/matikkaajakoodausta/ Koodaamme uutta todellisuutta FM Maarit Savolainen 19.1.2017 https://blog.edu.turku.fi/matikkaajakoodausta/ Mitä on koodaaminen? Koodaus on puhetta tietokoneille. Koodaus on käskyjen antamista tietokoneelle.

Lisätiedot

C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. Operaatioiden suoritusjärjestys

C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. Operaatioiden suoritusjärjestys Loogisia operaatioita - esimerkkejä Tänään on lämmin päivä ja perjantai Eilen satoi ja oli keskiviikko tai tänään on tiistai. On perjantai ja kello on yli 13 Ei ole tiistai tai ei sada. Ei pidä paikkaansa,

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

LUMATE-tiedekerhokerta, suunnitelma AIHE: PELIT JA TAKTIIKAT

LUMATE-tiedekerhokerta, suunnitelma AIHE: PELIT JA TAKTIIKAT LUMATE-tiedekerhokerta, suunnitelma AIHE: PELIT JA TAKTIIKAT 1. Alkupohdintaa Mitä lempipelejä oppilailla on? Ovatko ne pohjimmiltaan matemaattisia? (laskeminen, todennäköisyys ) Mitä taktiikoita esimerkiksi

Lisätiedot

Merkkijonon tutkiminen matches-metodilla

Merkkijonon tutkiminen matches-metodilla Merkkijonon tutkiminen matches-metodilla String-luokkaan on määritelty seuraava metodi: public boolean matches(string regular_expression) Mihin käytetään String-luokan metodia public boolean matches(string

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Muilla kielillä: English Suomi Pong-peli, vaihe 3 Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Jaetaan ohjelma pienempiin palasiin (aliohjelmiin) Lisätään peliin maila (jota ei voi vielä

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

HP Media -kaukosäädin (vain tietyt mallit) Käyttöopas

HP Media -kaukosäädin (vain tietyt mallit) Käyttöopas HP Media -kaukosäädin (vain tietyt mallit) Käyttöopas Copyright 2008 Hewlett-Packard Development Company, L.P. Windows ja Windows Vista ovat Microsoft Corporationin Yhdysvalloissa rekisteröimiä tavaramerkkejä.

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

LAINAUSJÄRJESTELMÄ. Kyllä. Vihermetsän lukion kirjastossa on samankaltainen, mutta monimutkaisempi lainausjärjestelmä:

LAINAUSJÄRJESTELMÄ. Kyllä. Vihermetsän lukion kirjastossa on samankaltainen, mutta monimutkaisempi lainausjärjestelmä: LAINAUSJÄRJESTELMÄ Holopaisten lukion kirjastossa on yksinkertainen kirjojen lainausjärjestelmä: henkilökunnalle laina-aika on 28 päivää, ja opiskelijoille laina-aika on 7 Alla on tätä yksinkertaista järjestelmää

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada OTATKO RISKIN? peli 1. Heitä noppaa 20 kertaa. Tavoitteena on saada vähintään 10 kertaa silmäluku 4, 5 tai 6. Jos onnistut, saat 300 pistettä. Jos et onnistu, menetät 2. Heitä noppaa 10 kertaa. Tavoitteena

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Päivitetty 9.5.2012. Text Mining -käyttöopas

Päivitetty 9.5.2012. Text Mining -käyttöopas Päivitetty 9.5.2012 Text Mining -käyttöopas WEBROPOL ANALYTICS: TEXT MINING Mitä tarkoittaa kun asiakkaat tai henkilöstö antavat arvosanan 3.1 o Keskiarvoa informatiivisempaa ovat taustalla olevat syyt

Lisätiedot